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The implementation of genomic selection in recurrent breeding programs raises the 
concern that a higher inbreeding rate could compromise the long-term genetic gain. An 
optimized mating strategy that maximizes the performance in progeny and maintains 
diversity for long-term genetic gain is therefore essential. The optimal cross-selection 
approach aims at identifying the optimal set of crosses that maximizes the expected 
genetic value in the progeny under a constraint on genetic diversity in the progeny. Optimal 
cross-selection usually does not account for within-family selection, i.e., the fact that only a 
selected fraction of each family is used as parents of the next generation. In this study, we 
consider within-family variance accounting for linkage disequilibrium between quantitative 
trait loci to predict the expected mean performance and the expected genetic diversity in 
the selected progeny of a set of crosses. These predictions rely on the usefulness criterion 
parental contribution (UCPC) method. We compared UCPC-based optimal cross-selection 
and the optimal cross-selection approach in a long-term simulated recurrent genomic 
selection breeding program considering overlapping generations. UCPC-based optimal 
cross-selection proved to be more efficient to convert the genetic diversity into short- and 
long-term genetic gains than optimal cross-selection. We also showed that, using the 
UCPC-based optimal cross-selection, the long-term genetic gain can be increased with 
only a limited reduction of the short-term commercial genetic gain.

Keywords: genomic prediction, optimal cross-selection, usefulness criterion, parental contributions, genetic 
diversity, Bulmer effect

INTRODUCTION

Successful breeding requires strategies that balance immediate genetic gain with the maintenance of 
population diversity to sustain long-term progress (Jannink, 2010). At each selection cycle, plant breeders 
are facing the choice of new parental lines and the way in which these are mated, to improve the mean 
population performance and generate the genetic variation on which selection will act. As breeding 
programs from different companies compete for short-term gain, breeders tend to use intensively the 
most performant individuals sometimes at the expense of genetic diversity (Rauf et al., 2010; Gerke et al., 
2015; Allier et al., 2019a). The identification of the crossing plan that maximizes the performance in 
progeny and limits diversity reduction for long-term genetic gain is essential.
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Historically, breeders used to select the best individuals based 
on phenotypic observations, considered as a proxy of their 
breeding value, i.e., the expected value of their progeny. In order 
to better estimate the breeding value of individuals, phenotypic 
selection has been complemented by pedigree-based prediction of 
breeding values (Henderson, 1984; Piepho et al., 2008) and more 
recently by genomic prediction of breeding values (Meuwissen 
et al., 2001), taking advantage of the availability of cheap high-
density genotyping. In genomic selection (GS), a model calibrated 
on phenotype and genotype information of a training population 
is used to predict genomic estimated breeding values (GEBVs) 
from genome-wide marker information. A truncation selection 
is commonly applied on GEBVs, and the selected individuals 
are intercrossed to create the next generation. The interest of 
GS is due to the acceleration of selection progress by shortening 
generation interval, the increase in selection intensity, and the 
increase in accuracy (Hayes et al., 2010; Daetwyler et al., 2013; 
Heslot et al., 2015). As a consequence, compared to phenotypic 
selection, GS is expected to accelerate the loss of genetic diversity 
due to the rapid fixation of genomic regions with large effects, 
but also the higher probability to select individuals that are the 
closest to the training population and are therefore predicted 
more accurately (Clark et al., 2011; Pszczola et al., 2012). As a 
result, it has been shown in an experimental study (Rutkoski 
et al., 2015) and by stochastic simulations (Jannink, 2010; Lin 
et al., 2016) that GS increases the loss of diversity compared to 
phenotypic selection. Thus, the optimization of mating strategies 
in GS breeding programs is a critical area of theoretical and 
applied research.

Several approaches have been suggested to balance the short- 
and long-term genetic gain while selecting crosses in GS. In line 
with Kinghorn, (2011), Pryce et al. (2012), and Akdemir and 
Isidro-Sánchez (2016), the selection of a set of crosses requires 
two components: (i) a cross-selection index (CSI) that measures 
the interest of a set of crosses and (ii) an algorithm to find the set 
of crosses that maximizes the CSI.

The CSI may consider crosses individually; i.e., the interest 
of a cross does not depend on the other crosses in the selected 
set. In classical recurrent GS, candidates with the highest GEBVs 
are selected and intercrossed to maximize the expected progeny 
mean in the next generation. In this case, the CSI is simply the 
mean of parental GEBVs. However, such an approach maximizes 
neither the expected response to selection in the progeny, which 
involves genetic variance generated by Mendelian segregation 
within each family, nor the long-term genetic gain. Alternative 
measures of the interest of a cross have been proposed to account 
for parent complementarity, based on within cross variability 
and expected response to selection. Daetwyler et al. (2015) 
proposed the optimal haploid value (OHV) that accounts for 
the complementarity between parents of a cross for predefined 
haplotype segments. Using stochastic simulations, the authors 
observed that OHV selection yielded higher long-term genetic 
gain and preserved greater amount of genetic diversity than 
truncation GS. However, OHV accounts for neither the position 
of quantitative trait loci (QTLs) nor the linkage disequilibrium 
between QTLs (Lehermeier et al., 2017b; Müller et al., 2018). 
Schnell and Utz (1975) proposed the usefulness criterion (UC) 

of a cross to evaluate the expected response to selection in its 
progeny. The UC of a cross accounts for the progeny mean (μ) 
that is the mean of parental GEBVs and the progeny standard 
deviation (σ) the selection intensity (i) and the selection accuracy 
(h): UC = μ + ihσ. Zhong and Jannink (2007) proposed to predict 
progeny variance using estimated QTL effects, accounting for 
linkage between loci. Genome-wide marker effects have also been 
considered to predict the progeny variance with computationally 
intensive stochastic simulations (e.g., Mohammadi et al., 2015). 
Recently, an unbiased predictor of progeny variance (σ2) has 
been derived in Lehermeier et al. (2017b) for two-way crosses 
and extended in Allier et al. (2019b) for multiparental crosses 
implying up to four parents. Lehermeier et al. (2017b) observed 
that using UC as a CSI increased the short-term genetic gain 
compared to using OHV or mean parental GEBV. Similar results 
have been obtained by simulations by Müller et al. (2018), 
considering the expected maximum haploid breeding value 
(EMBV) that is akin to the UC for normally distributed and fully 
additive traits.

Alternatively, one can consider a more holistic CSI for which 
the interest of a cross depends on the other selected crosses. This 
is the case in optimal contribution selection (Wray and Goddard, 
1994; Meuwissen, 1997; Woolliams et al., 2015), where a set of 
candidate parents is evaluated as a whole regarding the expected 
short-term gain and the associated risk on loosing long-term gain. 
Optimal contribution selection aims at identifying the optimal 
contributions (c) of candidate parents to the next generation 
obtained by random mating, in order to maximize the expected 
genetic value in the progeny (V) under a certain constraint on 
inbreeding (D). Optimal cross-selection, further referred as OCS, 
is an extension of the optimal contribution selection to deliver 
a crossing plan that maximizes V by considering additional 
constraints on the allocation of mates in crosses to limit D 
(Kinghorn et al., 2009; Kinghorn, 2011; Akdemir and Isidro-
Sánchez, 2016; Gorjanc et al., 2018; Akdemir et al., 2018). In GS, 
the expected genetic value in progeny (V) to be maximized is the 
mean of parental GEBV (a) weighted by parental contributions 
c, i.e c’a, and the constraint on inbreeding (D) to be minimized 
is c’Kc with K a genomic coancestry matrix. Differential 
evolutionary algorithms have been proposed to obtain optimal 
solutions for c and the crossing plan (Storn and Price, 1997; 
Kinghorn et al., 2009; Kinghorn, 2011). Optimal contribution 
selection is commonly used in animal breeding (Woolliams et al. 
2015) and is increasingly adopted in plant breeding (Akdemir 
and Isidro-Sánchez, 2016; De Beukelaer et al., 2017; Lin et al., 
2017; Gorjanc et al., 2018; Akdemir et al., 2018).

In plant breeding, one typically has larger biparental families 
than in animal breeding. Especially with GS, the selection 
intensity within-family can be largely increased so that plant 
breeders capitalize much more on the segregation variance 
within families than animal breeders. In previous works, the 
genetic gain (V) and constraint (D) have been defined at the 
level of the progeny before within-family selection. Exceptions 
are the work of Shepherd and Kinghorn (1998) and Akdemir 
and Isidro-Sánchez (2016); Akdemir et al. (2018), who added a 
term to V accounting for within cross variance assuming linkage 
equilibrium between QTLs. To our knowledge, no previous 
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study considered linkage disequilibrium (LD) between QTLs. 
Furthermore, as observed in historical wheat data (Fradgley 
et al., 2019) and using simulations in a maize context (Allier 
et al., 2019b), within-family selection also affects the effective 
contribution of parents to the next generation. This likely biases 
the prediction of inbreeding/diversity in the next generation, 
which to our knowledge has not been considered in previous 
studies.

In this study, we propose to adjust V and D terms so that 
within-family selection of the candidate parents for the next 
generation is accounted for. We propose to use the usefulness 
criterion parental contribution (UCPC) approach (Allier et al., 
2019b) that enables to predict the expected mean performance of 
the selected fraction of progeny and to predict the contribution 
of parents to the selected fraction of progeny. We compared 
our OCS strategy based on UCPC with other cross-selection 
strategies, in a long-term simulated recurrent GS breeding 
program involving overlapping generations (Figure 1A). Our 
objectives were to demonstrate (1) the interest of UCPC to 
predict the genetic diversity in the selected fraction of progeny 
and (2) the interest of accounting for within-family selection in 
OCS for both short- and long-term genetic gains.

MATERIALS AND METHODS

Simulated Breeding Program
Breeding Program
We simulated a breeding program to compare the effect of 
different CSIs on short- and long-term genetic gain in a realistic 
breeding context considering overlapping and connected 
generations (i.e., cohorts) and the use of doubled haploid (DH) 

technology to derive progeny (Figure 1A). We considered that 
the process to derive DH progeny from a cross and to phenotype 
and genotype DH lines takes 3 years. Furthermore, we considered 
as candidate parents of a cohort T the selected fraction of DH 
progeny of the three last available cohorts, i.e., T-3, T-4 and T-5 
(Figures 1A, B).

Each simulation replicate started from a population of 40 
founders sampled among 57 Iodent maize genotypes from the 
Amaizing project (Rio et al., 2019; Allier et al., 2019b). We 
sampled 1,000 biallelic QTLs among the 40,478 high-quality 
single-nucleotide polymorphisms (SNPs) from the Illumina 
MaizeSNP50 BeadChip (Ganal et al. 2011), with consensus 
genetic positions from Giraud et al. (2014). The sampling process 
obeyed two constrains: a QTL minor allele frequency ≥ 0.2 and a 
distance between two consecutive QTLs ≥ 0.2 cM. Each QTL was 
assigned an additive effect sampled from a Gaussian distribution 
with a mean of zero and a variance of 0.05, and the favorable 
allele was attributed at random to one of the two SNP alleles.

We initiated a virtual breeding program starting from the 
founder genotypes with a burn-in period of 20 years that mimicked 
recurrent phenotypic selection. Burn-in started by randomly 
crossing the 40 founders into 20 biparental families, i.e., two-
way crosses, during the first 3 years to initiate three overlapping 
cohorts. In each cohort, 80 DH progeny genotypes per cross were 
simulated. Phenotypes were simulated considering the genotype 
at QTLs, an error variance corresponding to a trait repeatability 
of 0.4 in the founder population and no genotype by environment 
interactions. For phenotyping, every individual was evaluated 
in four environments in 1 year. Since no secondary trait was 
considered and sufficient seed production for extensive progeny 
testing was assumed, we simulated a unique within-family selection 
of the 5% best progeny (i.e., 4 DHs) that is a common selection 

FIGURE 1 | Schematic view of the simulated breeding program. (A) Overall view of the breeding program and overlapping cohorts. (B) Life cycle of a given post 
burn-in cohort T depending on the scenario considered (TRUE with 1,000 known QTL effects, PS in absence of genomic information or GS with 2,000 noncausal 
SNPs estimated effects).
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intensity in maize breeding. During burn-in, we first considered 
within-family phenotypic selection and then used the 50 DHs 
with the largest phenotypic mean as potential parents of the next 
cohort. These were randomly mated, i.e., without any constraint 
on parental contributions, to generate 20 biparental families of 80 
DH lines. After 20 years of burn-in, this created extensive linkage 
disequilibrium as often observed in elite plant breeding programs 
(e.g., Van Inghelandt et al., 2011). We then compared different 
CSIs for 60 years of recurrent GS using DH technology (Figure 
1). As in burn-in, each cohort T was generated by 20 two-way 
crosses (|nc|=20) of 80 DH progeny each (nProg = 80). Candidate 
parents of cohort T were selected from the available DH of the 
three cohorts: T=3, T-4, and T-5 (Figures 1A, B). Per family, the 
4 DH lines (i.e., 5%) with the largest breeding values, detailed in 
“Evaluation scenario” section, were considered as potential parents, 
yielding 4 DH lines/family × 20 families/cohort × 3 cohorts = 240 
potential parents. Considering these N  = 240 potential parents, 
N(N-1)/2 = 28,680 two-way crosses are possible. The set of |nc| 
= 20 two-way crosses among these 28,680 candidate crosses was 
defined using different CSI detailed in the following sections. This 
simulated scheme yielded overlapping and connected cohorts as 
it is standard in practical plant breeding (Figure 1A). A detailed 
description of the simulated breeding program and the material is 
provided in Supplementary Material (File S1).

Evaluation Scenarios
We considered different scenarios for genome-wide marker effects 
and progeny evaluation. In order to eliminate the uncertainty 
caused by the estimation of marker effects, we first compared 
several CSI assuming that we have access to the positions and 
effects of the 1,000 QTLs (referred to as TRUE scenario). For a 
representative subset of the CSI showing differentiated results in 
the TRUE scenario, we also considered a more realistic scenario 
where the effects of QTLs are unknown and selection was based 
on the effects of 2,000 noncausal SNPs randomly sampled over 
the genome. In this scenario, marker effects were obtained by 
back-solving (Wang et al., 2012) a G-BLUP model fitted using 
blupf-90 AI-REML solver (Misztal, 2008). This scenario was 
referred to as GS scenario, and marker effects used to predict 
the CSI were estimated every year with all candidate parents that 
were phenotyped and genotyped. The progeny were selected on 
their GEBV considering their phenotypes and their genotypes at 
noncausal SNPs. As a benchmark, we also considered a phenotypic 
selection scenario where progeny were selected based on their 
phenotypic mean (PS scenario). For details on the evaluation 
models, see Supplementary Material (File S1). In the following, 
for sake of clarity, we present the different cross-selection strategies 
considering selection based on known QTL effects and positions 
(TRUE scenario). In GS scenario, QTL effects and positions were 
replaced by estimated marker effects and positions.

Cross-Selection Strategies
Optimal Cross-Selection Not Accounting for Within-
Family Selection
Considering N homozygote candidate parents, N(N-1)/2 two-
way crosses are possible. We define a crossing plan nc as a set of 

|nc| crosses out of possible two-way crosses, giving the index of 
selected crosses, i.e., with the ith element nc(i)∈[1,N(N-1)/2]. The 
(N × 1) dimensional vector of candidate parents contributions c 
is defined as 

 
c Z c Z c= +( )1

nc 1 1 2 2  , (1)

where Z1 (respectively Z2) is a (N × |nc|) dimensional design 
matrix that links each N candidate parent to the first (respectively 
second) parent in the set of crosses nc, c1 (respectively, c2) is a 
(|nc| × 1) dimensional vector containing the contributions of the 
first (respectively, second) parent to progeny, i.e., a vector of 0.5 
when assuming no selection within crosses.

The (N × 1) dimensional vector of candidate parents true breeding 
values is a = XβT where X = (x1,…,xN)’ is the (N × m) dimensional 
matrix of known parental genotypes at m biallelic QTLs, where xp 
denotes the (m × 1) dimensional genotype vector of parent p∈[1,N] 
with the jth element coded as 1 or −1 for the genotypes AA or aa at 
QTL j. βT is the (m × 1) dimensional vector of known additive QTL 
effects for the quantitative agronomic performance trait considered. 
The genetic gain V(nc) for this set of two-way crosses is defined as 
the expected mean performance in the DH progeny:

 V( )nc c'a= . (2)

We define the constraint on diversity (D) as the mean expected 
genetic diversity in DH progeny (He, Nei, 1973):

 
D nc c Kc( ) = − ′1   , (3)

where  K XX= +






′1
2

1 1
m

 is the (N × N) dimensional identity 

by state (IBS) coancestry matrix between the N candidates. 
Supplementary Material (File S2) details the relationship 
between the IBS coancestry among parents (K), the parental 
contributions to progeny (c) and the mean expected heterozygosity 

in progeny He
m

p p
j

m

j j= −( )
=

∑1 2 1
1

 where pj the frequency of the 

genotypes AA at QTL j in the progeny.

Accounting for Within-Family Selection in OCS
In the OCS, as defined above, the progeny derived from the nc 
crosses are all expected to contribute to the next generation. We 
propose to consider V(nc) and D(nc) terms accounting for the fact 
that only a selected fraction of each family will be candidate for 
the next generation (e.g., 5% per family in our simulation study). 
For this, we apply the UCPC approach proposed by Allier et al. 
(2019b) for two-way crosses and extend its use to evaluate the 
interest of a set nc of two-way crosses after selection in progeny.

UCPC for Two-Way Crosses
Two inbred lines P1 and P2 are considered as parental lines for 
a candidate cross P1 × P2 and (x1, x2)’ denotes their genotyping 
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matrix. Following Lehermeier et al. (2017b), the DH progeny 
mean and progeny variance of the performance in the progeny 
before selection can be computed as follows:

 
µT T T= +( )0 5 1 2.   x x' 'ββ ββ , (4a)

 σ T T T
2 = ββ ββ'    Σ , (4b)

where x1, x2 and βT were defined previously, and Σ is the (m×m) 
-dimensional variance covariance matrix of QTL genotypes in 
DH progeny defined in Lehermeier et al. (2017b). 

To follow parental contributions, we consider P1 parental 
contribution as a normally distributed trait (Allier et al., 
2019b). As we only consider two-way crosses and biallelic 
QTLs, we can simplify for computational reasons the 
formulas by using IBS parental contributions computed for 
polymorphic QTLs between P1 and P2 instead of using identity-
by-descent parental contributions (Allier et al., 2019b). We 
define the (m×1) -dimensional vector βC1 to follow P1 genome 

contribution at QTLs as ββC1
1 2

1 2 1 2

= −
−( ) −( )

x x
x x ' x x

. We compute 

the mean of P1 contribution in the progeny before selection 
μC1=0.5(x’1βC1+x’2βC1+1). The progeny variance σ C1

2  for P1 
contribution in the progeny before selection is computed 
using Eq. 4b by replacing βT by βC1 The progeny mean for P2 
contribution is then defined as μC2 = 1-μC1. 

Following Allier et al. (2019b), we compute the covariance between 
the performance and P1 contribution in progeny as follows: 

 σ T C T C,      1 1= ββ ββ' Σ . (5)

The expected mean performance of the selected fraction of 
progeny, i.e., UC (Schnell and Utz, 1975), of the cross P1×P2 is 
as follows: 

 UC ihi
T T

( ) = +µ σ , (6)

where i is the within-family selection intensity, and the exponent 
(i) in UC expresses the dependency of UC on the selection 
intensity i. We considered a selection accuracy h=1 as in 
Zhong and Jannink (2007), which holds when selecting on true 
breeding values in TRUE scenario. As discussed further, we 
also considered h = 1 when selecting crosses based on UCPC in 
GS scenario. The correlated responses to selection on P1 and P2 
genome contributions in the selected fraction of progeny are as 
follows (Falconer and Mackay, 1996):

 
c i c ci

C
T C

T

i i
1 1

1
2 11( ) ( ) ( )= + = −µ σ

σ
,  and . (7)

Cross-Selection Based on UCPC
Accounting for within-family selection intensity i, the genetic 
gain term V(i)(nc) for a set of two-way crosses nc is defined as the 
expected performance in the selected fraction of progeny: 

 
V UC ji i

j

( )
∈

( ) = ∑nc
nc nc

1   ( ).( )  (8)

The constraint on diversity D(i)(nc) in the selected progeny is 
defined as follows:

 
D i i i( ) ( ) ( )( ) = −nc c 'Kc1   , (9)

where c(i) is defined like c in Eq. 1 but accounting for within-family 
selection by replacing the ante-selection parental contributions 
c1 and c2 by the post-selection parental contributions c1

i( )  and 
c i

2 
( )  (Eq. 7), respectively. Note that considering the absence of 

selection in progeny, i.e., i = 0, yields V(i = 0)(nc) being the mean of 
parent breeding values (Eq. 2) and D(i = 0)(nc) being the expected 
diversity in progeny before selection (Eq. 3), which is equivalent 
to optimal cross-selection as proposed by Gorjanc et al. (2018). 
The R code (R Core Team, 2017) to evaluate a set of crosses as 
presented in the UCPC-based optimal cross-selection is provided 
in Supplementary Material (File S3).

Multiobjective Optimization Framework 
In practice, one does not evaluate only one set of crosses but 
several ones in order to find the optimal set of crosses to reach 
a specified target that is a function of V(i)(nc) and D(i)(nc). We 
use the ε-constraint method (Haimes et al., 1971; Gorjanc and 
Hickey, 2018) to solve the multiobjective optimization problem: 

 

max 

   

nc
V

D He t

i

i

( )

( )

( )
( ) ≥ ( )

nc

ncwith ,

 (10)

where He(t), ∀t∈[0,t*] is the minimal diversity constraint at time 
t. A differential evolutionary (DE) algorithm was implemented 
to find the set of nc crosses that is a Pareto-optimal solution of 
Eq. 10 (Storn and Price, 1997; Kinghorn et al., 2009; Kinghorn, 
2011). DE is an optimization process inspired by natural 
selection. It started from an initial population of 7,170 random 
candidate solutions that are improved during 1,000 iterations 
through mutation (random changes in candidate solutions), 
recombination (exchanges between candidate solutions), and 
selection (every iteration a candidate solution was replaced by 
its mutated and recombined version if superior). The direct 
consideration of He(t) in the optimization allows to control the 
decrease in genetic diversity similarly to what was suggested 
for controlling inbreeding rate in animal breeding (Woolliams 
et al., 1998, Woolliams et al., 2015). The loss of diversity along 
time is controlled by the targeted diversity trajectory, i.e., He(t), 
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∀t∈[0,t*], where t*∈ℕ* is the time horizon when the genetic 
diversity He(t*) = He* should be reached. In this study, He(t) is 
defined as follows:

 

He t He t
t

He He t t

He

s

( ) = +






−( ) ∀ ∈0 0 0*
* *

*

,      ,    

,,    *∀ >








 t t

,

  
  (11)

where He0 is the initial diversity at t = 0, and s is a shape parameter 
with s = 1 for a linear trajectory. Figure 2 gives an illustration of 
alternative trajectories that can be defined using Eq. 11.

Cross-Selection Indices 
We considered different cross-selection approaches varying in 
the within-family selection intensity (i) in V(i)(nc), D(i)(nc) (Eq. 
10) and in the targeted diversity trajectory He(t) (Eq. 11). We 
first considered as a benchmark the absence of constraint D(i)

(nc), i.e., He(t) = 0, ∀t. We defined two alternative CSIs PM 
(parental mean) and UC, respectively considering V(i = 0)(nc) and 
V(i = 2.06)(nc), with i = 2.06 corresponding to the selection of the 
5% most performant progeny per family. PM is equivalent to 
cross the best candidates together without accounting for within 
cross variance, while UC is defined as crossing candidates based 
on the expected mean performance of the 5% selected fraction 
of progeny. Note that the absence of constraint on diversity also 
means the absence of constraint on parental contributions. To 
compare optimal cross-selection accounting or not for within-
family selection, we considered three linear diversity trajectories 
(Eq. 11) with He* = {0.01, 0.10, 0.15} that should be reached in 
t*  = 60 years. We defined the OCS methods, further referred to as 
OCS-He*, with V(i = 0)(nc) and D(i = 0)(nc). We defined the UCPC 
cross-selection methods, further referred to as UCPC-He*, with 

V(i = 2.06)(nc) and D(i = 2.06)(nc). The eight CSIs considered are 
summarized in Table 1.

Simulation 1: Interest of UCPC to Predict 
the Diversity in the Selected Fraction 
of Progeny
Simulation 1 aimed at evaluating the interest to account for the 
effect of selection on parental contributions, i.e., post-selection 
parental contributions (using UCPC), compared to ignore 
selection, i.e., ante-selection parental contributions (similarly 
as in OCS), to predict the genetic diversity (He) in the selected 
fraction of progeny of a set of 20 crosses (using Eqs. 9 and 3, 
respectively). We considered a within-family selection intensity 
corresponding to selecting the 5% most performant progeny. 
We used the same genotypes, genetic map, and known QTL 
effects as for the first simulation replicate of the PM CSI in the 
TRUE scenario (Table 1). We extracted the simulated genotypes 
of 240 DH candidate parents of the first post burn-in cohort 
(further referred as E1) and of 240 DH candidate parents of 
the 20th post burn-in cohort (further referred as E2). Due to 
the selection process, E1 showed a higher diversity and lower 
performance compared to E2. We randomly generated 300 sets 
of 20 two-way crosses: 100 sets of intrageneration E1 crosses (E1 
× E1), 100 sets of intrageneration E2 crosses (E2 × E2), and 100 
sets of intergeneration and intrageneration crosses randomly 
sampled (E1 × E2, E1 × E1, E2 × E2). We derived 80 DH 
progeny per cross and predicted the ante- and post-selection 
parental contributions to evaluate the post-selection genetic 
diversity (He) for each set of crosses. We estimated the empirical 
post-selection diversity for each set of crosses and compared 
predicted and empirical values considering the mean prediction 
error as the mean of the difference between predicted He and 
empirical post-selection He, and the prediction accuracy as the 
squared correlation between predicted He and empirical post-
selection He. 

Simulation 2: Comparison of Different Csis
We ran 10 independent simulation replicates of all eight CSI 
summarized in Table 1 for 60 years post burn-in considering 
known effects at the 1,000 QTLs (TRUE scenario). We also 
compared in 10 independent simulation replicates the CSI: PM, 

FIGURE 2 | Targeted diversity trajectories for three different shape 
parameters (s = 1, linear trajectory; s = 2, quadratic trajectory; and s = 0.5, 
inverse quadratic trajectory) for fixed initial diversity (He0 = 0.3) at generation 0 
and targeted diversity (He* = 0.01) at generation 60 (t* = 60). We considered 
in this study only linear trajectories (s = 1).

TABLE 1 | Summary of tested cross-selection indices (CSI) in TRUE scenario 
defined for a set of crosses nc depending on the within-family selection intensity i.

Cross-selection index
(CSI)

Gain term Diversity term 

PM V(i = 0)(nc) –
OCS-He* (3 different He*) V(i = 0)(nc) D(i = 0)(nc)
UC V(i = 2.06)(nc) –
UCPC-He* (3 different He*) V(i = 2.06)(nc) D(i = 2.06)(nc)

He* = {0.15; 0.10; 0.01} to be reached linearly (s = 1) at the end of simulation (t* = 60 years). 
V(i = 0)(nc) is the averaged parental mean (PM) of crosses in nc and V(i = 2.06)(nc) is the 
averaged usefulness criterion (UC) of crosses in nc considering a within‑family selection 
intensity of 2.06. D(i = 0)(nc) and D(i = 2.06)(nc) are the expected genetic diversity in the 
progeny before and after within‑family selection, respectively.
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UC, OCS-He* and UCPC-He* with He* = 0.01 considering 
estimated marker effect at the 2,000 SNPs (GS scenario) and PM 
based only on phenotypic evaluation (PS scenario). We followed 
several variables on the 80 DH progeny/family × 20 crosses realized 
every year. At each cohort T∈[0,60] with T = 0 co rresponding to 
the last burn-in cohort, we computed the additive genetic variance 
as the variance of the 1,600 DH progeny true breeding values 
(TBVs): σ A T TBV T2 ( ) = ( )( )var . We followed the mean genetic 
merit of all progeny μ(T) = mean(TBV(T)) and of the 10 most 
performant progeny μ10(T)= mean(max(TBV(T))) as a proxy of 
realized performance that could be achieved at a commercial level 
by releasing these lines as varieties. Then, we centered and scaled 
the two genetic merits to obtain realized cumulative genetic gains 
in units of genetic standard deviation at the end of the burn-in 
(T = 0), at the whole progeny level G T T A( ) ( ) ( ) / ( )  = −( )µ σµ 0 02  

and at the commercial level G T T A10 10
20 0( ) ( ) ( ) / ( )= −( )µ µ σ .

The interest of long-term genetic gain relies on the ability to 
breed at long term, which depends on the short-term economic 
success of breeding. Following this rationale, we penalized 
strategies that compromised the short-term commercial genetic 
gain using the discounted cumulative gain following Dekkers 
et al. (1995) and Chakraborty et al. (2002). In practice, we 
computed the weighted sum of the commercial gain value in 

each generation 
T

Tw G T
=

∑ ( )
1

60

10  , where the discounted weights 

wT=1/(1+ρ)T,∀T∈[1,60] were scaled to have 
T

Tw
=

∑ =
1

60

1   and ρ is 

the interest rate per generation. The discounted weights measure 
how much breeders will care about future genetic gain compared 
to today’s genetic gain, also referred as the “net present value” of 
long-term gain in finance. For ρ = 0, the weights were wT∈[1,60] = 
1/60; i.e., the same importance was given to all cohorts. We 
compared different values of ρ and reported results for ρ = 0, 
ρ  = 0.04 giving approximatively seven times more weight to 
short-term gain (after 10 years) compared to long-term gain 
(after 60 years) and ρ = 0.2 giving nearly no weight to gain after 
30 years of breeding.

We also measured the additive genic variance at 

QTLs σ βa j j j
j

m
T p T p T2 2

1
4 1( )   ( ) ( )= −( )

=∑ , the mean 

expected heterozygosity at QTLs (He, Nei, 1973) 

He T m p T p Tj j
j

m
( )   ( ) ( ) = −( )−

=∑1

1
2 1 , and the number of 

QTLs where the favorable allele was fixed or lost in the progeny, 
with pj(T) the allele frequency at QTL j∈[1,m] in the 1,600 DH 
progeny and βj the additive effect of the QTL j. In addition, we 
considered the ratio of additive genetic over genic variance 
σ σA a

2 2/ . hich provides an estimate of the amount of additive 
genic variance captured by negative covariances between QTLs, 
known as the Bulmer effect under directional selection (Bulmer, 
1971, Bulmer, 1980; Lynch and Walsh, 1999). All these variables 
were further averaged on the 10 simulation replicates, and the 
standard error divided by the square root of the number of 
replicates is reported.

RESULTS

Simulation 1
Compared to the usual approach that ignores the effect of 
selection on parental contributions, accounting for the effect of 
within-family selection increased the squared correlation (R²) 
between predicted genetic diversity and genetic diversity in the 
selected fraction of progeny (Figures 3A, B) for all three types 
of crosses. The squared correlation between predicted genetic 
diversity and post-selection genetic diversity for intrageneration 
crosses was only slightly increased (E1 × E1: from 0.811 to 0.822 
and E2 × E2: from 0.880 to 0.888), while the squared correlation 
for sets of crosses involving also intergeneration crosses showed 
a larger increase (from 0.937 to 0.987) (Figures 3A, B). Using 
post-selection parental contributions instead of ante-selection 
parental contributions also reduced the mean prediction error of 
He (predicted − empirical He) (Figures 4A, B) for all three types 
of crosses. The mean prediction error for intrageneration crosses 

FIGURE 3 | Squared correlations (R²) between predicted genetic diversity 
(He) and empirical He in the selected fraction of progeny of a set of 20 
biparental crosses in the TRUE scenario considering (A) ante-selection 
parental contributions or (B) post-selection parental contributions to predict 
He. In total, 100 sets of each three types of crosses (intrageneration: E1xE1 
and E2xE2 or randomly intragenerations and intergenerations): random 
(E1, E2) are shown, and the squared correlations between predicted and 
empirical post-selection He are given in the corresponding color.
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was only slightly reduced (E1 × E1: from 0.006 to 0.005 and E2 × 
E2: from 0.016 to 0.015), while the mean prediction error for 
sets involving intergeneration crosses was more reduced (from 
0.032 to 0.008) (Figures 4A, B). The mean prediction error of He 
was reduced but still positive when considering post-selection 
parental contributions, which means that the genetic diversity 
in the selected fraction of progeny remains overestimated. 
Note that the ante-selection contributions predicted well the 
empirical genetic diversity before selection for all three types of 
crosses (mean prediction error = 0.000 and R² > 0.992, results 
not shown).

Simulation 2 
Interest of UC Over PM
Considering known QTL effects (TRUE scenario), we observed 
that UC yielded significantly higher short- and long-term 

genetic gain at commercial level (G10) than PM (on average, 
G10 = 9.316 [±0.208] compared to 8.338 [±0.195] 10 years post 
burn-in and G10 = 18.293 [±0.516] compared to 15.744 [±0.449] 
60 years post burn-in; Figures 5B, C; Supplementary Material 
[Table S1 File S4]). When considering the whole progeny 
mean performance (G), PM nonsignificantly outperformed UC 
for the first 5 years (on average, G = 4.647 [±0.174] compared 
to 4.633 [±0.138] 5 years post burn-in), and after 5 years, UC 
significantly outperformed PM (on average, G = 7.620 [±0.158] 
compared to 7.197 [±0.199] 10 years post burn-in) [Figure 5A, 
Supplementary Material (Table S1 File S4)]. UC showed higher 
genic ( σa

2 ) and genetic ( σ A
2 ) additive variances than PM (Figures 

6A, B), but both yielded a genic and genetic variance near zero 
after 60 years of breeding. The genetic over genic variance ratio 
( σ σA a

2 2/ ) was also higher for UC compared to PM (Figure 6C). 
The evolution of genetic diversity (He) along years followed the 
same tendency as the genic variance (Figure 7A, Figure 6A). UC 
fixed more favorable alleles at QTLs after 60 years (Figure 7B) and 
lost less favorable alleles at QTLs than PM in all 10 simulation 
replicates, with an average of 243.1 (±4.547) QTLs where the 
favorable allele was lost compared to 274.9 (±4.283) QTLs for PM 
[Figure 7C; Supplementary Material (Table S1 File S4)].

Targeted Diversity Trajectory
Considering known QTL effects (TRUE scenario), the tested 
optimal cross-selection methods OCS-He* and UCPC-He* 
showed lower short-term genetic gain at the whole progeny level 
(G; Figure 5A) and at the commercial level (G10; Figures 5B, C) 
but significantly higher long-term genetic gains than UC at 
60 years Supplementary Material (Table S1 File S4). The lower 
the targeted diversity He*, the higher the short-term and midterm 
genetic gain at both whole progeny (G; Figure 5A) and commercial 
(G10; Figures 5B, C) levels. The higher the targeted diversity He*, 
the higher the long-term genetic gain except for OCS-He* = 0.10 
and OCS-He* = 0.01 that performed similarly after 60 years (on 
average, G10 = 21.925 [±0.532] and 21.892 [±0.525]; Figure 5B, 
Supplementary Material [Table S1 File S4]). The highest targeted 
diversity (He* = 0.15) showed a strong penalty at the short term 
and midterm, while the intermediate targeted diversity (He* = 0.10) 
showed a lower penalty at the short term and midterm compared to 
the lowest targeted diversity (He* = 0.01) (Figures 5A–C). 

For all targeted diversities and all simulation replicates, 
accounting for within-family selection (UCPC-He*) yielded 
a significantly higher short-term commercial genetic gain 
(G10) after 5 and 10 years compared to OCS-He* [Figures 5B, 
C; Supplementary Material (Table S1 File S4)]. Long-term 
commercial genetic gain (G10) after 60 years was also higher for 
UCPC-He* than for OCS-He* with He* = 0.01 in the 10 simulation 
replicates (on average, G10 =  22.869 [±0.641] compared to 21.892 
[±0.525]) and less importantly with He* = 0.10 in nine out of 10 
replicates (on average, G10= 22.474 [±0.645] compared to 21.925 
[±0.532]). However, for He*  = 0.15, UCPC-He* outperformed 
OCS-He* at the long term in only three out of 10 replicates (on 
average, G10= 20.665 [±0.573] compared to 20.938 [±0.553]) 
[Figures 5B, C; Supplementary Material (Table S1 File S4)]. The 
discounted cumulative gain giving more weight to short-term 
than to long-term gain (ρ = 0.04) was higher for UCPC-He* than 

FIGURE 4 | Mean prediction error (predicted − empirical) of predicting 
the genetic diversity (He) in the selected fraction of progeny of a set of 20 
biparental crosses in the TRUE scenario depending on the mean difference 
of performance between parents (Delta true breeding value TBV). Mean 
prediction error is measured as the predicted He − empirical post-selection 
He, considering (A) ante-selection parental contributions or (B) post-
selection parental contributions to predict He. In total, 100 sets of each three 
types of crosses (intrageneration: E1 × E1 and E2 × E2 or randomly intra and 
inter-generations): random (E1, E2) are shown, and the averaged errors are 
given in the corresponding color.
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FIGURE 5 | Genetic gains for different cross-selection indices in the TRUE scenario (PM: parental mean, UC: usefulness criterion, OCS-He*: optimal cross-selection 
and UCPC-He*: UCPC-based optimal cross-selection) according to the generations. (A) Genetic gain (G) measured as the mean of the whole progeny, (B) commercial 
genetic gain (G10) measured as the mean of the 10 best progeny, and (C) G10 relative to selection based on parental mean (PM).

FIGURE 6 | Genetic and genic additive variances for different cross-selection indices in the TRUE scenario (PM: parental mean, UC: usefulness criterion, OCS-He*: 
optimal cross-selection, and UCPC-He*: UCPC-based optimal cross-selection) according to the generations. (A) Additive genic variance ( σa

2 ) measured on the whole 
progeny, (B) additive genetic variance ( σ A

2 ) measured on the whole progeny, and (C) ratio of genetic over genic variance ( σ A a
2 2/ σ ) reflecting the Bulmer effect.

FIGURE 7 | Genetic diversity at QTLs for different cross-selection indices in the TRUE scenario (PM: parental mean, UC: usefulness criterion, OCS-He*: optimal 
cross-selection, and UCPC-He*: UCPC-based optimal cross-selection) according to the generations. (A) Genetic diversity at QTLs in the whole progeny (He), 
(B) number of QTLs where the favorable allele is fixed in the whole progeny, and (C) number of QTLs where the favorable allele is lost in the whole progeny.
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TABLE 2 | Discounted cumulative gain in TRUE scenario for three different parameters ρ giving more weight to short-term gain in different levels and assuming known 
QTL effects (TRUE scenario).

Cross-selection index (CSI) Discounted cumulative gain

ρ = 0 ρ = 0.04 ρ = 0.2

UCPC - He* = 0.01 15.949 (±0.398) 12.321 (±0.284) 6.682 (±0.143)
UCPC - He* = 0.10 15.174 (±0.386) 11.788 (±0.280) 6.593 (±0.158)
UC 14.408 (±0.355) 11.689 (±0.266) 6.822 (±0.145)
OCS - He* = 0.01 15.148 (±0.346) 11.675 (±0.262) 6.360 (±0.149)
OCS - He* = 0.10 14.630 (±0.349) 11.278 (±0.264) 6.230 (±0.149)
UCPC - He* = 0.15 14.205 (±0.334) 11.176 (±0.250) 6.454 (±0.149)
OCS - He* = 0.15 14.056 (±0.337) 10.884 (±0.250) 6.103 (±0.155)
PM 12.609 (±0.280) 10.392 (±0.217) 6.345 (±0.155)

Mean discounted cumulative gain with ρ = 0 (constant weight along years), ρ = 0.04 (decreasing weight along years) and ρ = 0.2 (nearly null weights after 30 years) on the ten 
independent replicates. CSI are ordered in decreasing discounted cumulative gain with ρ = 0.04.

OCS-He* in all simulation replicates for He* = 0.01 (on average, 
12.321 [±0.284] compared to 11.675 [±0.262]), in all simulation 
replicates for He* =  0.10 (on average, 11.788 [±0.280] compared 
to 11.278 [±0.264]) and in nine out of 10 simulation replicates 
for He* = 0.15 (on average, 11.176 [±0.250] compared to 10.884 
[±0.250]) (Table 2). Discounted cumulative gain giving the same 
weight to short- and long-term gain (ρ = 0) was also higher for 
UCPC-He* compared to OCS-He* (Table 2). When giving almost 
no weight to long-term gain after 30 years (ρ = 0.2), the best CSI 
appeared to be UC [on average, 6.822 (±0.145)] followed by the 
UCPC-He* with the lowest constraint on diversity (i.e., He* =  
0.01) [on average, 6.682 (±0.143)].

For a given He*, the additive genic variance ( σa
2 ; Figure 6A) 

and genetic diversity at QTLs (He; Figure 7A) were constrained by 
the targeted diversity trajectory for both UCPC-He* or OCS-He*. 
However, UCPC-He* and OCS-He* behaved differently for genetic 
variance ( σ A

2 ; Figure 6A) resulting in differences for the ratio genetic 
over genic variances ( σ σA a

2 2/ ; Figure 6C). UCPC-He* yielded 
a higher ratio than OCS-He* (Figure 6C) independently of the 
targeted diversity He* at short term and midterm. For low targeted 
diversity (He* = 0.01), UCPC-He* showed in all 10 replicates a lower 
number of QTLs where the favorable allele was lost compared to 
OCS-He* (Figure 7C; Supplementary Material [Table S1 File S4], 
on average 173.6 [±4.031] QTLs-194.3 [±2.633] QTLs). 

GS Scenario With Estimated Marker Effects
Considering estimated marker effects (GS scenario) yielded lower 
genetic gain than when considering known marker effects [Figures 
5–8 and Supplementary Material (Tables S1 and S2 File S4)]. 
However, the short- and long-term superiority of the UC over 
the CSI ignoring within cross variance (PM) was consistent with 
estimated effects (on average, G10 = 8.338 [±0.237] compared to 7.713 
[±0.256] 10 years post burn-in and G10 = 15.367 [±0.358] compared 
to 13.287 [±0.436] 60 years post burn-in; Figure 8, Supplementary 
Material [Table S2 File S4]). Similarly, the long-term superiority 
of UCPC-He* = 0.01 over UC was conserved in all 10 replicates 
(on average, G10 = 16.398 [±0.426] compared to 14.438 [±0.320] 
40 years post burn-in and G10 = 18.161 [±0.470] compared to 15.367 
[±0.358] 60 years post burn-in; Figure 8, Supplementary Material 
[Table S2 File S4]). Before the 40th year, UC and UCPC-He* = 0.01 
performed similarly Supplementary Material (Table S2 File S4). 

In GS scenario, UCPC-He* = 0.01 outperformed OCS-He* = 0.01 
during the first 20 years in all 10 replicates (on average, G10 = 8.162 
[±0.208] compared to 7.734 [±0.237] 10 years post burn-in and 
G10 = 11.881 [±0.272] compared to 11.313 [±0.323] 20 years post 
burn-in; Figure 8, Supplementary Material [Table S2 File S4]). 
After 20 years, UCPC-He* = 0.01 outperformed OCS-He* = 0.01 
in eight out of 10 replicates (on average, G10  = 16.398 [±0.426] 
compared to 15.850 [±0.384] 40 years post burn-in and G10 = 18.161 
[±0.470] compared to 17.528 [±0.438] 60 years post burn-in; Figure 
8, Supplementary Material [Table S2 File S4]). Observations on 
the genic variance ( σ a

2 ) and genetic variance ( σ A
2 ) were consistent 

as well. We also observed that UCPC-He* = 0.01 yielded a lower 
number of QTLs where the favorable allele was lost (on average, 
218.8 [±3.852]) compared to OCS-He* = 0.01 (on average, 234.5 
[±3.908]) (Figure 8). PM not considering the marker information, 
i.e., phenotypic selection (PS scenario), yielded lower short- and 
long-term genetic gains than PM considering marker information 
(GS scenario) (on average, G10 = 6.402 [±0.166] compared to 7.713 
[±0.256] 10 years post burn-in and G10 = 10.810 [±0.329] compared 
to 13.287 [±0.436) 60 years post burn-in; Figure 8, Supplementary 
Material [Table S2 File S4]).

DISCUSSION

Predicting the Next-Generation Diversity
Accounting for within-family selection increased the squared 
correlation and reduced the mean error of post-selection genetic 
diversity prediction (Figures 3, 4). The gain in squared correlation 
(Figure 3) and the reduction in mean error (Figure 4), were more 
important for parents showing differences in performance. This 
result is consistent with observations in Allier et al. (2019b), where 
crosses between two phenotypically distant parents yielded post-
selection parental contributions that differ from their expectation 
before selection (i.e., 0.5). The mean prediction error was always 
positive, which can be explained by the use in Eq. 9 of genome-wide 
parental contributions to progeny in lieu of parental contributions 
at individual QTLs to predict allelic frequency changes due to 
selection Supplementary Material (File S2). As a result, the 
predicted extreme frequencies at QTLs in the progeny are shrunk 
toward the mean frequency, leading to an overestimation of the 
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expected heterozygosity (He) (results not shown). Local changes 
in allele frequency under artificial selection could be predicted 
following Falconer and Mackay (1996) and Gallais et al. (2007), but 
this approach would assume linkage equilibrium between QTLs, 
which is a strong assumption that does not correspond to the highly 
polygenic trait that we simulated.

Effect of UC on Short- and Long-Term 
Recurrent Selection
In a first approach, we considered no constraint on diversity 
during cross-selection and compared cross-selection maximizing 
the UC or maximizing the PM in the TRUE scenario, assuming 
known QTL effects and positions. The UC yielded higher short-
term genetic gain at commercial level (G10; Figures 5B, C). This 
was expected because UC predicts the mean performance of 
the best fraction of progeny. When considering the genetic gain 

at the mean progeny level (G; Figure 5A), UC needed 5 years 
to outperform PM. These results underline that UC maximizes 
the mean performance of the next generation issued from 
the intercross of selected progeny, sometimes at the expense 
of the current generation progeny mean performance. This 
observation is consistent with the fact that candidate parents of 
the sixth cohort came all from the three first cohorts generated 
considering UC and thus the sixth cohort took full advantage 
of the use of UC (Figure 1A). This tendency was also observed 
in simulations by Müller et al. (2018) considering the EMBV 
approach, akin to the UC for normally distributed additive 
traits. The UC also showed a higher long-term genetic gain at 
both commercial (G10) and whole progeny level (G) compared 
to intercrossing the best candidate parents (PM). This long-term 
gain was driven by a higher additive genic variance at QTLs 
( σ a

2 ; Figure 6A) and a lower genomic covariance between 
QTLs ( σ σA a

2 2/ ; Figure 6C) resulting in a higher additive genetic 

FIGURE 8 | Evolution of different variables for different cross-selection indices according to the generations in the GS scenario (PM, parental mean; UC, usefulness 
criterion; OCS-He*, optimal cross-selection; and UCPC-He*, UCPC-based optimal cross-selection for He* = 0.01) and in the PS scenario (PM, parental mean). 
(A) Genetic gain at whole progeny level (G), (B) genetic gain at commercial level (G10), and (C) G10 relatively to PM (GS), genetic gain is measured on true breeding 
values. (D) Genic variance at QTLs ( σ a

2 ). (E) genetic variance of true breeding values ( σ A
2 ) and (F) ratio of genic over genetic variance ( σ σA a

2 2/ ). (G) genetic 
diversity at QTLs and number of QTLs where the favorable allele was fixed (H) and lost (I).
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variance in UC compared to PM ( σ A
2 ; Figure 6B). Note that 

with lower σ a
2  the ratio σ σA a

2 2/  becomes less interpretable in 
the long-term (Figure 6C). UC also better managed the fixation 
(Figure 7B) or the maintenance (Figure 7C) of the favorable allele 
at QTLs compared to PM. These results highlight the interest of 
considering within cross variance in cross-selection for improving 
long-term genetic gain as observed in Müller et al. (2018).

Accounting for Within-Family Variance in 
Optimal Cross-Selection
Assuming known marker effects, we observed that considering 
a constraint on diversity, i.e., optimal cross-selection, always 
maximized the long-term genetic gain, at the cost of a variable 
penalty for short-term gain, compared to no constraint on 
diversity (e.g., UC). We further compared the OCS (Gorjanc 
et al., 2018) with the UCPC-based optimal cross-selection 
that accounts for the fact that only a selected fraction of each 
family contributes to the next generation. In the optimization 
framework considered, we compared the ability of UCPC 
(referred to as UCPC-He*) and OCS (referred to as OCS-He*) 
to convert a determined loss of diversity into genetic gain. For 
a given diversity trajectory, UCPC-He* yielded higher short-
term commercial gain than OCS-He*. Both, OCS-He* and 
UCPC-He* yielded similar additive genic variance ( σ a

2 ), but we 
observed differences in terms of the ratio σ σA a

2 2/  . As expected 
under directional selection, the ratio σ σA a

2 2/  was positive 
and inferior to one, revealing a negative genomic covariance 
between QTLs (Bulmer, 1971). UCPC-He* yielded a higher 
ratio, i.e., lower repulsion, and thus a higher additive genetic 
variance ( σ A

2 ) than OCS-He* for a similar He*. This explains 
the higher long-term genetic gain at commercial and whole 
progeny levels observed for UCPC-He*. This result supports 
the idea, suggested in Allier et al. (2019a), that accounting for 
complementarity between parents when defining crossing plans 
is an efficient way to favor recombination events to reveal part 
of the additive genic variance hidden by repulsion between 
QTLs. For low targeted diversity (He* = 0.01), UCPC-He* 
also appeared to better manage the rare favorable alleles at 
QTLs than OCS-He*. These results highlighted the interest of 
UCPC-based optimal cross-selection to convert the genetic 
diversity into genetic gain by maintaining more rare favorable 
alleles and limiting repulsion between QTLs. In case of higher 
targeted diversity (He* = 0.15), the loss of diversity was likely 
not sufficient to fully express the additional interest of UCPC 
compared to OCS to convert diversity into genetic gain. In 
this case, UCPC-He* and OCS-He* performed similarly. 
Accounting for within cross variance to measure the expected 
gain of a cross in optimal cross-selection was already suggested 
in Shepherd and Kinghorn (1998). More recently, Akdemir and 
Isidro-Sánchez (2016) and Akdemir et al. (2018) accounted for 
within cross variance considering linkage equilibrium between 
QTLs. Akdemir and Isidro-Sánchez (2016) also observed that 
accounting for within cross variance during cross-selection 
yielded higher long-term mean performance with a penalty at 
short-term mean progeny performance.

Short-term economic returns of a breeding program condition 
the resources invested to maintain/increase response to selection 
and therefore long-term competitive capacity. Hence, to fully take 
advantage of their benefit at long term, it is necessary to make 
sure that tested breeding strategies do not compromise too much 
the short-term commercial genetic gain. For this reason, we 
considered the discounted cumulative commercial gain following 
Dekkers et al. (1995) and Chakraborty et al. (2002) as a summary 
variable to evaluate CSI while giving more weight to short-term 
gain in different levels. UCPC-He* outperformed OCS-He* 
for a given He* either considering uniform weights (ρ  = 0) or 
giving approximately seven times more weight to short-term gain 
compared to long-term gain (ρ = 0.04). This was also true when 
focusing only on short-term gain (ρ = 0.2), but in this case the best 
model was UC without accounting for diversity (Table 2).

Practical Implementations in Breeding
UCPC With Estimated Marker Effects
In simulations, we first considered 1,000 QTLs with known 
additive effects sampled from a centered normal distribution. 
For a representative subset of CSIs (PM, UC, UCPC-He*, and 
OCS-He* with He* = 0.01; Figure 8), we considered estimated 
effects at 2,000 SNPs. The main conclusions obtained with 
known and estimated marker effects were consistent, supporting 
the practical interest of UCPC-based optimal cross-selection 
(Figure  8). The difference was that the superiority of UCPC-
based optimal cross-selection over optimal cross-selection not 
accounting for within-family selection in GS scenario was not 
significant after 60 years Supplementary Material (Table S2 File 
S4). With estimated marker effects instead of known QTL effects, 
the predicted progeny variance (σ2) corresponded to the variance 
of the predicted breeding values, which are shrunk compared to 
TBVs, depending on the model accuracy (referred to as variance 
of posterior mean [VPM] in Lehermeier et al.). An alternative 
would be to consider the marker effects estimated at each sample 
of a Monte Carlo Markov Chain process, e.g., using a Bayesian 
ridge regression, to obtain an improved estimate of the additive 
genetic variance (referred to as posterior mean variance [PMV] 
in Lehermeier et al., 2017a; Lehermeier et al., 2017b). 

In practice, QTL effects are unknown, so the selection of 
progeny cannot be based on TBVs, and thus the selection 
accuracy (h) is smaller than one. In our simulation study 
assuming unknown QTLs (GS scenario), progeny were selected 
based on estimated breeding values taking into account genotypic 
information as well as replicated phenotypic information, 
which led to a high selection accuracy, as it can be encountered 
in breeding. Thus, the assumption h = 1 used in Eq. 6 for GS 
scenario is reasonable. In order to shorten the cycle length of the 
breeding scheme, selection of progeny can be based on predicted 
GEBVs of genotyped but not phenotyped progeny. In such a 
case, the selection accuracy (h) will be considerably reduced. In 
such a situation, one can advocate to use PMV instead of VPM 
in the computation of UCPC and to take into account the proper 
selection accuracy (h) within crosses adapted to the selection 
scheme. When selection is based on predicted values, i.e., 
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genotyped but not phenotyped progeny, the shrunk predictor 
VPM should be a good approximation of (hσ)2.

UCPC-Based Optimal Cross-Selection 
In this study, we assumed fully homozygous parents and two-way 
crosses. However, neither the optimal cross-selection nor UCPC-
based optimal cross-selection is restricted to homozygote parents. 
Considering heterozygote parents in optimal cross-selection is 
straightforward. Following the extension of UCPC to four-way 
crosses (Allier et al., 2019b), UCPC optimal cross-selection can 
be used for phased heterozygous individuals, as it is commonly 
the case in perennial plants or animal breeding. Animal breeders 
are interested in Mendelian sampling variance for individual 
and cross-selection (Segelke et al., 2014; Bonk et al., 2016; Bijma 
et al., 2018) and might be interested to incorporate it into OCS 
strategies. We considered an inbred line breeding program, but 
the extension to hybrid breeding is of interest for species such 
as maize. The use of testcross effects, i.e., estimated on hybrids 
obtained by crossing candidate lines with lines from the opposite 
heterotic pool, in UCPC-based optimal cross-selection is 
straightforward, and so the UCPC-based optimal cross-selection 
can be used to improve each heterotic pool individually. In 
order to jointly improve two pools, further investigations are 
required to include dominance effects in UCPC-based optimal 
cross-selection. In addition, this would imply that crossing plans 
in both pools are jointly optimized to manage genetic diversity 
within pools and complementarity between pools.

We considered a within-family selection intensity corresponding 
to the selection of the 5% most performant progeny as candidates 
for the next generation. Equal selection intensities were assumed 
for all families, but in practice due to experimental constraints or 
optimized resource allocation (e.g., generate more progeny for 
crosses showing high progeny variance but low progeny mean), 
within-family selection intensity can be variable. Different within-
family selection intensities (see Eqs. 8 and 9) can be considered in 
UCPC-based optimal cross-selection, but an optimization regarding 
resource allocation of the number of crosses and the selection 
intensities within crosses calls for further investigations. However, in 
marker-assisted selection schemes based on QTL detection results 
(Bernardo et al., 2006), an optimization of selection intensities per 
family was observed to be only of moderate interest.

Proposed UCPC-based optimal cross-selection was compared 
to OCS in a targeted diversity trajectory context. We considered 
a linear trajectory, but any genetic diversity trajectory can be 
considered (e.g., Figure 2). The optimal diversity trajectory cannot 
be easily determined and depends on breeding objectives and data 
considered. Optimal contribution selection in animal breeding 
considers a similar ϵ-constraint optimization with a targeted 
inbreeding trajectory determined by a fixed annual rate of inbreeding 
(e.g., 1% advocated by the Food and Agriculture Organization 
(FAO), Woolliams et al., 1998). Woolliams et al. (2015) argued that 
the optimal inbreeding rate is also not straightforward to define. 
An alternative formulation of the optimization problem to avoid 
the use of a fixed constraint is to consider a weighted index (1-α)
V(nc)+αD(nc), where α is the weight balancing the expected gain 
V(nc) and constraint D(nc) (De Beukelaer et al., 2017). However, 

the appropriate choice of α is difficult and is not explicit either in 
terms of expected diversity or expected gain.

Introgression of Diversity and Anticipation of a 
Changing Breeding Context
We considered candidate parents coming from the three 
last overlapping cohorts (Figure 1) in order to reduce the 
number of candidate crosses during the progeny covariances 
prediction (UCPC) and the optimization process. This yielded 
elite candidate parents that were not directly related (no 
parent–progeny) and that did not show strong differences in 
performances, which is standard in a commercial plant breeding 
program focusing on yield improvement. However, when the 
genetic diversity in a program is so low that long-term genetic 
gain is compromised, external genetic resources need to be 
introgressed by crosses with internal elite parents. As suggested 
by results of simulation 1, we conjecture that the advantage of 
UCPC-based optimal cross-selection over OCS increases in 
such a context where heterogeneous, i.e., phenotypically distant, 
genetic materials are crossed. This requires investigations that 
we hope to address in subsequent research. 

Our simulations also assumed fixed environments and 
a single targeted trait over 60 years. However, in a climate 
change context and with rapidly evolving societal demands for 
sustainable agricultural practices, environments and breeders 
objectives will likely change over time. In a multitrait context, the 
multiobjective optimization framework proposed in Akdemir et 
al. (2018) can be adapted to UCPC-based optimal cross-selection. 
The upcoming but yet unknown breeding objectives make the 
necessity to manage genetic diversity even more important than 
highlighted in this study.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data 
can be found here: https://doi.org/10.25387/g3.7405892.

AUTHOR CONTRIBUTIONS

ST, CL, AC, and LM supervised the study. AA performed 
the simulations and wrote the manuscript. ST worked on the 
implementation in the simulator. All authors reviewed and 
approved the manuscript.

FUNDING

This research was funded by RAGT2n and the ANRT CIFRE 
grant no. 2016/1281 for AA.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fgene.2019.01006/
full#supplementary-material

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.25387/g3.7405892
https://www.frontiersin.org/articles/10.3389/fgene.2019.01006/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.01006/full#supplementary-material


UCPC for Optimal Cross-SelectionAllier et al.

14 October 2019 | Volume 10 | Article 1006Frontiers in Genetics | www.frontiersin.org

REFERENCES

Akdemir, D., and Isidro-Sánchez, J. (2016). Efficient breeding by genomic mating. 
Front. Genet. 7, 210. doi: 10.3389/fgene.2016.00210

Akdemir, D., Beavis, W., Fritsche-Neto, R., Singh, A. K., and Isidro-Sánchez, J. 
(2018). Multi-objective optimized genomic breeding strategies for sustainable 
food improvement. Heredity 122, 672. doi: 10.1101/209080

Allier, A., Teyssèdre, S., Lehermeier, C., Claustres, B., Maltese, S., Moreau, L., 
Charcosset, A. (2019a). Assessment of breeding programs sustainability: 
application of phenotypic and genomic indicators to a North European 
grain maize program. Theor. Appl. Genet. 132, 1321–1334. doi: 10.1007/
s00122-019-03280-w

Allier, A., Moreau, L., Charcosset, A., Teyssèdre, S., and Lehermeier, C. (2019b). 
Usefulness criterion and post-selection parental contributions in multi-parental 
crosses: application to polygenic trait introgression. G3 Genes Genomes Genet. 
9, 1469–1479. doi: 10.1534/g3.119.400129

Bernardo, R., Moreau, L., and Charcosset, A. (2006). Number and fitness of 
selected individuals in marker-assisted and phenotypic recurrent selection. 
Crop Sci. 46, 1972–1980. doi: 10.2135/cropsci2006.01-0057

Bijma, P., Wientjes, Y. C. J., and Calus, M. P. L. (2018). Increasing genetic gain by 
selecting for higher Mendelian sampling variance. Proc. World Congr. Genet. Appl. 
Livest. Prod. Genet. Gain-Breed. Strategies 2, 47. 

Bonk, S., Reichelt, M., Teuscher, F., Segelke, D., and Reinsch, N. (2016). Mendelian 
sampling covariability of marker effects and genetic values. Genet. Sel. Evol. 48, 
36. doi: 10.1186/s12711-016-0214-0

Bulmer, M. (1971). The stability of equilibria under selection. Heredity 27, 157–
162. doi: 10.1038/hdy.1971.81

Bulmer, M. (1980). The mathematical theory of quantitative genetics. Newyork 
Oxford University Press. 

Chakraborty, R., Moreau, L., and Dekkers, J. C. (2002). A method to optimize 
selection on multiple identified quantitative trait loci. Genet. Sel. Evol. 34, 145. 
doi: 10.1186/1297-9686-34-2-145

Clark, S. A., Hickey, J. M., and van der Werf, J. H. (2011). Different models of 
genetic variation and their effect on genomic evaluation. Genet. Sel. Evol. GSE 
43, 18. doi: 10.1186/1297-9686-43-18

Daetwyler, H. D., Calus, M. P. L., Pong-Wong, R., de los Campos, G., and 
Hickey,  J.M. (2013). Genomic prediction in animals and plants: simulation 
of data, validation, reporting, and benchmarking. Genetics 193, 347–365. doi: 
10.1534/genetics.112.147983

Daetwyler, H. D., Hayden, M. J., Spangenberg, G. C., and Hayes, B. J. (2015). 
Selection on optimal haploid value increases genetic gain and preserves more 
genetic diversity relative to genomic selection. Genetics 200, 1341–1348. doi: 
10.1534/genetics.115.178038

De Beukelaer, H. D., Badke, Y., Fack, V., and Meyer, G. D. (2017). Moving beyond 
managing realized genomic relationship in long-term genomic selection. 
Genet. 206: 1127–1138. doi: 10.1534/genetics.116.194449

Dekkers, J. C. M., Birke, P. V., and Gibson, J. P. (1995). Optimum linear selection 
indexes for multiple generation objectives with non-linear profit functions. 
Anim. Sci. 61, 165–175. doi: 10.1017/S1357729800013667

Falconer, D. S., and Mackay, T. F. C. (1996). Introduction to quantitative genetics. 
4th ed. Harlow, England: Pearson. 

Fradgley, N., Gardner, K. A., Cockram, J., Elderfield, J., Hickey, J. M., Howell, P., 
et al. (2019). A large-scale pedigree resource of wheat reveals evidence for 
adaptation and selection by breeders. PLoS Biol. 17, e3000071. doi: 10.1371/
journal.pbio.3000071

Gallais, A., Moreau, L., and Charcosset, A. (2007). Detection of marker–QTL 
associations by studying change in marker frequencies with selection. Theor. 
Appl. Genet. 114, 669–681. doi: 10.1007/s00122-006-0467-z

Ganal, M. W., Durstewitz, G., Polley, A., Bérard, A., Buckler, E. S., 
Charcosset, A., et al. (2011). A large maize (Zea mays L.) SNP genotyping 
array: development and germplasm genotyping, and genetic mapping to 
compare with the B73 reference genome. PLoS One 6, e28334. doi: 10.1371/
journal.pone.0028334

Gerke, J. P., Edwards, J. W., Guill, K. E., Ross-Ibarra, J., and McMullen, M. D. 
(2015). The genomic impacts of drift and selection for hybrid performance in 
maize. Genetics 201, 1201–1211. doi: 10.1534/genetics.115.182410

Giraud, H., Lehermeier, C., Bauer, E., Falque, M., Segura, V., Bauland, C., et al. 
(2014). Linkage disequilibrium with linkage analysis of multiline crosses reveals 

different multiallelic qtl for hybrid performance in the flint and dent heterotic 
groups of maize. Genetics 198, 1717–1734. doi: 10.1534/genetics.114.169367

Gorjanc, G., Gaynor, R. C., and Hickey, J. M. (2018). Optimal cross-selection for 
long-term genetic gain in two-part programs with rapid recurrent genomic 
selection. Theor. Appl. Genet. 131, 1953–1966. doi: 10.1007/s00122-018-3125-3

Gorjanc G., and Hickey J. M. (2018) AlphaMate: a program for optimizing 
selection, maintenance of diversity and mate allocation in breeding programs. 
Bioinformatics 34, 3408–3411. doi: 10.1093/bioinformatics/bty375

Haimes, Y., Lasdon, L. S., and Wimer, D. (1971). On a bicriterion formation 
of the problems of integrated system identification and system 
optimization. IEEE Trans. Syst. Man Cybern. SMC-1, 296–297. doi: 10.1109/
TSMC.1971.4308298

Hayes, B. J., Pryce, J., Chamberlain, A. J., Bowman, P. J., and Goddard, M. E. (2010). 
genetic architecture of complex traits and accuracy of genomic prediction: coat 
colour, milk-fat percentage, and type in holstein cattle as contrasting model 
traits. PLoS Genet. 6, e1001139. doi: 10.1371/journal.pgen.1001139

Henderson, C. R. (1984). Applications of linear models in animal breeding. Guelph: 
University of Guelph. 

Heslot, N., Jannink, J.-L., and Sorrells, M. E. (2015). Perspectives for genomic 
selection applications and research in plants. Crop Sci. 55, 1–12. doi: 10.2135/
cropsci2014.03.0249

Jannink, J.-L. (2010). Dynamics of long-term genomic selection. Genet. Sel. Evol. 
42, 35. doi: 10.1186/1297-9686-42-35

Kinghorn, B. P., Banks, R., Gondro, C., Kremer, V. D., Meszaros, S. A., Newman, S., 
et al. (2009). “Strategies to exploit genetic variation while maintaining diversity,” 
in adaptation and fitness in animal populations (Dordrecht: Springer), 191–200. 
doi: 10.1007/978-1-4020-9005-9_13

Kinghorn, B. P. (2011). An algorithm for efficient constrained mate selection. 
Genet. Sel. Evol. 43, 4. doi: 10.1186/1297-9686-43-4

Lehermeier, C., de los Campos, G., Wimmer, V., and Schön, C.-C. (2017a). 
Genomic variance estimates: with or without disequilibrium covariances? 
J. Anim. Breed. Genet. 134, 232–241. doi: 10.1111/jbg.12268

Lehermeier, C., Teyssèdre, S., and Schön, C.-C. (2017b). Genetic gain increases 
by applying the usefulness criterion with improved variance prediction in 
selection of crosses. Genetics 207, 1651–1661. doi: 10.1534/genetics.117.300403

Lin, Z., Cogan, N. O. I., Pembleton, L. W., Spangenberg, G. C., Forster, J. W., Hayes, 
B. J. et al., (2016). Genetic gain and inbreeding from genomic selection in a 
simulated commercial breeding program for perennial ryegrass. Plant Genome 
9. doi: 10.3835/plantgenome2015.06.0046

Lin, Z., Shi, F., Hayes, B. J., and Daetwyler, H. D. (2017). Mitigation of inbreeding 
while preserving genetic gain in genomic breeding programs for outbred 
plants. Theor. Appl. Genet. 130, 969–980. doi: 10.1007/s00122-017-2863-y

Lynch, M., and Walsh, B. (1999). Evolution and selection of quantitative traits. 
Sunderland, MA., Sinauer Associates.

Meuwissen, T. H. (1997). Maximizing the response of selection with a predefined 
rate of inbreeding. J. Anim. Sci. 75, 934–940. doi: 10.2527/1997.754934x

Meuwissen, T. H., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total 
genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829.

Misztal, I. (2008). Reliable computing in estimation of variance components. 
J. Anim. Breed. Genet. 125, 363–370. doi: 10.1111/j.1439-0388.2008.00774.x

Mohammadi, M., Tiede, T., and Smith, K. (2015). PopVar: a genome-wide 
procedure for predicting genetic variance and correlated response in 
biparental breeding populations. Crop Sci. 55, 2068–2077. doi: 10.2135/
cropsci2015.01.0030

Müller, D., Schopp, P., and Melchinger, A. E. (2018). Selection on expected 
maximum haploid breeding values can increase genetic gain in recurrent 
genomic selection. G3 Genes Genomes Genet. 8, 1173–1181. doi: 10.1534/
g3.118.200091

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. 
Acad. Sci. U. S. A. 70, 3321–3323. doi: 10.1073/pnas.70.12.3321

Piepho, H. P., Möhring, J., Melchinger, A. E., and Büchse, A. (2008). BLUP for 
phenotypic selection in plant breeding and variety testing. Euphytica 161, 209–
228. doi: 10.1007/s10681-007-9449-8

Pryce, J. E., Hayes, B. J., and Goddard, M. E. (2012). Novel strategies to minimize 
progeny inbreeding while maximizing genetic gain using genomic information. 
J. Dairy Sci. 95, 377–388. doi: 10.3168/jds.2011-4254

Pszczola, M., Strabel, T., Mulder, H. A., and Calus, M. P. L. (2012). Reliability 
of direct genomic values for animals with different relationships within 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.3389/fgene.2016.00210
https://doi.org/10.1101/209080
https://doi.org/10.1007/s00122-019-03280-w
https://doi.org/10.1007/s00122-019-03280-w
https://doi.org/10.1534/g3.119.400129
https://doi.org/10.2135/cropsci2006.01-0057
https://doi.org/10.1186/s12711-016-0214-0
https://doi.org/10.1038/hdy.1971.81
https://doi.org/10.1186/1297-9686-34-2-145
https://doi.org/10.1186/1297-9686-43-18
https://doi.org/10.1534/genetics.112.147983
https://doi.org/10.1534/genetics.115.178038
https://doi.org/10.1534/genetics.116.194449
https://doi.org/10.1017/S1357729800013667
https://doi.org/10.1371/journal.pbio.3000071
https://doi.org/10.1371/journal.pbio.3000071
https://doi.org/10.1007/s00122-006-0467-z
https://doi.org/10.1371/journal.pone.0028334
https://doi.org/10.1371/journal.pone.0028334
https://doi.org/10.1534/genetics.115.182410
https://doi.org/10.1534/genetics.114.169367
https://doi.org/10.1007/s00122-018-3125-3
https://doi.org/10.1093/bioinformatics/bty375
https://doi.org/10.1109/TSMC.1971.4308298
https://doi.org/10.1109/TSMC.1971.4308298
https://doi.org/10.1371/journal.pgen.1001139
https://doi.org/10.2135/cropsci2014.03.0249
https://doi.org/10.2135/cropsci2014.03.0249
https://doi.org/10.1186/1297-9686-42-35
https://doi.org/10.1007/978-1-4020-9005-9_13
https://doi.org/10.1186/1297-9686-43-4
https://doi.org/10.1111/jbg.12268
https://doi.org/10.1534/genetics.117.300403
https://doi.org/10.3835/plantgenome2015.06.0046
https://doi.org/10.1007/s00122-017-2863-y
https://doi.org/10.2527/1997.754934x
https://doi.org/10.1111/j.1439-0388.2008.00774.x
https://doi.org/10.2135/cropsci2015.01.0030
https://doi.org/10.2135/cropsci2015.01.0030
https://doi.org/10.1534/g3.118.200091
https://doi.org/10.1534/g3.118.200091
https://doi.org/10.1073/pnas.70.12.3321
https://doi.org/10.1007/s10681-007-9449-8
https://doi.org/10.3168/jds.2011-4254


UCPC for Optimal Cross-SelectionAllier et al.

15 October 2019 | Volume 10 | Article 1006Frontiers in Genetics | www.frontiersin.org

and to the reference population. J. Dairy Sci. 95, 389–400. doi: 10.3168/
jds.2011-4338

R Core Team. (2017). R: A language and environment for statistical computing. 
Vienna, Austria: R Foundation for Statistical Computing. 

Rauf, S., Teixeira da Silva, J. A., Khan, A. A., and Naveed, A. (2010). Consequences 
of plant breeding on genetic diversity. Int. J. Plant Breed. 4, 1–21. 

Rio, S., Mary-Huard, T., Moreau, L., and Charcosset, A. (2019). Genomic selection 
efficiency and a priori estimation of accuracy in a structured dent maize panel. 
Theor. Appl. Genet. 132, 81–96. doi: 10.1007/s00122-018-3196-1

Rutkoski, J., Singh, R. P., Huerta-Espino, J., Bhavani, S., Poland, J., Jannink, 
J.  L. et al., (2015). Genetic gain from phenotypic and genomic selection for 
quantitative resistance to stem rust of wheat. Plant Genome 8. doi: 10.3835/
plantgenome2014.10.0074

Schnell, F., and Utz, H. (1975). “F1-Leistung und Elternwahl in der Züchtung 
von Selbstbefruchtern,” in Bericht über die Arbeitstagung der Vereinigung 
österreichischer Pflanzenzüchter (Austria: BAL Gumpenstein), 243–248. 

Segelke, D., Reinhardt, F., Liu, Z., and Thaller, G. (2014). Prediction of expected 
genetic variation within groups of offspring for innovative mating schemes. 
Genet. Sel. Evol. 46, 42. doi: 10.1186/1297-9686-46-42

Shepherd, R. K., and Kinghorn, B. P. (1998). A tactical approach to the design of 
crossbreeding programs, in Proceedings of the sixth world congress on genetics 
applied to livestock production: 11-16 january, (Armidale) 431–438.

Storn, R., and Price, K. (1997). Differential evolution – a simple and efficient 
heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 
341–359. doi: 10.1023/A:1008202821328

Van Inghelandt, D., Reif, J. C., Dhillon, B. S., Flament, P., and Melchinger, A. E. 
(2011). Extent and genome-wide distribution of linkage disequilibrium in 

commercial maize germplasm. Theor. Appl. Genet. 123, 11–20. doi: 10.1007/
s00122-011-1562-3

Wang, H., Misztal, I., Aguilar, I., Legarra, A., and Muir, W. M. (2012). Genome-
wide association mapping including phenotypes from relatives without 
genotypes. Genet. Res. 94, 73–83. doi: 10.1017/S0016672312000274

Woolliams, J. A., Gwaze, D. P., Meuwissen, T. H., Planchenault, D., Renard, J. P., 
Thibier, M., et  al. (1998). Secondary guidelines for the development of national 
farm animal genetic resources management plans. Manage. Small Popul. Risk. 

Woolliams, J. A., Berg, P., Dagnachew, B. S., and Meuwissen, T. H. E. (2015). 
Genetic contributions and their optimization. J. Anim. Breed. Genet. 132, 
89–99. doi: 10.1111/jbg.12148

Wray, N., and Goddard, M. (1994). Increasing long-term response to selection. 
Genet. Sel. Evol. 26, 431. doi: 10.1186/1297-9686-26-5-431

Zhong, S., and Jannink, J.-L. (2007). Using quantitative trait loci results to 
discriminate among crosses on the basis of their progeny mean and variance. 
Genetics 177, 567–576. doi: 10.1534/genetics.107.075358

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Allier, Lehermeier, Charcosset, Moreau and Teyssèdre. This is an open-
access article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.3168/jds.2011-4338
https://doi.org/10.3168/jds.2011-4338
https://doi.org/10.1007/s00122-018-3196-1
https://doi.org/10.3835/plantgenome2014.10.0074
https://doi.org/10.3835/plantgenome2014.10.0074
https://doi.org/10.1186/1297-9686-46-42
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/s00122-011-1562-3
https://doi.org/10.1007/s00122-011-1562-3
https://doi.org/10.1017/S0016672312000274
https://doi.org/10.1111/jbg.12148
https://doi.org/10.1186/1297-9686-26-5-431
https://doi.org/10.1534/genetics.107.075358
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Improving Short- and Long-Term Genetic Gain by Accounting for Within-Family Variance in Optimal Cross-Selection
	Introduction
	Materials and Methods
	Simulated Breeding Program
	Breeding Program
	Evaluation Scenarios

	Cross-Selection Strategies
	Optimal Cross-Selection Not Accounting for Within-Family Selection
	Accounting for Within-Family Selection in OCS
	Multiobjective Optimization Framework 
	Cross-Selection Indices 

	Simulation 1: Interest of UCPC to Predict the Diversity in the Selected Fraction of Progeny
	Simulation 2: Comparison of Different Csis

	Results
	Simulation 1
	Simulation 2 
	Interest of UC Over PM
	Targeted Diversity Trajectory
	GS Scenario With Estimated Marker Effects


	Discussion
	Predicting the Next-Generation Diversity
	Effect of UC on Short- and Long-Term Recurrent Selection
	Accounting for Within-Family Variance in Optimal Cross-Selection
	Practical Implementations in Breeding
	UCPC With Estimated Marker Effects
	UCPC-Based Optimal Cross-Selection 
	Introgression of Diversity and Anticipation of a Changing Breeding Context


	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


