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ABSTRACT Lactobacillus plantarum strain JDARSH, a potential probiotic with a wide
range of functions, was isolated from sheep milk. Here, we report the whole-
genome sequence of this bacterium. The draft genome yielded a 3.20-Mb genome
and 2,980 protein-coding sequences.

Lactic acid bacteria (LAB) are widely used in various preparations, such as food and
food products, and for other raw materials, including vegetables, meat, and plant

products. A number of recently conducted studies have led to the conviction that some
strains of LAB, in particular, strains from the genus Lactobacillus, may promote health
in both humans and animals (1–3); among these, the species Lactobacillus plantarum is
the most flexible and versatile. It is a Gram-positive, facultatively anaerobic, rod-shaped,
acid-tolerant, and non-spore-forming probiotic bacterium (4–6). The bacterium has
wide application in the medical field (7, 8). In this study, we have sequenced the whole
genome of an L. plantarum strain isolated from sheep milk.

A total of 180 sheep milk samples (Indian breed) were collected from local places in
the Kolhapur, Sangli, and Admapur areas of Maharashtra, India. For bacterial enumer-
ation, milk samples (1 ml) were kept at �80°C in 15% glycerol before use. Isolation and
purification were performed on de Man-Rogosa-Sharpe (MRS) broth and agar medium
(9). The samples were inoculated on MRS agar medium and incubated for a period of
48 h under microaerophilic conditions. After incubation, the individual colonies formed
were transferred into sterile MRS broth medium. The culture is deposited in the public
domain as Lactobacillus plantarum strain JDARSH at the National Centre for Microbial
Resources (NCMR), Pune, India. Total DNA was extracted using a PureLink genomic DNA
extraction kit (Life Technologies), following the manufacturer’s instructions. The se-
quencing libraries were prepared using a Nextera XT library kit, and whole-genome
sequencing of L. plantarum strain JRARSH was performed on the Illumina NextSeq 500
sequencing platform (150-bp paired-end reads) with a shotgun strategy (9). A total of
1,203,568 paired-end reads of 150 bp in size were generated. The Illumina-generated
sequence reads were quality filtered by FastQC v.0.10.1 (http://www.bioinformatics
.babraham.ac.uk/projects/fastqc/), and low-quality reads were removed before assem-
bly. The quality-filtered reads were assembled de novo using SPAdes v.3.9 (10, 11),
producing 31 contigs. The gene prediction was performed using the Rapid Annotations
using Subsystems Technology (RAST) server v.2.0 (rast.nmpdr.org/), with default pa-
rameters (12–14). Predicted genes were annotated using the Prokaryotic Genome
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Annotation Pipeline (PGAP) v.4.9 (15) and BLAST (http://blast.ncbi.nlm.nih.gov/Blast
.cgi). Default parameters were used for all software, unless otherwise specified. The final
assembly yielded a 3.20-Mb genome with a mean G�C content of 44.5%, an N50 value
of 174,093 bp, an L50 of 6, and a total of 3,128 genes, of which 2,980 are protein-coding
genes, 59 are tRNA genes, 5 are rRNA genes (35S rRNAs, 116S rRNA, and 123S rRNA),
and 4 are noncoding RNA (ncRNA) genes. The genome also contained 80 pseudogenes.
Within the total of 3,128 genes, biological functions were defined for 2,135 (68.25%).
The predicted genes that were identified are associated with cellular metabolism (n �

38), protein processing (n � 323), energy (n � 276), stress response defense and
virulence (n � 182), DNA processing (n � 181), cellular response (n � 163), RNA
processing (91), membrane transport (n � 33), the cellular envelope (n � 28), and
regulation and cell signaling (n � 18). Moreover, the genes were each assigned a
putative function. Putative functions included cell adhesions, acid tolerance, bile tox-
icity, molybdenum cofactor biosynthesis, folate and pterine biosynthesis, aromatic
compound degradation, exopolysaccharide production, riboflavin and bacteriocin pro-
duction, thiamine and methionine biosynthesis, phosphate metabolism, sulfur metab-
olism, dormancy and sporulation, and denitrification. Similar pathways were also found
in some other strains of L. plantarum (16–18). This Lactobacillus plantarum bacterial
strain also proves to be an attractive candidate for the metabolic engineering of
lignocellulosic biomass to biofuels, owing to its characteristic natural abilities to
metabolize the hexose sugars and to tolerate high ethanol and acid concentrations
(19, 20).

Data availability. The associated BioSample, SRA, and BioProject accession
numbers for the sequence reported here are SAMN13106942, SRP226774, and
PRJNA579228, respectively.
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