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ROS homeostasis and metabolism: a dangerous liason
in cancer cells

E Panieri1 and MM Santoro*,1,2,3

Tumor cells harbor genetic alterations that promote a continuous and elevated production of reactive oxygen species. Whereas
such oxidative stress conditions would be harmful to normal cells, they facilitate tumor growth in multiple ways by causing DNA
damage and genomic instability, and ultimately, by reprogramming cancer cell metabolism. This review outlines the metabolic-
dependent mechanisms that tumors engage in when faced with oxidative stress conditions that are critical for cancer progression
by producing redox cofactors. In particular, we describe how the mitochondria has a key role in regulating the interplay between
redox homeostasis and metabolism within tumor cells. Last, we will discuss the potential therapeutic use of agents that directly or
indirectly block metabolism.
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Facts

� Deregulated redox homeostasis is a hallmark of
cancer cells

� IncreasedROS levels are able to promote tumor growth and
malignant progression

� Increase antioxidant ability in malignant cells is a common
feature

� Alteration of specific metabolic pathways in tumors is
frequently found

� Tumors can be sensitized to chemotherapy and other
antitumor treatment by disabling antioxidant defenses
(NADPH and GSH) through metabolic inhibition

Open Questions

� What are the redox-sensitive transducers that specifically
promote signaling events in cancer cells?

� As metabolism can support the intracellular redox home-
ostasis by NADPH and GSH synthesis, what are the
cancer-specific pathways/alterations that can be selectively
targeted for therapeutic purposes?

� To what extent can the inhibition of antioxidant mechanisms
be used to potentially enhance chemo/radiotherapy without
inducing side toxicity on normal cells?

� Would it be possible to generate animal models that allow
real-time detection of metabolic/redox intermediates with
high spatial and temporal resolution during cancer
progression?

Cancer is one of the leading causes of death worldwide.
Despite extensive research and considerable efforts for
developing targeted therapies, many tumors are still char-
acterized by poor prognosis and high mortality. For this
reason, novel strategies to improve the outcome of patients
suffering from aggressive or therapy-resistant malignancies
are critically needed. Recent evidences indicate that altered
redox balance and deregulated redox signaling, which are
two common hallmarks of tumors, can be strongly implicated
in malignant progression and resistance to treatment. It has
been long postulated that cancer cells exhibit persistently
high reactive oxygen species (ROS) levels as a consequence
of genetic, metabolic and microenvironment-associated
alterations. These are then compensated by an increased
antioxidant ability from these cancer cells.1 Although see-
mingly paradoxical, this pro-oxidant shift can promote tumor
growth by inducing DNA damage and genomic instability,2

which then activate an inflammatory response,3 stabilizing
the hypoxia inducible factor-14 and thus reprogramming
metabolism.5,6 Due to the selective pressure induced by
sustained ROS production, cancer cells have developed an
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efficient mechanism of ROS detoxification that presents a
selective advantage over and upholds its survival under pro-
oxidizing conditions. Therefore, the dependency of cancer
cells from their antioxidant systems represents a specific
vulnerability that must be exploited to induce targeted cell
death. This can be achieved by increasing oxidative stress
above the toxicity threshold, sparing normal cells, which are
characterized by having lower intracellular ROS levels
(Figure 1).7 Due to their dualistic nature, ROS can act as
‘good’ and ‘bad’molecules, and regulate cellular physiology or
induce cytotoxicity depending on the magnitude, duration and
site of their generation. Hence, strategies aimed at altering
redox signaling events in tumor cells and intend to disable key
antioxidant systems in the presence of ROS inducers might
represent promising new anticancer treatments.8 Other
research looks to the intimate connection between cellular
metabolism and redox homeostasis. Their reciprocal relation-
ship is used by cancer cells to generate building blocks for
cellular growth or antioxidant power to prevent oxidative
damage. By redirecting energetic substrates and metabolic
intermediates into the biochemical pathways that generate
key antioxidantmolecules,malignant cells can directly support
the mechanisms of ROS detoxification.9–11 Therapeutic
manipulations aimed at disrupting this functional crosstalk or
elevating the burden of oxidative stress in the presence of
selective metabolic inhibitors might induce synthetic lethality
or sensitize cancer cells in common therapies8,10,12

This review focuses on the adaptive mechanisms that
tumors use to face oxidative stress conditions. We will discuss

the role of ROS in regulating metabolism and progression
in cancer cells. Last, we cover potential therapeutic
usage of agents that directly or indirectly alter the tumor redox
balance.

ROS Homeostasis and Redox Cofactors in Normal and
Tumor Cells

Redox homeostasis is an essential requisite for aerobic
organisms. They are dependent on the balance between the
rate and the magnitude of oxidant production and their
elimination over time. ROS are short-lived molecules with
unpaired electrons deriving from partially reduced molecular
oxygen that are perpetually generated, transformed and
eliminated in a variety of cellular processes including
metabolism, proliferation, differentiation, immune system
regulation and vascular remodeling. These oxygen-
containing derivatives are comprised of free radicals such as
the superoxide anion (O2

−·) or the hydroxyl radical (OH•) as
well as non-radical molecules including hypochlorous acid and
hydrogen peroxide (H2O2).

13,14 Both exogenous and endo-
genous sources of ROS production have been extensively
described over the past decade.15 The most biologically
relevant are represented by the nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidases, professional enzymes
that catalyze the production of O2

−· or H2O2 using NADPH
as a reductant16 and the mitochondrial electron transport
chain (mETC), wherein mainly complexes I and II generate O2

−

through univalent reduction of molecular oxygen as a

Figure 1 ROS sources and scavengers in the control of redox homeostasis in normal and cancer cells. (a) Normal cells keep constant ROS production and elimination to
maintain a favorable redox balance. Disruption of redox homeostasis by co-treatment with ROS inducers and antioxidant inhibitors induces oxidative stress and variable levels of
cell death. (b) Cancer cells exhibit higher steady-state levels of ROS counterbalanced by increased antioxidant capacity. The combined use of pro-oxidizing treatment and
antioxidant inhibition is expected to cause severe oxidative stress and severe cytotoxicity
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consequence of electron leakage during mitochondrial
respiration using nicotinamide adenine dinucleotide (reduced
form) (NADH) and FADH.17,18

To keep a steady-state control over ROS production–
detoxification and prevent the harmful effects, aerobic organ-
isms have evolved a complex array of defensive systems.
These systems comprise scavenging enzymes and several
endogenous or dietary-assumed antioxidant agents that limit
ROS accumulation. The most relevant antioxidant enzymes
include (i) superoxide dismutases (SODs) that convert super-
oxide (O2.

− ) to less reactive H2O2, (ii) catalase that reduces
H2O2 to water and molecular oxygen and (iii) glutathione
peroxidases that eliminate H2O2 using reducing power derived
from glutathione. Other important defensive mechanisms and
mediators of redox signaling are represented by the peroxir-
edoxin, the thioredoxin (TRX) and the glutathione/glutaredoxin
systems.19–30 Due to intrinsic differences in the half-life,
stability, chemical reactivity, cellular context, site and source
of their generation (exogenous or endogenous), ROS can
interact and modify different classes of biological macromo-
lecules including DNA, lipids and proteins.31–37 The tight
regulation of ROS production and detoxification over time
and space represents the basis for the maintenance of an
appropriate redox homeostasis and redox signaling events.
Disruption of redox circuitries that control the turnover of ROS
and the related redox signaling events has a profound impact
on cellular physiology and in turn may lead to aberrant
signaling, unrestrained accumulation of toxic byproducts,
oxidative damage and cytotoxicity.38 Although low levels of
ROS are believed to regulate redox signaling events,
high doses are regarded as being responsible for cell
toxicity.31,39–49 It is also well accepted that the efficacy of
many anticancer therapies, including chemotherapeutics and
radiotherapy, largely depends on their ability to induce ROS
accumulation and evoke cell toxicity and death.14,50–56

The high levels of oxidative stress normally associated with
malignant progression represent tumor-specific alteration that
makes cancer cells vulnerable to further elevation of ROS
and strongly dependent on their antioxidant defenses. Both
extrinsic and intrinsic factors contribute to generate a
persistent amount of high ROS levels in tumors. To prevent
excessive oxidative stress and promote redox signaling, tumor
cells strategically adjust multiple antioxidant enzymes and
make extensive use of their metabolic pathways to provide an
adequate supply of antioxidant molecules (such as reduced
glutathione (GSH) and NADPH).1 On the basis of these
observations, disabling the intrinsic antioxidant mechanisms
by promoting ROS production has been conducted in several
studies.57–63 Still, these studies highlight the growing interest
in the scientific community towards therapeutic strategies that
are aimed at disrupting the redox homeostasis of malignant
cells. To identify new strategies and define redox regulation
and ROS levels in the context of tumor progression, several
laboratories have found success with new approaches on the
basis of the metabolic blockade as anticancer treatment
(Table 1). Such treatments not only impact tumor growth by
starving the cell from specific metabolic pathways but also by
changing the redox state within the tumor cell. Laboratories
are achieving these with encouraging results trying to under-
stand which metabolic pathway is directly related to redoxTa
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homeostasis and how it achieves ROS production, or an
antioxidant response, in cancer cells.

Metabolic Pathways Involved in ROS Homeostasis in
Cancer Cells

A growing body of evidence indicates that the malignant
progression of tumors is characterized by the occurrence of
multiple alterations where specific metabolic pathways are
linked to the synthesis of essential building blocks (e.g., amino
acids, lipids and nucleotides) fostering their uncontrolled
growth. However, it is well recognized that part of the energetic
substrates involved in these pathways can be also redirected
into specific metabolic routes to generate not only antioxidant
molecules (NADPH and GSH) but also redox cofactors
(i.e., NADH and FADH) that can be readily used to maintain
or restore an adequate redox homeostasis.64–67 Increased
attention has been dedicated to the intimate connection and
reciprocal crosstalk between metabolism and redox balance
of cancer cells, with a particular emphasis on the role of
glycolysis, glutaminolysis, fatty acid oxidation (FAO), one-
carbon metabolism and the pentose phosphate pathway
(PPP).68–70 For this reason, it is important to analyze more

in detail the major metabolic pathways that mainly control the
redox homeostasis of cancer cells (Figure 2).

Glycolysis. Glycolysis is an essential pathway occurring in
the cytosol of mammalian cells through which glucose is
transformed to pyruvate. Glucose is taken from the extra-
cellular space by specific transporters (i.e., glucose trans-
porters). Glucose is then converted to glucose-6-phosphate
by hexokinase enzymes and enters into a series of ten
enzyme-catalyzed reactions culminating in the generation of
pyruvate, adenosine tris-phosphate (ATP) and reduced
cofactors in the form of NADH.71 As already observed by
Otto Warburg in the 1924, tumor cells exhibit a prevalent use
of the glycolytic pathway regardless the presence of sufficient
oxygen tension, a phenomenon known as Warburg effect.64

Several studies indicate that the pro-glycolytic shift caused
by oncogene activation and loss of tumor suppressors
represents a selective advantage for tumors by providing
essential precursors for building the macromolecules
required to sustain growth and proliferation.72,73 As a matter
of fact, therapeutic modulation of glucose metabolism and
transport has been widely utilized as an effective anticancer
strategy.74–80 It is now understood that glucose metabolism
has an essential role in the control of redox homeostasis in

Figure 2 Cellular metabolic pathway involved in redox homeostasis. Schematic representation of central metabolic pathways described in the text and involved in redox
homeostasis. Metabolic pathway in the cytosol and mitochondria are represented. Metabolites in lowercase, enzymes in uppercase and inhibitors in red. Color code indicates
metabolic pathways. FA fatty acids; HK, hexokinases; ROS, reactive oxygen species; PGD, phosphogluconate dehydrogenase; ME1, malic enzyme; a-KG, alpha ketoglutarate
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tumors, as glycolytic intermediates can be shuttled into the
metabolic pathways that directly or indirectly contribute to
generate reducing equivalents, mainly PPP-derived NADPH
or glutaminolysis-derived GSH. In this regard, a recent study
showed that cancer cells exposed to glucose deprivation
increase glucose metabolism to restrict the burden of ROS
and prevent hydroperoxide-induced cell death.81 Also, inhibi-
tion of lactate dehydrogenase-A through the small-molecule
FX11 impaired the malignant progression of lymphoma and
pancreatic cancer xenografts by decreasing the intracellular
ATP levels and inducing oxidative stress.82 Late, the inhibition
of glycolysis and the PPP combined with the disruption of
TRX system has proven to represent a successful strategy in
selectively increase cytotoxicity in pancreatic and breast
cancer cells but not in normal counterparts.83 These results
suggest that a combined approach might be a better
strategy in targeting malignant tumors when limited efficacy
is observed with single agents.

Fatty acid oxidation. The FAO is composed of a cyclical
series of controlled oxidations that occur in the mitochondria
of mammalian cells, through which long- and short-chain fatty
acids are shortened, generating NADH, FADH2 (flavin
adenine dinucleotide (reduced form) and acetyl-CoA to
support biosynthetic pathways and produce ATP. However,
in cancer cells, a consistent fraction of the acetyl-CoA enters
into the tricarboxylic acid cycle (TCA) cycle and generates
citrate, which is therefore exported into the cytosol and
funneled into metabolic reactions catalyzed by the malic
enzyme (ME) and the isocitrate dehydrogenase 1 (IDH1), that
ultimately produce large amounts of NADPH.84 The impor-
tance of FAO for NADPH homeostasis and redox balance
of cancer cells prevent cell death during loss of matrix
adhesion9 and metabolic stress conditions through the
modulation of the liver kinase B1 (LKB1)/AMP kinase
axis.85 Overexpression of the key FAO regulators, such as
the carnitine palmitoyltransferase-1,86 occurs in both solid
tumors and leukemia cells,87 whereas its pharmacological
inhibition by etomoxir was found to impair NADPH production
and promote oxidative stress-induced cell death in human
glioblastoma cells associated with profound ATP depletion88

and to strengthen the pro-apoptotic effect of cytotoxic agents
in human leukemia cells.89 Given its importance in many
types of tumor, targeting the FAO represent a promising novel
strategy to disrupt the redox homeostasis of malignant cells
and interfere with biosynthetic or bioenergetics processes
that regulate cancer cell survival triggering either apoptosis-
dependent or -independent cell death.

Pentose phosphate pathway. The PPP is a major catabolic
pathway of glucose through which cancer cells produce large
amounts of ribose-5 phosphate, a precursor of nucleotide
synthesis and NADPH, a key molecule that is used to drive
anabolic processes and to detoxify harmful ROS.90 Activation
of the PPP represents a key hallmark of many tumors where
this metabolic pathway is found at the crossroad between
glycolytic activity, unrestricted proliferation and scavenging of
excessive ROS.91 The transcriptional regulation of glucose-6-
phosphate dehydrogenase (G6PD), the rate-limiting enzyme
of the PPP, by TAp73 and TAp63α was recently described in

U2OS osteosarcoma cells, wherein its overexpression
enhanced the PPP-dependent production of NADPH.92,93

Additional mechanisms of G6PD regulation might directly
depend on the availability of glucose: glucose funneling into
the oxidative branch of the PPP directly controls the redox
homeostasis of human clear cell carcinoma cells.94 This
latest evidence underlines the importance of the PPP in the
regulation of tumor cell survival and therapeutic resistance. In
this respect, overexpression of G6PD promote doxorubicin
resistance through increased GSH content and multidrug
resistance-mediated efflux in HT29 colon carcinoma cells.95

In another study, the inactivation of the oncoprotein mucin1
C-terminal subunit restored the sensitivity of multiple mye-
loma cells to bortezomib, preventing the TIGAR-dependent
glucose entry into the PPP and inducing massive ROS
accumulation due to GSH depletion.96 Simultaneous inhibi-
tion of glycolysis and PPP through 2-deoxy-d-glucose and
6-aminonicotinamide, respectively, induced oxidative stress
and sensitized malignant human cancer cell lines to radio-
therapy presumably through the induction of multiple cell
death modalities including apoptosis, necrosis and mitotic
catastrophe.97 The functional inactivation of rate-limiting
enzymes of the PPP or the hindrance of glucose funneling
into the G6PD-dependent reactions could represent a
promising strategy in overcoming intrinsic or acquired
resistance to conventional chemo/radiotherapy in both solid
and hematologic tumors.

Glutaminolysis. Glutamine is a non-essential amino acid
that has a key role in tumor metabolism, serving as a source
of carbon and nitrogen for biosynthetic processes, an
intermediate for energy production and a precursor for
glutathione synthesis.98 Increased glutamine catabolism is
a common hallmark of tumor metabolism reprogramming
through which cancer cells support cell proliferation, signal
transduction and redox homeostasis.99 It is generally
assumed that the expression levels of certain oncogenes
(i.e., Ras and Myc) or tumor suppressors (i.e., p53) can
strongly influence the extent of glutamine utilization and the
metabolic profile of different tumors.5,100–102 However, emer-
ging aspects of glutamine metabolism concern the potential
mechanisms through which glutamine utilization can regulate
the redox balance of malignant cells.68,103 Indeed, it is
increasingly recognized that glutaminase enzymes directly
contribute to glutathione synthesis converting glutamine into
glutamate and promoting the uptake of cysteine through the
Slc7a11 exchanger.104 Similarly, metabolic intermediates
such as citrate can be diverted from the TCA cycle and
exported into the cytosol, where ME or IDH1 use them to
generate reducing power in the form of NADPH.84 This
strategy helps tumors to keep the glutathione pool in a
reduced state and support the TRX system.105,106 Additional
mechanisms of redox modulation have been reported,
wherein the mitochondrial enzyme glutamate dehydrogenase
1, by controlling the intracellular fumarate levels, positively
regulates the enzymatic activity of the antioxidant enzyme
glutathione peroxidase (Gpx).11 Given the paramount
importance of glutamine metabolism in tumor progression
and redox control, interfering with its function might represent
an attractive anticancer strategy.107 With this respect, the
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glutaminase enzymes (GLS) as master regulators of gluta-
mine metabolism have been the focus of recent anticancer
research. Pharmacological inhibition of GLS1 with bis-2-(5-
phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES)
impaired the proliferation of P493 B-cell lymphoma (BCL)
cells inducing DNA fragmentation and apoptotic cell death,
whereas the genetic silencing of GLS1 prolonged the survival
of mice with Myc-induced hepatocellular carcinoma and
markedly impaired the growth of P493BCL xenograft.108

Similarly, BPTES-induced GLS1 inhibition selectively
suppressed the growth of glioma cells with the R132D
mutation in the IDH1 isoform109 and blocked the proliferation
of primary acute myeloid leukemia (AML) cells with mutations
in the IDH1/2 enzymes.110 By comparing different AML cell
lines, Goto et al.111 have reported that glutaminolysis
inhibition was associated to the depletion of the intracellular
GSH content and subsequent ROS generation, particularly in
HL-60 cells characterized by glutamine addiction. In a former
study, glutamine deprivation also decrease the GSH levels of
neuroblastoma cells, leading to altered redox balance,
impaired cell proliferation and increased chemosensitivity to
the alkylating agent L-PAM.112 Finally, the combined inhibition
of GLS1 and heat-shock protein 90 induced synthetic lethality
in cancer cells and mouse embryonic fibroblasts with
activating alterations of the mTORC1 pathway through
increased ER stress and disruption of the redox balance
caused by GSH depletion.83 Taken together, these studies
underline the importance of glutamine in the maintenance of
redox balance, cell growth and cell survival of both solid and
hematologic tumors, setting the rational for therapeutic
approaches aimed at the manipulation of glutamine metabo-
lism to block malignancy.

The serine–glycine one-carbon metabolism. The serine–
glycine one-carbon metabolism (SGOC) is a complex net-
work of biochemical reactions that integrate inputs from
amino acids and glucose derivatives (mainly serine and
glycine) and generates multiple outputs as carbon units
(tetrahydrofolate (THF) and its derivate) that serve different
cellular functions. The redistribution of these carbon units
from serine and glycine rely on three pathways: the folate
cycle, the methionine cycle and the trans-sulfuration
pathway.113 Folate, a vitamin B derivative, is reduced to
THF by a series of metabolic reactions and converted into
methylenetetrahydrofolate by serine hydroxymethyl transfer-
ase (SHMT). This product is either converted to F-THF or
reduced by methylenetetrahydrofolate reductase to methyle-
netetrahydrofolate, whose demethylation completes the folate
cycle. The carbon units therefore enter into the methionine
cycle with the generation of S-adenosylmethionine by the
methionine adenyltransferase, with further conversion by
S-adenosyl homocysteine hydrolase into homocysteine.114

The last modular component of the one-carbon metabolism,
the trans-sulfuration pathway, is functionally connected to the
methionine cycle through the homocysteine, whose conden-
sation with serine by cystathionine synthase generates
cystathione, further metabolized to alpha-ketobutyrate and
cysteine by cystathione lyase. The cysteine can therefore be
diverted into GSH synthesis.113 For long time, SGOC has
been associated with cancer cell due to its importance for the

regulation of nucleic acid, lipids and protein synthesis of
proliferating cells. More recent evidence indicates that this
pathway is also crucial for redox balance.115,116 With this
respect, the mitochondria have been shown to have a
prominent role.117 Indeed, despite THF-derived carbon units
are primarily used for nucleotide synthesis in the cytosol, new
methods for tracing NAPDH compartmentalization indicate
that serine is predominantly utilized in the mitochondria of
mammalian cells to generate NADPH.67,118 An observation
that was further substantiated by a recent study showing that
both glycine and serine catabolism were responsible of
NADPH production in the mitochondria of HEK-293 and
MDA-MB468 cell lines.67 Interestingly, Myc-transformed cells
subdued to hypoxia strongly upregulated the expression
of the mitochondrial SHMT2, responsible for an abundant
NADPH production. Conversely, knockdown of SHMT2
impaired antioxidant ability and increased cell death under
hypoxia, but by a not yet known mechanism.119 Also, the
antioxidant transcription factor Nrf2 can regulate the expres-
sion of key one-carbon metabolism enzymes, including
3-phosphoglycerate dehydrogenase, phosphoserine amino-
transferase 1 and methylenetetrahydrofolate dehydrogenase
2 (MTHFD2) in human non-small cell lung cancer (NSCLC)
cells, supporting nucleotide and glutathione synthesis.120

Despite the fact that further studies will be necessary to
assess potential therapeutic benefit of this approach,
novel and selective inhibitors of SHMT2 and MTHFD2
enzymes might represent a promising anticancer strategy
against hypoxic tumors characterized by otherwise limited
tractability.117 Remarkably, the use of antifolate such as
methotrexate and pemetrexed, which are known inhibitors of
active SHMTD, still represents a cornerstone of antineoplas-
tic therapy against solid and hematologic tumors including
breast cancer, bladder cancer, acute lymphoblastic leukemia
and lymphomas.121 Also, in therapy-resistant tumors, down-
stream pathways of one-carbon metabolism have been
successfully targeted with agents that interfere with the
nucleotide synthesis such as 5-FU for advanced colorectal
cancer or gemcitabine for pancreatic cancer.113 Given the
increased interest in metabolic alterations of cancer cells and
the intimate connection between SGOC pathways and redox
homeostasis of human tumors, key nodes in the one-carbon
metabolism might represent a valid therapeutic target at the
crossroad between the regulation of cancer growth and
antioxidant capacity.

Mitochondria: The Perfect Location to Target Redox
Homeostasis and Metabolic Pathways

One emerging aspect in the study of molecular mechanisms
controlling redox balance and metabolism in mammalian cells
regards the existence of a clear compartmentalization of
specific biochemical reactions in different cell organelles. It is
increasingly known that mitochondria are key organelles for
the regulation of redox signaling and redox homeostasis of
normal and cancer cells (Figure 1). By integrating metabolic,
bioenergetics and redox cues, the mitochondrial network acts
as a central hub that directly or indirectly controls a wide
number of cellular processes including proliferation, ATP
synthesis and cell death.122 By hosting multiple redox-active
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complexes and metabolic enzymes that generate superoxide
anion, the mitochondria represent a major source of endo-
genous ROS production. The most well-characterized site is
represented by the mETC, through which the electrons from
reduced metabolic intermediates (e.g., NADH and FADH2)
are transferred to the molecular oxygen. During the electrons
flow, depending on the mitochondrial membrane potential
status and the oxygen availability, semiquinone radicals can
be generated at the level of complexes I, II and III, promoting
the univalent reduction of oxygen into superoxide.123 Other
sources of mitochondrial-dependent superoxide production
include the 2-oxoglutarate dehydrogenase, the pyruvate
dehydrogenase in the mitochondrial matrix, the mitochondrial
glycerol-3 phosphate dehydrogenase and the electron trans-
fer flavoprotein-ubiquinone oxidoreductase mitochondrial
system (flavoprotein-ubiquinone oxidoreductase) located in
the inner membrane.38 The generated superoxide can then
leave the mitochondrial district through different ways. One
well-established route is through its conversion into H2O2 by
SOD2, whereas the second mechanism, still a matter of
intense debate, postulates its direct diffusion into the cytosol
through the voltage-dependent anion channel (VDAC),124,125

wherein is spontaneously or enzymatically transformed into
H2O2 by SOD1. In this way, the mitochondria produce
picomolar to nanomolar amounts of peroxide that then leave
the site of generation and promote retrograde signaling to the
nucleus or regulate activity, localization and stability of redox-
sensitive target proteins that are located in the cytosol.126 On
the basis of their central role in redox control and metabolism,
the mitochondria represent attractive targets for anticancer
therapy. Several studies have investigated the effect of
mitochondrial-targeted antioxidants and their impact in tumor
biology.127 MitoQ is an orally active antioxidant that not only
mimics the role of the endogenous mitochondrial antioxidant
coenzyme Q10 (CoQ10) but also substantially augments the
antioxidant capacity of CoQ10 in a mitochondrial membrane
potential-dependent manner.128 MitoQ has been found to kill
breast cancer cells and unhealthy mammary cells, supporting
a role for MitoQ and similar compounds to be further evaluated
for novel anticancer activity.129 Among other aspects, the
relative contribution of different metabolic pathways involved
in NADPH generation (e.g., ME1, IDH1, PPP and glutamino-
lysis) has received significant attention1,102 with particular
emphasis on the role of one-carbon metabolism.113 With this
respect, mitochondrial NADPH mainly derives from serine
catabolism regulated by SHMT2 and MTHFD2, two
mitochondrial-specific enzymes that are frequently overex-
pressed in cancer cells acting as important regulators of tumor
redox homeostasis, but absent or underrepresented in normal
tissues.67,130 Genetic depletion of SHMT2 altered the redox
balance of Myc-transformed tumors during hypoxia and
induced significant cytotoxicity,119 whereas knockdown of
MTHFD2 in overexpressing breast cancer tumors has been
shown to impair cell migration and invasion, and to sensitize
malignant cells to methotrexate by inducing caspase
3/7-independent cell death.131 Taken together, these observa-
tions imply that targeting multiple mitochondrial functions
with single agents or in combination with inhibitors of different
metabolic pathways might represent a promising approach to
improve the efficacy of conventional chemotherapeutics, in

particular in those tumors wherein the apoptotic machinery is
not functional.
Despite the fact that mitochondrial dysfunction has long

been considered a metabolic hallmark of cancer cells, studies
have also indicated that tumor cells not only have functional
mitochondria but also that their activity is essential for
tumorigenesis.127 By regulating the generation of ROS,
ATP and other metabolites driving bioenergetic and biosyn-
thetic processes, mitochondria have a key role in cancer
progression.132,133 Oncogenic activation of MYC and
KRAS promote increased glucose utilization and addiction
in different types of tumors,134 while also enhancing
the mitochondrial-dependent biosynthesis of macromole-
cules through increased ATP levels and TCA cycle
intermediates.64,135 To replenish the TCA cycle substrates
and fuel their uncontrolled growth, cancer cells utilize specific
mechanisms of anaplerosis on the basis of the oxidation
of glutamine to α-ketoglutarate and its conversion to
oxaloacetate.136 As a consequence of oxidative metabolism,
physiological amounts of ROS are produced at the level of the
mETC, inducing the pro-tumoral activation of redox-sensitive
pathways.31 To prevent ROS-induced toxicity, cancer cells
redirect the metabolic intermediates coming from glutamine
and one-carbon metabolism into alternative pathways that
generate NADPH and GSH, antioxidants molecules readily
used by several ROS-scavenging enzymes.67,118 Interest-
ingly, tumors with impaired TCA cycle activity (or mutations in
the mETC complexes) and that rely on glycolysis for ATP
synthesis, shift to reductive glutaminolysis to mediate biosyn-
thetic processes and cell survival.137,138 Such tumor cells
depend on mitochondrial-derived ROS to promote cell
proliferation and metastasis formation.139–141 In contrast to
what is generally assumed, many tumors still use mitochon-
dria for ATP production, despite the Warburg effect should
provide sufficient amounts of ATP for their biological needs.142

Indeed, poorly vascularized and other subsets of tumors
growing under limited glucose conditions heavily rely on
oxidative phosphorylation for ATP synthesis,87,143,144 a weak-
ness that might be targeted with drugs that limit glucose
utilization and block mitochondrial bioenergetics.145,146

With this respect, two anti-diabetic biguanides, such as
metformin and phenformin, show promising antitumoral
effects.147 Epidemiological studies have shown that metformin
decreases the incidence of cancer and prolongs the survival
rate of patients with solid tumors.148,149 More studies have
reported also that the in vivo antitumorigenic effects of
metformin depended on the inhibition of the mETC complex-
I activity and the decrease of circulating glucose and insulin
levels.150–152 Metformin was also able to impair the growth of
NSCLCs by blocking the activation of the Akt/mammalian
target of rapamycin (mTOR) pathway and by potentiating the
pro-apoptotic efficacy of ionizing radiation.153 Also, metformin
selectively killed breast cancer stem cells through profound
depletion of triphosphate nucleotides presumably reflecting a
major impairment of the energetic metabolism.154 Therefore,
another biguanide, called phenformin, has emerged as a
potential anticancer agent due to its liposolubility, higher
affinity for mETC complex-I and stronger antineoplastic
activity.155 Phenformin enhanced the efficacy of the BRAF
inhibitor PLX4270 both in vitro and in genetic models of
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melanoma driven by BRAFV600E mutations triggering apopto-
tic cell death upon inhibition of the mTOR pathway.156

Phenformin also induced selective apoptosis in a subset of
NSCLCs with loss of the tumor suppressor LKB1 and
oncogenic mutations in K-ras lowering the ATP levels and
eliciting the activation of caspase 3.157 Despite the encoura-
ging results, it should also be mentioned that the use of
phenformin has been associated with lactic acidosis, an
important pitfall that might limit its clinical applicability.158 For
this reason, novel compounds that target the mETC complex-I
(i.e., VLX600) or alternative strategies based on the transla-
tion of specific mitochondrial proteins (i.e., tigecycline) have
been designed and currently successfully employed in
preclinical studies.77,159 Although the potential utility of these
compounds still needs to be validated in long-term clinical
trials, encouraging evidences suggest that targeting the
bioenergetics function of the mitochondria might represent a
valid therapeutic option for cancer treatment.

Conclusions and Perspective

In light of recent research, the inhibition of metabolic
pathways or ROS-scavenging mechanisms, followed by the
administration of pro-oxidizing agents (i.e. chemo-radiother-
apy), represents a promising therapeutic option for tumors
characterized by resistance to treatment (Figure 3). With this
respect, it is well documented that the efficacy of many
anticancer therapies, including chemo- and radiotherapy,
largely depends on the extent of the evoked ROS
production.14 In many studies, either metabolic inhibition or
the blockade of certain antioxidant systems was shown to

strongly sensitize cancer cells to apoptotic cell death induced
by further elevation of ROS levels.160–164 However, due
to the undesired side effects including cardio-toxicity and
nephrotoxicity, extensive research has been pursued to
identify novel ROS modulators with a safer therapeutic profile.
With this respect, another class of quinone-based com-
pounds, including menadione and other vitamin K3 deriva-
tives, are emerging as promising anticancer agents.165

Remarkably, this combinatorial approach has the ability to
engage multiple cell death modalities, not limited by the
activation of the intrinsic and extrinsic apoptotic pathways, and
therefore might be useful to overcome the mechanisms of
therapy resistance due to the overexpression of anti-apoptotic
proteins or compromised activation of the caspase cascades.
With this respect, the induction of ferroptosis, an iron- and
ROS-dependent form of non-apoptotic cell death character-
ized by altered mitochondrial morphology, is receiving
increasing attention for its intimate connection with cellular
metabolism and redox balance.166,167 Indeed, large B
lymphomas and renal cell carcinomas with Ras mutations
were found to be particularly susceptible to ferroptosis upon
BSO-mediated GSH depletion, decreased Gpx4 activity and
accumulation of lipid peroxidation.168,169 In another study
erastin, a potent inhibitor of Xc

− cystine importer was shown to
induce ER stress and trigger ferroptosis in different cancer cell
lines.170

In conclusion, it is becoming clear that redox signaling
events require the simultaneous regulation of sources,
transducers and scavengers in a precise spatial and temporal
framework, whose alteration may disrupt key redox nodes
and promote aberrant signaling. The loss of control over

Figure 3 Strategies to manipulate ROS levels as anticancer therapy. Effect of different therapeutic manipulations on the intracellular ROS levels and relative toxicity in both
normal and cancer cells. (a) Normal cells treated with conventional chemo/radiotherapy, metabolic inhibitors or combined therapy show a slight increase in cell death. On the
contrary treatment of cancer cells with (b) chemo/radiotherapy or (c) metabolic inhibitors elevates the rate of cell death compared with normal cells due to higher basal levels of
ROS.When combined approaches on the basis of the use of metabolic inhibitors and conventional therapy (d) or other ROS-inducing agents can synergistically eradicate a larger
proportion of cancer cells with marginal impact on normal cells, by elevating the intracellular ROS levels far above the toxicity threshold
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specific redox circuitries is likely to represent a tumor-specific
alteration that may trigger unrestricted proliferation and
malignant progression. Moreover, metabolomics studies
associated to computational models on the basis of the
integrative bioinformatics are becoming increasingly acces-
sible and will surely guarantee a rapid progress in the field of
redox biology, in particular addressing howmetabolism and its
subcellular compartmentalization can influence ROS signal-
ing and redox cofactors. We are now approaching a new era
wherein ROS biology and their effects in the physiopathology
of cancer may be dissected with unprecedented detail,
bringing potential therapeutic benefits derived from selective
manipulations of cancer redox balance to be uncovered,
paving the way to novel and exciting investigations in the fight
against cancer.
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