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Abstract: Aflatoxin B1 (AFB1), a threatening mycotoxin, usually provokes oxidative stress and causes
hepatotoxicity in animals and humans. Luteolin (LUTN), well-known as an active phytochemical
agent, acts as a strong antioxidant. This research was designed to investigate whether LUTN exerts
protective effects against AFB1-induced hepatotoxicity and explore the possible molecular mechanism
in mice. A total of forty-eight mice were randomly allocated following four treatment groups (n = 12):
Group 1, physiological saline (CON). Group 2, treated with 0.75 mg/kg BW aflatoxin B1 (AFB1).
Group 3, treated with 50 mg/kg BW luteolin (LUTN), and Group 4, treated with 0.75 mg/kg BW
aflatoxin B1 + 50 mg/kg BW luteolin (AFB1 + LUTN). Our findings revealed that LUTN treatment
significantly alleviated growth retardation and rescued liver injury by relieving the pathological
and serum biochemical alterations (ALT, AST, ALP, and GGT) under AFB1 exposure. LUTN amelio-
rated AFB1-induced oxidative stress by scavenging ROS and MDA accumulation and boosting the
capacity of the antioxidant enzyme (CAT, T-SOD, GSH-Px and T-AOC). Moreover, LUTN treatment
considerably attenuates the AFB1-induced apoptosis in mouse liver, as demonstrated by declined
apoptotic cells percentage, decreased Bax, Cyt-c, caspase-3 and caspase-9 transcription and protein
with increased Bcl-2 expression. Notably, administration of LUTN up-regulated the Nrf2 and its
associated downstream molecules (HO-1, NQO1, GCLC, SOD1) at mRNA and protein levels under
AFB1 exposure. Our results indicated that LUTN effectively alleviated AFB1-induced liver injury,
and the underlying mechanisms were associated with the activation of the Nrf2 signaling pathway.
Taken together, LUTN may serve as a potential mitigator against AFB1-induced liver injury and
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could be helpful for the development of novel treatment to combat liver diseases in humans and/or
animals.

Keywords: aflatoxin B1; luteolin; oxidative stress; apoptosis; liver injury; Nrf2 signaling pathway

1. Introduction

Aflatoxins are one of the most dangerous mycotoxins, produced mainly by Aspergillus
flavus and Aspergillus parasiticus and usually found in agricultural environments and food
commodities [1]. According to studies, even low levels of aflatoxins in the diet can be
harmful to human health [2,3]. Currently, approximately 4.5 billion people are in danger
of being exposed to aflatoxins, which cause 4.6–28.2% of all occurrences of hepatocellular
carcinoma worldwide [4,5]. Aflatoxin B1 (AFB1) is the most potent liver carcinogen among
the aflatoxins, and it has been categorized as a Class I carcinogen by the International
Agency for Research on Cancer (IARC) [6]. Additionally, AFB1 is reported to cause severe
health issues, including growth retardation, hepatotoxicity, neurotoxicity, teratogenicity,
mutagenicity and immunotoxicity in humans and animals [7–9]. The liver is believed
to be the primary target organ for AFB1 toxicity, a major metabolizing and detoxifying
organ in the body [10]. Previous research has shown that reactive oxygen species (ROS)
formation appears to be a significant contributor to the toxicity caused by AFB1 in the
liver [11]. ROS overproduction could lead to mitochondrial oxidative stress, resulting
in lipid peroxidation and decreased antioxidant enzyme activity, causing cellular and
organismal hepatic damage [5,12]. Therefore, it is imperative to find an effective antioxidant
to protect the liver and alleviate the AFB1 toxicity. Natural active biological compounds
derived from plants have recently received much attention due to their low toxicity. Herbal
metabolites are effective alternatives for tackling the hazardous effects of AFB1 [13,14].

Flavonoids are bioactive compounds primarily present in plants with a wide range of
pharmacological and health-promoting properties [15]. Luteolin (3,4,5,7-tetrahydroxyflavone)
is a type of natural flavonoid found in various plants worldwide, such as fruits, vegetables,
and some herbal medicines [16]. Luteolin possesses a diverse range of biological properties,
including antioxidant [17], antimicrobial [18], anti-inflammatory [19], anticancer [20], and
neuroprotective capabilities [21]. The nuclear factor erythroid 2-related factor (Nrf2) plays
a central role in the activation of cytoprotective genes in response to xenobiotics and
oxidative stress by binding to the antioxidant response element (ARE) [22,23]. Moreover,
the Nrf2 gene is typically expressed in metabolically active tissues such as the liver [10]. A
recent study revealed that AFB1-induced liver damage in broiler chicks has been associated
with dysregulating the Nrf2 signaling pathway [13]. Therefore, Nrf2 signaling is regarded
as the most significant therapeutic target for preventing and treating oxidative stress-
induced liver damage [24,25]. Although, a study reported that luteolin has a therapeutic
impact on ochratoxin A-induced oxidative injury in NRK-52E kidney cells [17]. Moreover,
LUTN has been reported to exert antifibrogenic effects against carbon tetrachloride-(CCL4)
on hepatic satellite cells and liver fibrosis via multiple mechanisms [26,27]. However,
the preventative actions of LUTN against AFB1-induced liver damage and underlying
mechanisms have still not been explored. Therefore, the current research was designed to
investigate whether LUTN exerts protective effects against AFB1-induced hepatotoxicity
and explore the possible molecular mechanism in mice. Presumably, this is the first study
to highlight the protective role of luteolin against AFB1-induced hepatic damage in mice.

2. Materials and Methods
2.1. Chemicals and Antibodies

The luteolin (LUTN, #41753–43-9, purity ≥ 98%) was bought from (Shanghai Yuanye
Bio-Technology Co., Ltd.). Aflatoxin B1 (AFB1, #1162-65-8) used in the present study was
supplied by Sigma-Aldrich (St. Louis, MO, USA). The ELISA assay kits for malondi-
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aldehyde (MDA, #A003-1), reactive oxygen species (ROS, #E004), glutathione peroxidase
(GSH-Px, #A005), total antioxidant capacity (T-AOC, #A015), catalase (CAT, #A007-1) and
total superoxide dismutase (T-SOD, #A001) were from (Jiancheng Bioengineering Institute,
Nanjing China). Apoptosis detection kit annexin V-FITC/PI (#KGA-108) was supplied by
(Jiangsu KGI, Biotech, CO., Ltd. China). A test kit for the bicinchoninic acid assay was
provided by Thermo Fisher Scientific (Waltham, MA, USA). Chemiluminescence Western-
Bright ECL substrate kit (# ab65623) was supplied by (Abcam, Shanghai, Trading, Co., Ltd.
China). The primary antibodies, heme oxygenase-1 (HO-1, #A1346), glutamate-cysteine
ligase catalytic subunit (GCLC, #A1038), quinone oxidoreductase 1 (NQO1, #A1518), nu-
clear factor erythroid 2-related factor 2 (Nrf2, #A0674), Bcl-2-associated X protein (Bax,
#A19684), caspase-3 (#A2156) and B-cell lymphoma 2 (Bcl-2, A0208) were procured from
(Abclonal Tech, Woburn, MA, USA). Secondary antibodies, anti-mouse IgG (#4410), anti-
rabbit IgG (#4414), and β-actin (#3700), were obtained from (Cell Signaling Technology,
Boston, MA, USA).

2.2. Animals

Four weeks old male C57BL/6 mice were bought from Wuhan University (Wuhan,
China). As an adoption period, mice were housed in separate cages and given an appro-
priate environment one week before the start of the experiment. Standard feed pellets
and freshwater were accessible to the animal’s ad libitum. All mice were housed under
laboratory conditions, light-dark period (12 h light/12 h dark), relative humidity of 45–60%,
and the temperature of 22 ± 2 ◦C. Huazhong Agricultural University permitted the ani-
mal experiments under the Laboratory Animals Care and Ethics Committee (Permit No.
HZAUMO-2018-07). Besides this, the health of experimental mice was closely monitored,
and necessary measures were taken to assure the maximum welfare of the animals.

2.3. Experimental Design and Treatment

The 48 mice were randomly assigned into four groups as follows: (n = 12):

• Group 1, (CON) received physiological saline.
• Group 2, (AFB1), treated with 0.75 mg/kg BW aflatoxin B1.
• Group 3, (LUTN), treated with 50 mg/kg BW luteolin.
• Group 4, (AFB1 + Luteolin), treated with 0.75 mg/kg BW aflatoxin B1 + 50 mg/kg BW

luteolin.

LUTN and AFB1 were dissolved in phosphate buffer saline. Following our preliminary
experiment and the results of previous researchers, we chose a dose of 0.75 mg/kg BW for
AFB1 as reported this dose could induce hepatotoxicity [28], and oral gavage of 50 mg kg
BW LUTN could ameliorate liver damage in mice [29]. The experiment lasted for 15 days,
and all groups received oral administration once a day at 9.00 a.m. During the whole
experiment, feed intake and body gain were recorded.

2.4. Sample Collection

The mice were individually weighed and euthanized at the end of the experiment
to collect the blood and liver samples. The serum was separated from blood samples
following the centrifugation and was kept at −20 ◦C for serum biochemical assays. The
liver tissues were removed and rinsed in ice-cold isotonic saline. Afterward, the liver
samples were weighed and fixed in 4% fresh paraformaldehyde for histopathological
analysis or quickly frozen in liquid nitrogen and kept at −80 ◦C for further assessment. The
remaining liver tissues were utilized to prepare single-cell suspension for flow cytometry
investigations. The following formula was used to calculate the liver coefficient:

Liver coe f f icient (%) =
Liver weight (g)
Mice weight (g)

× 100 (1)
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2.5. Determination of Serum Biochemical Indicators

An automatic biochemistry analyzer (Beckman Synchron CX4 PRO, Fullerton, CA,
USA) was used to quantify the amounts of globulin and albumin, as well as GGT, ALP,
AST, and ALT in serum samples following the manufacturer’s suggested protocol.

2.6. Hematoxylin and Eosin (H&E) Staining

The H&E staining was conducted as reported in our prior study [30]. Liver specimens
were fixed for 24 h in 4% fresh paraformaldehyde solution, dried with alcohol solvent, and
then embedded. The 5 µm fragments were sectioned and processed for H&E staining to
assess the pathological observation in the liver of mice under a microscope (Nikon, Tokyo,
Japan).

2.7. Determination of Oxidative Stress Indices

The 10% tissue homogenates were prepared from collected liver samples following our
previously reported procedure [6]. The bicinchoninic acid determination kit was used to
measure the protein concentration of tissue homogenate. ROS, MDA, T-SOD, GSH-Px, CAT
and T-AOC were detected using commercially available ELISA kits. The measurements
were carried out following the kit’s protocols.

2.8. Apoptosis Assay by Flow Cytometry

Single-cell suspensions were prepared to detect the apoptosis rate in the liver of
mice following our previously described procedure [31,32]. Briefly, an annexin V-FITC/PI
apoptosis detection kit was used to determine the apoptosis rate in the liver following the
manufacturer’s recommended instructions. The cells were stained with annexin V-FITC
(5 µL) and PI (5 µL) in the dark for 30 min at room temperature. Finally, apoptosis rates
were determined using flow cytometry (Beckman-CytoFLEX Coulter, CA, USA). The data
were examined by using FlowJo (BD Biosciences, NJ, USA).

2.9. Quantitative Real-Time PCR (qRT-PCR) and Western Blotting Analysis

The transcription levels of pertaining genes used in the present study were determined
by qRT-PCR following the method previously mentioned in our study [1]. The primers
tested in the current research are presented in Supplementary Table S1. Relative mRNA
expression was normalized to the CON group. The 2−∆∆Ct formula was used to quantify
with the β-actin as a reference gene [33]. The protein expression of Nrf2 signaling and
mitochondrial apoptotic pathways in mouse liver was evaluated by Western blot according
to the previously described procedure [34,35]. The bicinchoninic acid assay kit was used
to quantify the protein contents of samples. Chemiluminescence WesternBrightTM ECL
substrate kit was used to identify the blots, and then FluroChem FC2 Imaging System was
used to visualize and quantify the results.

2.10. Statistical Analysis

The experimental data were analyzed for significance by using SPSS (version 22., IBM
Corporation, Armonk, NY, USA) software. A one-way analysis of variance (ANOVA) was
used for statistical analysis, followed by the least significant difference (LSD) test. The
results are presented as mean ± SD. The significance level of data was set at p-value < 0.05.

3. Results
3.1. Luteolin Alleviates Growth Retardation of Mice Induced by AFB1

The protective effects of luteolin (LUTN) on the growth of mice exposed to aflatoxin
B1 (AFB1) are depicted in Figure 1. During the entire experimental period, the group
exposed to AFB1 recorded the (p < 0.05) lowest ADG and ADFI in the comparison of CON,
LUTN and AFB1 + LUTN groups, respectively. Contrastingly, LUTN therapy considerably
improved growth performance in mice, as evidenced by increased ADG and ADFI (p < 0.05)
compared to the AFB1 group. Furthermore, LUTN treatment significantly reduced liver
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coefficient (p < 0.05) increased by AFB1 (Figure 1C). These findings indicated that LUTN
could eliminate the harmful effect of AFB1 on the growth of mice.
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3.2. Luteolin Protects AFB1-Induced Liver Damages in Mice

The effects of LUTN treatment on the biochemical profile of mice exposed to AFB1 are
summarized in Figure 2A–F. Compared with the CON group, AFB1 exposure considerably
(p < 0.05) increased serum liver enzymes activities such as ALP, ALT, AST, and GGT, while
decreased globulin and albumin content. On the other hand, LUTN treatment consid-
erably reversed AFB1-induced alterations on the biochemical profile of mice. Moreover,
histological analysis revealed that AFB1 exposure damaged the liver structure of mice, as
evident by microvesicular appearance of the lipid droplets with small and large area of
blood infiltration were observed in the AFB1 treated group (Figure 3B). Strikingly, LUTN
treatment evidently (p < 0.05) ameliorated and restored liver injury induced by AFB1,
indicating that LUTN could protect the liver from AFB1-induced hepatotoxicity.

3.3. Luteolin Ameliorates Oxidative Damage in the Liver of Mice Induced by AFB1

To detect the redox status in the liver of experimental mice, ROS, MDA, CAT, T-SOD,
GSH-Px, and T-AOC were detected. As shown in Figure 4A,B, mice exposed to AFB1
revealed a significant (p < 0.05) increase in ROS and MDA levels. At the same time, the
activities of T-AOC, CAT, GSH-Px and T-SOD were significantly reduced as compared to
the CON, LUTN and AFB1 + LUTN groups, respectively. Contrastingly, LUTN treatment
significantly (p < 0.05) reversed AFB1-induced alterations in the oxidative stress markers
and antioxidant variables in the liver of mice, as evident by decreased ROS and MDA
levels by 38% and 20%, respectively, while increased antioxidant enzyme activities of CAT,
T-SOD, GSH-Px, and T-AOC by 36.85, 30.27, 27.26, and 40% respectively, as compared to
the AFB1 treated group (Figure 4A–F).
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Figure 3. The histopathology of liver sections was stained with H&E staining. (A,C) Histological section of the liver
from CON and LUTN group showed a normal histoarchitecture consisting of central vein surrounded by hepatocytes
possessed sinusoids spaces. (B) The liver section from the AFB1 group showed microvesicular (black arrow) appearance of
the abundant fatty droplets with small and large area of blood infiltration (red arrow) showed a hepatotoxicity. (D) Liver
tissue from the group of mice treated with LUTN and challenged with AFB1 manifested recovered status of the liver from
hepatotoxicity, as depicted small and rare patches of the lipids (black arrow) and the blood infiltration (red arrow) as
compared to the AFB1 alone challenged group.

3.4. Luteolin Treatment Prevents AFB1-Induced Apoptosis in Mice Hepatocytes

Apoptosis rate in the hepatocytes was measured by flow cytometry (Figure 5). Apop-
tosis analysis revealed that AFB1 exposure considerably increased (p < 0.05) the proportion
of apoptotic cells relative to the CON, LUTN, and AFB1 + LUTN groups, respectively.
However, LUTN administration dramatically reduced (p < 0.05) the proportion of apoptotic
cells in comparison to the AFB1 group.
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3.5. Luteolin Restrains AFB1-Induced Mitochondrial Apoptosis Pathway

Mitochondrial apoptosis-associated transcription and protein expressions were de-
tected by qRT-PCR and western blotting. As depicted in Figure 6A–E, the transcripts levels
of Bax, cytochrome-c, caspase-3, and caspase-9 were significantly (p < 0.05) increased, while
Bcl-2 was decreased under AFB1 exposure. Contrastingly, LUTN administration signifi-
cantly reversed the transcripts levels of these genes as comparative to the AFB1 exposed
group. Moreover, we investigated the protein expression of Bcl-2, Bax and caspase-3 in the
liver tissue of mice by western blotting (Figure 6F,G). Interestingly, the results of western
blotting for Bcl-2, Bax and caspase-3 were consistent with the qRT-PCR results. Similarly,
in the AFB1 exposed group, Bcl-2 protein expression was (p < 0.05) down-regulated, while
Bax and caspase-3 protein expression was (p < 0.05) up-regulated as compared to the CON
group. Conversely, LUTN treatment significantly alleviated the alterations in the Bcl-2, Bax
and caspase-3 protein levels induced by AFB1.

Antioxidants 2021, 10, x FOR PEER REVIEW 9 of 15 
 

 
Figure 6. Luteolin treatment restrains AFB1-induced mitochondrial-mediated apoptosis pathway. The relative expression 
of mitochondrial-mediated apoptosis pathway transcripts was analyzed by qRT-PCR. (A–E) The relative mRNA expres-
sion of Bcl-2, Bax, Cyto-c, Cas-3 and Cas-9. The results are presented as mean ± SD (n = 6). Western blotting was used to 
detect the expression of mitochondrial apoptosis-associated proteins. (F) Western blotting analysis of Bcl-2, Bax and Cas-
3. (G) Quantitative analysis of western blotting for Bcl-2, Bax and Cas-3. The results are presented as mean ± SD (n = 3). a–

c Columns with different lowercase letters indicated significant differences between the compared groups (p < 0.05). B-cell 
lymphoma 2 (Bcl-2); Bcl-2-associated X protein (Bax); cytochrome-c (Cyt-c); caspase-3 (Cas-3); caspase-9 (Cas-9). 

3.6. Luteolin Treatment Activates Nrf2 Signaling Pathway in the Liver of AFB1 Exposed Mice 
To confirm our hypothesis that LUTN promotes the antioxidant capacity and allevi-

ates hepatotoxicity in mice induced by AFB1 is associated with Nrf2 signaling pathway 
activation, the transcript levels and protein expression of Nrf2 and downstream targets 
were detected. As depicted in Figure 7A–E, AFB1 exposed group showed a significant (p 
< 0.05) decrease in the gene expression of Nrf2, HO-1, GCLC, NQO1 and SOD1 compared 
to the CON and other experimental groups. In contrast, LUTN treatment considerably 
improved the transcript expressions of Nrf2, HO-1, GCLC, NQO1 and SOD1 altered by 
AFB1 (p < 0.05). Further, the protein expression of Nrf2 and its target genes were detected 
by western blotting and revealed the same tendency (Figure 7F,G). Similarly, protein ex-
pression of Nrf2 and its downstream targets, including HO-1, GCLC, and NQO1, were (p 
< 0.05) down-regulated in the AFB1 challenged group. However, LUTN treatment consid-
erably up-regulated the Nrf2, NQO1, HO-1 and GCLC protein expressions as down-reg-
ulated by AFB1 (p < 0.05). 

Figure 6. Luteolin treatment restrains AFB1-induced mitochondrial-mediated apoptosis pathway. The relative expression of
mitochondrial-mediated apoptosis pathway transcripts was analyzed by qRT-PCR. (A–E) The relative mRNA expression
of Bcl-2, Bax, Cyto-c, Cas-3 and Cas-9. The results are presented as mean ± SD (n = 6). Western blotting was used to
detect the expression of mitochondrial apoptosis-associated proteins. (F) Western blotting analysis of Bcl-2, Bax and Cas-3.
(G) Quantitative analysis of western blotting for Bcl-2, Bax and Cas-3. The results are presented as mean ± SD (n = 3).
a–c Columns with different lowercase letters indicated significant differences between the compared groups (p < 0.05). B-cell
lymphoma 2 (Bcl-2); Bcl-2-associated X protein (Bax); cytochrome-c (Cyt-c); caspase-3 (Cas-3); caspase-9 (Cas-9).

3.6. Luteolin Treatment Activates Nrf2 Signaling Pathway in the Liver of AFB1 Exposed Mice

To confirm our hypothesis that LUTN promotes the antioxidant capacity and alleviates
hepatotoxicity in mice induced by AFB1 is associated with Nrf2 signaling pathway acti-
vation, the transcript levels and protein expression of Nrf2 and downstream targets were
detected. As depicted in Figure 7A–E, AFB1 exposed group showed a significant (p < 0.05)
decrease in the gene expression of Nrf2, HO-1, GCLC, NQO1 and SOD1 compared to
the CON and other experimental groups. In contrast, LUTN treatment considerably im-
proved the transcript expressions of Nrf2, HO-1, GCLC, NQO1 and SOD1 altered by AFB1
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(p < 0.05). Further, the protein expression of Nrf2 and its target genes were detected by
western blotting and revealed the same tendency (Figure 7F,G). Similarly, protein expres-
sion of Nrf2 and its downstream targets, including HO-1, GCLC, and NQO1, were (p < 0.05)
down-regulated in the AFB1 challenged group. However, LUTN treatment considerably
up-regulated the Nrf2, NQO1, HO-1 and GCLC protein expressions as down-regulated by
AFB1 (p < 0.05).
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4. Discussion

Aflatoxins, threatening mycotoxins, are commonly found in cereals and animal forages
and pose major health and economic risks to humans and animals [36]. Growth retardation
is one of the most important symptoms of aflatoxins poisoning. In the present study,
AFB1 exposure decreased ADG and ADFI in mice. The observed growth retardation may
have resulted from anorexia, suppression of lipogenesis, and protein synthesis induced by
AFB1 [37]. The liver is regarded as the main target organ of AFB1 poisoning. We found that
AFB1 generated clinical and pathological symptoms of liver injury in mice, as evident from
the increased haptic enzymes AST, ALT, ALP, GGT, and decreased globulin and albumin
content as well as fatty droplets and hepatocytes infiltration with macro vesicles in the liver
of mice. These findings imply that AFB1 can cause hepatotoxicity, consistent with previous
findings [28,38,39]. Interestingly, luteolin (LUTN) treatment attenuated growth retardation
and alleviated toxic effects on serum biochemical profile and pathological changes in the
liver of mice induced by AFB1. The current results align with a previous study, which has
reported that LUTN supplementation prevented acetaminophen-induced hepatic injury
in rats [16]. The present findings strongly suggested that LUTN treatment can mitigate
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AFB1-induced hepatic damage in mice. However, special clinical studies are warranted
to know the hepatoprotective effects of LUTN on ongoing or established AFB1 toxicity in
humans or animals.

Oxidative stress is considered to be critical molecular process underlying cell dam-
age [40]. Oxidative stress is associated with significant increase in the generation of reactive
oxygen species (ROS) while decreased antioxidant capacity in the body [41]. Previous
studies reported that excessive ROS production is a significant cause of AFB1-induced hep-
atotoxicity and apoptosis in mice [5,30,42]. Similarly, in the present study, AFB1 exposure
generated ROS and MDA accumulation and inhibited antioxidant enzyme activities such
as T-SOD, CAT, GAH-Px and T-AOC, and induced apoptosis in the liver of mice. LUTN is
considered a potent ROS scavenger, protecting cells from ROS accumulation and apoptosis
induced by oxidative stress [43]. We found that LUTN treatment substantially suppressed
oxidative stress induced by AFB1 as evidenced by decreased ROS and MDA accumulation,
strengthened antioxidant defense system (T-SOD, CAT, GAH-Px and T-AOC), and reduced
apoptosis rate in the liver of mice.

Mitochondria have been identified as the primary targets for AFB1 harmful effects in
causing apoptosis [44]. The mitochondrial apoptosis pathway is regulated by anti-apoptotic
and pro-apoptotic members of the Bcl-2 family [45]. Bcl-2 is an anti-apoptotic protein that
impedes the release of apoptogenic molecules (Cyt-c), while Bax is a pro-apoptotic protein
that promotes the release of Cyt-c into the cytoplasm by competing with Bcl-2, thereby
causing cell death [46,47]. The release of Cyt-c into the cytoplasm, resulted in caspase-3 and
caspase-9 activation and the induction of apoptosis [48,49]. Previously, studies reported
that AFB1 exposure could cause apoptosis in various tissues and cells and the mechanism
was linked with the mitochondrial apoptosis pathway [5,50–52]. Our results showed that
expressions of Bax, Cyt-c caspase-3 and caspase-9 were considerably up-regulated, while
Bcl-2 was down-regulated by AFB1. These findings demonstrated that AFB1-induced
excessive apoptosis in the liver of mice is linked with the mitochondrial apoptosis pathway.
Notably, LUTN treatment increased the Bcl-2 expression, inhibited mitochondrial Cyt-
c release and reduced the activated caspase-3 and caspase-9 expression in the liver of
mice under AFB1 exposure. Furthermore, mitochondria are the primary target of ROS
attacks, and superfluous ROS production can lead to oxidative stress and mitochondrial
malfunctioning [31]. We observed that LUTN suppressed ROS generation induced by
AFB1. As a result, we hypothesized that LUTN reduces AFB1-induced excessive apoptosis
in mouse liver either directly or through the suppression of oxidative stress.

Nrf2 is a transcription factor that plays a significant role in the process of AFB1-
induced cytotoxicity [53,54]. Under normal conditions, Nrf2 stays in the cytosol by its
specific antagonist, Keap1, while under stimulation, it dissociates from Keap1 and translo-
cates to the nucleus, where it binds to ARE and regulates the transcripts of downstream
antioxidant genes (HO-1, NQO1, SOD, GCLC) [55]. Nrf2 and its targeted antioxidative
genes, HO-1, NQO1, SOD, and GCLC, are critical components to maintain the redox sys-
tem and have been shown to exhibit cytoprotective resistance against oxidative stress [56].
The present study revealed that AFB1 exposure inhibited the expression of Nrf2 and
its associated-target genes such as HO-1, NQO1, SOD1, and GCLC in the liver of mice.
However, LUTN dramatically rescued these effects induced by AFB1. Previously, LUTN
prevents the progression of liver fibrosis induced by carbon tetrachloride-(CCL4) through
targeting AKT/mTOR/p70S6K and TGFβ/Smad signaling pathways [26]. The current
results agree with previous investigations that AFB1 exposure suppressed Nrf2 nuclear
translocation [28,54], and LUTN could rescue cells from oxidative damage by activating
Nrf2 and up-regulating the cellular antioxidant genes expression [57–59]. However, further
research is needed to address the preventive effects of LUTN against ongoing and/or
established AFB1-induced toxicity in human and/or animal.
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5. Conclusions

The current study provides significant evidence on the potential protective effects of
luteolin (LUTN) against AFB1-induced hepatotoxicity in mice. LUTN effectively rescued
liver injury, as evident by the amelioration of toxic effects on serum biochemical profile
and pathological alterations induced by AFB1. LUTN attenuates AFB1-induced excessive
apoptosis by inhibiting the mitochondria-dependent apoptosis pathway. Additionally,
LUTN suppressed AFB1-induced oxidative stress by scavenging ROS accumulation and
enhancing antioxidant enzymes capacity via regulation of Nrf2 signaling. The current
study suggested that the key mechanisms underlying the LUTN hepatoprotective effects
were associated with the activation of the Nrf2 signaling pathway (Figure 8). The present
study suggested that LUTN may serve as a potential mitigator against AFB1-induced liver
injury and could be helpful for the development of novel treatment to combat liver diseases
in humans and/or animals.
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