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Abstract

The interaction of evolutionary processes to determine quantitative genetic variation has implications for contemporary and future pheno-
typic evolution, as well as for our ability to detect causal genetic variants. While theoretical studies have provided robust predictions to dis-
criminate among competing models, empirical assessment of these has been limited. In particular, theory highlights the importance of plei-
otropy in resolving observations of selection and mutation, but empirical investigations have typically been limited to few traits. Here, we
applied high-dimensional Bayesian Sparse Factor Genetic modeling to gene expression datasets in 2 species, Drosophila melanogaster
and Drosophila serrata, to explore the distributions of genetic variance across high-dimensional phenotypic space. Surprisingly, most of
the heritable trait covariation was due to few lines (genotypes) with extreme [>3 interquartile ranges (IQR) from the median] values.
Intriguingly, while genotypes extreme for a multivariate factor also tended to have a higher proportion of individual traits that were ex-
treme, we also observed genotypes that were extreme for multivariate factors but not for any individual trait. We observed other consistent
differences between heritable multivariate factors with outlier lines vs those factors without extreme values, including differences in gene
functions. We use these observations to identify further data required to advance our understanding of the evolutionary dynamics and na-
ture of standing genetic variation for quantitative traits.

Keywords: mutation–selection balance; House of Cards; gene expression; genetic covariance; sparse factor analysis; standing genetic
variance; Drosophila serrata; Drosophila melanogaster

Introduction
The maintenance of quantitative genetic variance presents
geneticists and evolutionary biologists with a formidable chal-
lenge. While models of the evolution of allele frequencies can be
relatively simple, evolution of the genetic variance for phenotypic
traits also depends on the effects of those alleles (Walsh and
Lynch 2018). A substantial and complex body of theory has
resulted in competing models, with no clear resolution of how
quantitative variation evolves (Bürger 2000; Johnson and Barton
2005; Walsh and Lynch 2018). Despite the central importance of
the nature of quantitative genetic variance both for predicting
long-term phenotypic evolution (Arnold et al. 2008), and for opti-
mizing approaches to identify causal loci (Eyre-Walker 2010;
Simons et al. 2018), we have only limited empirical knowledge of
the joint distribution of allele frequencies and their effects on
traits of interest and on fitness (Johnson and Barton 2005; Walsh
and Lynch 2018). Our purpose in this study is to revisit the basic
observation of the distribution of genetic variance in complex
quantitative phenotypes to help distinguish between the poten-
tial mechanisms underlying the maintenance of genetic variance.

Our focus is on 2 key aspects of theoretical models: the relation-
ship between allele frequency and effect size, and pleiotropy.

From a theoretical perspective, the resulting allele frequency
spectrum is a key distinguishing feature between models in
which selection actively maintains polymorphisms (balancing se-
lection) and models in which selection eliminates variation (and
mutation reintroduces it: mutation–selection balance, MSB).
Balancing selection mechanisms are predicted to maintain rela-
tively symmetrical allele frequencies at a locus, while under MSB
models, genetic variation is determined by rare alleles, where the
greater the fitness effect of a locus, the rarer the minor allele at
that locus (Johnson and Barton 2005; Walsh and Lynch 2018).
Genomic studies of adaptation have provided observations con-
sistent with balancing selection models, such as fluctuation of al-
lele frequencies with short-term environmental variation (e.g.
Bergland et al. 2014), and the contribution to rapid adaptation of
common, not rare, alleles (e.g. Kelly and Hughes 2019). On the
other hand, large-scale genetic mapping studies in humans
(Kemper et al. 2012; Zhao et al. 2016; Hernandez et al. 2019;
Schoech et al. 2019) and other taxa (Josephs et al. 2015; Bloom
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et al. 2019) suggest a strong contribution to standing genetic vari-
ance of loci with rare alleles. These latter observations are consis-
tent with MSB model predictions.

Different MSB models also make contrasting assumptions
about the magnitude of effects of new mutations relative to seg-
regating alleles: Gaussian models assume mutations arise fre-
quently, but have small effects, while House-of-Cards (HoC)
models assume rarer, larger effect mutations (Lande 1975; Turelli
1984, 1985; Walsh and Lynch 2018). GWAS of various human phe-
notypes suggest that genetic variance is due to additive effects of
many loci of small effect (reviewed in Simons et al. 2018), consis-
tent with the Gaussian model. In contrast, in a rare example of
an explicit test of predictions of the alternative models, Hodgins-
Davis et al. (2015) found strong support for the HoC model for
gene expression traits across 3 taxa. Other analyses of gene ex-
pression data also highlight the strong contribution to heritable
variation from rare alleles, indicating that the effect sizes of these
rare alleles must be much larger than the effects of more com-
mon alleles (Kremling et al. 2018; Hernandez et al. 2019). Further
evidence of mutational effects suggests that most new mutations
contribute little phenotypic variation, with few (rare) mutations
having large phenotypic effects (Mackay et al. 1992; Davies et al.
1999; Heilbron et al. 2014; McGuigan, Collet, McGraw et al. 2014),
again more consistent with HoC models.

Notably, empirical observations of selection, mutation, and
genetic variance are seemingly incompatible with any quantita-
tive genetic theory on a trait-by-trait basis, leading to the incor-
poration of pleiotropy into theoretical models (Johnson and
Barton 2005; Walsh and Blows 2009; Walsh and Lynch 2018).
Although the empirical evidence for pleiotropy has been contro-
versial (Paaby and Rockman 2013), advances in accessibility of
genomic data, coupled with extensive phenotypic data, are re-
vealing pleiotropic variants across diverse traits (Bulik-Sullivan
et al. 2015; Chesmore et al. 2018; Geiler-Samerotte et al. 2020;
Shikov et al. 2020). The empirical distribution of genetic variance
in multiple traits presents a very different perspective on the
maintenance of genetic variance than apparent when consider-
ing traits individually. While genetic variance in single traits
appears essentially ubiquitous (Blows and Hoffmann 2005), most
of the genetic variance in sets of multiple traits is typically re-
stricted to a smaller subspace, defined by linear combinations of
the measured traits (Kirkpatrick 2009; Walsh and Blows 2009;
Blows and McGuigan 2015). This uneven empirical distribution of
genetic variance across multivariate phenotypic space implies
that the number of genetically independent traits (n) is much
lower than the number of traits measured (p). Indeed, based on
genetic load and genetic variance in fitness arguments, n> 200 is
predicted to be unlikely (Barton 1990; Johnson and Barton 2005).
Hence, much of the genetic variation observed to be associated
with an individual trait is expected to be shared with other traits.

Theoretical models differ in the assumptions about the corre-
lation of pleiotropic effect sizes among traits, specifically,
whether they are uncorrelated, or whether individuals that carry
a pleiotropic allele that generates an extreme value for one trait
will also be extreme for other traits (Turelli 1985; Barton 1990;
Wingreen et al. 2003; Johnson and Barton 2005; Waxman and
Peck 2006). While there is some evidence of stronger selection on
mutations with highly pleiotropic effects (Denver et al. 2005;
McGuigan, Collet, Allen et al. 2014), the distributions of allele fre-
quency and of pleiotropic effects remain poorly characterized for
any traits. Notably, theoretical models of MSB typically presume
that mutations, while having negative effects on fitness, have un-
biased effects on phenotypic traits (Johnson and Barton 2005).

However, the emergence of extreme multivariate trait values
from the pleiotropic effects on each individual trait is unknown.
Here, we characterize the multivariate distribution of heritable
phenotypes, aiming to interrogate the empirical relationship be-
tween variant frequency and effect size underpinning genetic
covariances and to determine whether allelic effects on individ-
ual traits are predictive of the multivariate distribution of their
effects across many traits.

To address these aims, we use high-dimensional Bayesian Sparse
Factor Genetic (BSFG) modeling (Runcie and Mukherjee 2013) to in-
terrogate the distribution of standing genetic variance in 2 unrelated
datasets, one from Drosophila serrata (Allen et al. 2013; McGuigan,
Collet, McGraw et al. 2014) and one from Drosophila melanogaster
(Ayroles et al. 2009; Runcie and Mukherjee 2013). Separately for each
species, we conduct analyses on datasets composed of 3,385 gene
expression traits measured for each of 30 inbred lines, capturing
standing genetic variance in the traits in the natural population
from which flies were sampled. In both D. serrata and D. melanogaster,
we confirm previous inferences of substantial genetic covariance of
these gene expression traits (Ayroles et al. 2009; Runcie and
Mukherjee 2013; Blows et al. 2015). We then investigate the distribu-
tions of this pervasive covariance using the heritable factor values
estimated by the BSFG model. In both species, these analyses pro-
vide evidence that the standing genetic covariance of expression
traits is largely determined by rare genetic variants of large effect.

Methods
Drosophila serrata dataset
A set of 30 highly inbred lines were derived by 15 generations of
full-sib mating from a natural D. serrata population in Brisbane,
Queensland, Australia, as detailed in Allen et al. (2013). Gene ex-
pression was measured for 2 biological replicates of males from
each line (i.e. 60 samples in total), using a microarray approach
(Allen et al. 2013). An earlier attempt at a high-dimensional analy-
sis of these data was statistically limited to consider only one
multivariate axis of trait variation (Blows et al. 2015). We now use
Runcie and Mukherjee’s (2013) BSFG modeling to characterize ge-
netic covariance more comprehensively in these data. We focus
our analysis to a subset of 3,385 traits previously characterized
for a different set of D. serrata lines (Hine et al. 2018).

Drosophila melanogaster dataset
A set of 40 highly inbred lines were derived by 20 generations of
full-sib mating from a natural D. melanogaster population in Raleigh,
North Carolina, United States, and gene expression characterized as
detailed in Ayroles et al. (2009). These lines are a subset of the
Drosophila melanogaster Genetic Reference Panel, DGRP (Mackay et al.
2012). To facilitate comparability of the D. serrata and D. mela-
nogaster datasets, we took a random subset of 30 of these D. mela-
nogaster lines (sampling both biological replicates per line), and a
random subset of 3,385 of the 10,096 genetically variable gene ex-
pression traits. We analyzed data for males only (as in D. serrata).
The previous analysis of these data indicated strong patterns of ge-
netic covariance among expression traits (Ayroles et al. 2009; Stone
and Ayroles 2009). Runcie and Mukherjee (2013) previously sub-
jected a much smaller subset (414) of these traits, implicated as be-
ing involved in competitive fitness, to BSFG modeling.

Data distributions
As detailed in the original publications (Ayroles et al. 2009; Allen
et al. 2013), expression was quantified using multiple probes per
gene, and we follow the original authors in analyzing the median
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expression of these probes (i.e. one estimate per gene). The D. mel-
anogaster was log2 transformed (Ayroles et al. 2009), while the D.
serrata median expression was on a log10 scale as in McGuigan,
Collet, McGraw et al. (2014). The BSFG model (Runcie and
Mukherjee 2013) (detailed below) was fit to z-scores (i.e. the trait
mean was subtracted from the observation, and these centered
values were divided by the trait-specific standard deviation).
Before fitting the model, we investigate the distribution of these
data and consider them on both this z-score (SD) scale and on the
IQR scale (i.e. the trait median was subtracted, and these cen-
tered observations divided by the trait-specific IQR). On each
scale, we consider the distribution of both phenotypic and genetic
(line-mean) trait values. We compared the observed data to sim-
ulated data, generated by independently sampling 3,385 sets of
60 values from a normal distribution using the rnorm function in
R (R Core Team 2021). The simulated data were centered and
scaled with respect to their trait-specific means or medians and
SD or IQR.

For each dataset and scale, we pooled the 203,100 scaled val-
ues (or the 101,550 scaled line means) across traits, then plotted
the sorted pooled observed values against the sorted pooled val-
ues from the simulated data (Fig. 1). The observed data of both
species were largely consistent with a normal distribution, with
94.2–95.4% of the observed values falling within the middle 95%
of the simulated values (Fig. 1). However, the �5% of trait values
in the tails of the distributions were of larger absolute magnitude
than expected for normally distributed data (Fig. 1). These char-
acteristics of our data are consistent with general trends for gene
expression data: Liu et al. (2019) reported that while most of 100
GEO or NCBI gene expression datasets from 20 species were nor-
mally distributed, many followed a t-distribution, which is simi-
lar to the normal distribution but with heavier tails (i.e. extreme
values occur more frequently). We further consider the distribu-
tion of the data below, after outlining the analyses.

Statistical analysis
We employed the BSFG model described by Runcie and
Mukherjee (2013) to partition the variance among and within
lines. Briefly, this approach aims to overcome the twin challenges
of analyzing phenotypic data when the number of traits is large,
and the partitioning of that phenotypic variation to genetic and
environmental sources. This analytical tractability is achieved by
assuming that the genetic covariance matrix, G, is modular and
of low rank (i.e. sparse). This assumption is consistent with pub-
lished estimates of G from a range of taxa and traits that suggest
both modularity (Wagner and Zhang 2011) and reduced rank
(Blows and McGuigan 2015) are common characteristics of G.
Gene expression traits, because they are functionally connected
through regulatory networks (Davidson and Levin 2005), may be
expected to be particularly characterized by modularity and low
dimensionality.

The BSFG analysis is founded in the classical linear mixed
model that partitions observed phenotypic variation to genetic
and nongenetic sources. Here, the linear mixed model, fit sepa-
rately to the D. serrata and to the D. melanogaster data, is:

Y ¼ XBþ ZUþ E; (1)

where Y is the 60 � 3,385 matrix of observations for the 60 (30
lines by 2 replicates) measures of the 3,385 gene expression traits;
X is the 60 � 1 incidence matrix relating observations to the fixed
effect of trait means where B is the 1 � 3,385 matrix of trait
means; Z is the 60 � 30 incidence matrix relating the 2 replicates

per line to their respective line; U is the 30 � 3,385 matrix such
that uit is the mean effect of line i on trait t; and E is the 60 �
3,385 matrix of deviations of the replicates from their line mean,
such that eijt is the effect of replicate j of line i on trait t.

The random effects of genotype (line) and replicate (reflecting
microenvironment and measurement error), U and E, are as-
sumed to follow multivariate normal distributions:

ui: � MVN3385ð0;GÞ (2)
eij: � MVN3385ð0;RÞ; (3)

where the genetic (G) and replicate (R) variance–covariance ma-
trices sum to give P, the phenotypic variance–covariance matrix:

P ¼ Gþ R: (4)

In the BSFG model, common and specific components of phe-
notypic (co)variance are estimated by modeling P as:

P ¼ KKT þW; (5)

where K is the 3,385 � k matrix whose columns form the k pre-
dicted latent factors underlying the phenotypic variance and W is
the diagonal matrix containing the 3,385 trait-specific variances.

In the BSFG algorithm, the value of k is free to vary from one it-
eration of the Gibbs sampler to the next, unless otherwise speci-
fied. For computational efficiency, we constrain the model to
estimate at most 59 factors; this number corresponds to the maxi-
mum number of nonzero eigenvalues in an orthogonal decomposi-
tion of a covariance matrix of 60 observations per trait. BSFG
analysis is not well suited to estimating the true number of inde-
pendent latent traits in the data (i.e. the true value of k), and is in-
stead primed to provide robust estimates of latent factors with the
greatest influence on the total phenotypic variation (Runcie and
Mukherjee 2013). Underlying this treatment of k is the “infinite fac-
tor model” of Bhattacharya and Dunson (2011), which allows k to
be infinite but forces the variances of loadings of higher-order fac-
tors to stochastically decrease toward zero. A related approach as
proposed by Knowles and Ghahramani (2011) is to allow k to be in-
finite but enforce that the proportion of elements of each vector of
trait loadings stochastically increases. Both approaches allow trun-
cation of higher-order factors for computational convenience with-
out compromising model fit and permit simpler computational
algorithms for model inference.

A second point of difference between BSFG and other mixed-
effect factor models, which increases the biological interpretabil-
ity of BSFG estimates, is that the factors estimated in the BSFG
are not constrained to be orthogonal. Instead, each trait loading
is modeled directly under the sparsity prior (Supplementary
Table 1), allowing interpretation of the biological modules under-
lying the estimated factors (Runcie and Mukherjee 2013).

The common (i.e. KKT) and specific (i.e. W) components of P
can each be partitioned into genetic and nongenetic components:

G ¼ KKh2 KT þ RWh2 W (6)

R ¼ KðIk � RKh2 ÞKT þ ðIp � RWh2 ÞW; (7)

where RKh2 is the k � k diagonal matrix of latent factor heritabil-
ities, RWh2 is the 3,385 � 3,385 diagonal matrix containing herit-
abilities of the specific variances, and Ik and Ip are identity
matrices of size k and p, respectively. A summary of the outlined
parameters can be found in Table 1, and the prior distributions
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they were modeled under in Supplementary Table 1. As detailed

above, the BSFG analysis was implemented on variance-

standardized data, which allowed us to interpret each squared

trait loading, k2
ij, as approximately the proportion of phenotypic

variance in trait i that can be explained by factor j.

Convergence diagnostics
To determine whether the model had converged, we considered

autocorrelation across posterior samples for each estimated pa-

rameter. Approximately 1.5% of the trait loading estimates were

associated with posterior autocorrelations exceeding 0.1.

However, we were satisfied that the model had achieved a suffi-

cient degree of convergence to proceed with interpretation, as

posterior means for trait loadings and latent trait values were

largely unchanged between sets of posterior samples taken after

a burn-in period of 1,000,000 or 2,000,000 samples, as well as a

previous implementation of the model in MATLAB (not shown).

Significance testing
To determine statistical significance of the latent factors and

their heritabilities, we used the local false sign rate (LFSR) ap-

proach with an average error rate of 1%, as described in Hine et al.

(2018; Table 1). We tested the significance of the factors via the

trait loadings (Table 1) and considered a factor to be statistically

supported when at least 2 trait loadings were statistically signifi-

cant. To test whether the heritability estimate of a factor was sig-

nificantly greater than zero, we again used an LFSR test, and

error rate correction (Table 1), but imposed additional require-

ments due to the potential for spurious associations in these data

(randomization analysis, detailed below).

Fig. 1. Quantile–quantile plots of observed data vs simulated normally distributed data. For each dataset (D. serrata, left column and D. melanogaster,
right column) each individual gene expression trait was centered and scaled to its own mean and standard deviation (SD scale, top row) or median and
IQR (scale, bottom row). All 201,300 phenotypic (grey) or 101,550 genetic (black) values were then pooled and sorted. On both scales, the distributions of
the middle 95% of values were in close agreement between the observed data (y-axis) and simulated normal data (x-axis). Horizontal (vertical) lines
demarcate 2.5–97.5% of the observed (simulated) data; these quantiles were indistinguishable between phenotypic (solid grey lines) and genotypic
(dotted black lines) values. Dashed grey lines demarcate 63 units on either scale; on the SD scale this corresponds to a common threshold for
identifying outliers, and on the IQR scale is the threshold used in the current study to identify extreme values.
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Identification of outlier lines
Other studies investigating the relationship between allelic effect
size and frequency have defined effect size quantitatively (e.g. as
the rank: Kremling et al. 2018), or qualitatively by defining outlier
genetic variants based on a threshold z-score (reviewed in
Table 1 of Richter et al. 2019). As outlined above, BSFG analyses
were conducted on z-scores. However, we observed that when
multiple visibly extreme values were present for a given trait, the
inflation of variance due to the most extreme value sometimes
resulted in z-scores of less extreme (but still visibly outlying) val-
ues falling within 63 SD, a common threshold for identifying out-
liers. To ensure that we were capturing all extreme values in our

identification of outliers, we instead quantified effect size in units
of IQR from the trait- (or factor-) specific median (Fig. 1) and in-

terrogated the distributions of individual gene expression traits
and latent traits on this IQR scale. As noted above, the majority

of the observed trait values closely match normally distributed

data on both the z-score and IQR scales, but the deviation of the
tails is more pronounced on the IQR scale (Fig. 1), facilitating

identification of extreme observations.
For individual gene expression trait measurements

(Supplementary Table 2), and for latent trait values from the BSFG

model (Supplementary Figs. 1 and 2), we characterized a line as an

outlier if each of 3 criteria were satisfied (Table 1). First, the mean of

Table 1. Description of datasets and summary of estimated and derived parameters.

Category Term and description/relation to model

Types of data Observed data: The n¼ 60 observations of the p¼ 3,385 expression traits, appearing in the model as the n � p ma-
trix Y. There are 2 observed datasets, one for each species.

Randomized data: The 100 permutations of the observed data. For each randomized dataset, the 30 pairs of
observations (2 replicates per line) per trait were shuffled independently for each trait, randomly reassigning
the replicate measurements per line. This retains the distributions of phenotypic and genotypic values for
each trait, whereas covariance between traits is the result of sampling error and not biologically meaningful.

Simulated data: We sampled 3,385 sets of 60 values from a normal distribution. These data are presented in
Fig. 1 only.

Adjusted data: The remaining trait value, Yspecific, after accounting for the predicted contribution of the latent
traits (FKT) on the observed gene expression phenotypes (Y): Yspecific ¼ Y—FKT.

Estimated parameters Latent factors: The columns of the p x k matrix K.

Latent trait values: The n � k matrix F contains the predicted latent trait values for each sample such that the n
� p data matrix Y can be expressed in terms of common and specific contributions to each phenotype:
Y¼Ycommon þ Yspecific, where Ycommon¼FKT.

Trait loadings: The individual elements of K such that kij represents the effect of the jth factor on the ith trait.
Factor heritability: The heritability of latent trait j forms the jth diagonal element of the k � k diagonal matrix

RKh2 .

Specific variance: Represented in the model by the parameter W, the diagonal matrix with p diagonal elements
corresponding to the specific variances of the p traits. In this study, the focus is not on W per se. Instead, we
examine the adjusted data to determine to what extent the latent factors account for the extreme values in
the observed gene expression phenotypes.

Specific heritability: Represented in the model by the parameter RWh2 , the diagonal matrix containing the herit-
abilities corresponding to the p specific variances. Again, this parameter was not a focus of our investiga-
tions; we instead compare the frequency of outlier lines between the observed and adjusted data.

Significance testing LFSR: Analogous to a P-value, the probability of assigning the incorrect sign to an estimate.
For trait loadings, this was the proportion of posterior samples of the trait loading that were equal to zero, or
on the other side of zero from the median of the posterior samples.
For factor heritabilities, which were constrained to be non-negative, this was calculated as the number of
posterior samples equal to zero.

Average error rate (s): Analogous to Storey’s q-value (Storey 2003; Stephens 2017). The relevant set of LFSRs (e.g.
for the p trait loadings within a factor or the k factor heritabilities) is sorted in ascending order in a vector x,
where the jth unsorted LFSR corresponds to xi. The average error rate for the jth estimate in the set is then
sj ¼ 1

i

Pi

1
xi.

Number of significant trait loadings (ntt): For a given factor, the number of trait loadings that are significant at
s< 0.005 (2-tailed test as loadings can be positive or negative).

Statistically supported factors: Columns of K with ntt � 2.

Heritable factor: A factor with heritability significant at s< 0.01 (1-tailed test as variances cannot be negative).

Data interrogation Extreme values: Values more than 3 trait-specific IQRs from the trait-specific median.

Outlier line: For a given observed or latent trait, a line that meets 3 criteria: (1) the mean of its 2 replicate meas-
urements exceeds 3 IQR from the median of the 30 lines; (2) both replicates of the line exceed 3 IQR from the
median of the 60 observations per trait; and (3) both replicates deviate in the same direction from the me-
dian.

Number of significantly loading traits with outlier lines (not): For a given factor, the number of traits that load signifi-
cantly onto the factor and are associated with one or more outlier lines.

Prior distributions corresponding to the estimated parameters can be found in Supplementary Table 1.
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the 2 replicate values per line was greater than 3 IQR from the me-
dian of the 30 line means for that trait. Second, both replicate val-
ues per line were greater than 3 IQR from the median of the 60
values for that trait. Third, line replicate values were extreme devi-
ates in a consistent direction (i.e. both replicates of the line fell on
the same side of the median). The second and third criteria ensured
that we were uncovering extreme genetic variants, not extreme val-
ues generated by spurious microenvironmental or technical effects
on some individuals.

Determination of spurious patterns through data
randomizations
For datasets such as ours, where the number of variables (3,385)
is far greater than the number of objects measured per variable
(60 samples), random correlations among variables are expected
to be common (e.g. Johnstone 2001). To help assess the biological
relevance of the estimated factors, we implemented the BSFG
model on randomized versions of the data from each species.
Specifically, we shuffled the observations independently for each
trait, randomly reassigning the pair of replicate measurements
per line, and retained 100 such randomized datasets per species.
This randomization approach retains the exact distributions and
heritability of individual traits while generating a null genetic co-
variance among traits. That is, the randomization simulates data

in which the true K in equation (6) is zero, allowing us to charac-
terize the effect of sampling error on the estimation of K. Here,
we focus on the effect of sampling error on genetic, rather than
phenotypic, covariance. This is a conservative approach as, by
retaining replicate pairs within each line, we inflate the potential
for heritable covariance above that occurring if replicates were
randomly assigned to a line.

As anticipated, sampling error generated spurious genetic cor-
relations among traits (Fig. 2; Supplementary Table 3), resulting
in factors that were significantly, but spuriously, heritable in the
randomized datasets. These patterns reflect the substantial op-
portunity for sampling error within these data (with �112 times
more traits than independent genetic observations per trait), but
also the inherent biology in the data. Many expression traits had
at least one outlier line (Supplementary Table 2). As a result, ran-
dom shuffling of traits could result relatively frequently in a ran-
dom “line” having extreme values of multiple expression traits,
causing substantial pairwise line-mean correlations, and signifi-
cantly heritable factors.

Notably, there were 10 (D. serrata) or 20 (D. melanogaster) times
as many large pairwise correlations (i.e. jrj > 0.5) in the observed
data than the randomized datasets (Fig. 2, Supplementary Table
3). The randomized and observed data also differed in the median
pairwise genetic correlation, which was zero for the randomized

Fig. 2. Distributions of the 5,727,420 pairwise genetic (line-mean) correlations of gene expression traits in observed and randomized data for D. serrata
(left) and D. melanogaster (right). Genetic correlations for the observed (randomized) data correspond to white bars above (below) y¼ 0. The frequencies
shown for the randomized datasets are averaged across the 100 datasets. Grey bars show the difference in frequency between the observed and
randomized data [i.e. above (below) y¼0 indicate inflation (deflation) in the observed relative to the randomized]. Vertical lines indicate the quantiles
0.005, 0.025, 0.500, 0.975, and 0.995 for the observed (dotted black lines) and randomized (dashed grey lines) datasets.
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data, but positive for the observed data; this was reflected in the
greater deviation of observed data above random expectation for
positive correlations (Fig. 2; Supplementary Table 3). Because the
individual trait distributions are identical between the observed
and randomized datasets, the greater frequency of higher magni-
tude correlations in the observed data demonstrates that a sub-
stantial amount of covariance in the observed data reflects
biological signal above that generated by random cosampling of
genotypes. We therefore established criteria based on associa-
tions between data parameters to allow us to identify factors in
the observed data that were capturing more than spurious asso-
ciations among traits.

In each species, we observed a linear relationship between the
total number of significant trait loadings (ntt; Table 1) and how
many of those significantly loading traits had at least one outlier
line (not; Table 1; Supplementary Fig. 3). This pattern is consistent
with the expectation that the biological signal in the data (outlier
lines for individual traits) could result in the estimation of herita-
ble factors that merely reflect chance covariance arising from
cosampling of extreme values. We used ntt and its observed rela-
tionship with not to assess whether observed heritable factors
were likely to reflect biological signal. First, we considered any
observed heritable factor to reflect biological signal if its ntt

exceeded the maximum ntt across species-specific randomized
data heritable factors. Most (29 of 35) D. serrata heritable factors
but only 4 of 42 D. melanogaster heritable factors were retained for
further analysis based on this criterion (Supplementary Tables 4
and 5). Second, for observed heritable factors that did not meet
the first criterion, we considered the relative number of not given
ntt. Specifically, we compared each observed heritable factor to
the subset of randomized data heritable factors with the same
ntt. If the observed not fell outside the 95% range for randomized
heritable factors with the same ntt, we retained it for further in-
vestigation. A further 3 D. serrata and 18 D. melanogaster heritable
factors were retained based on this second criterion
(Supplementary Fig. 3). The remaining heritable factors were not
considered further, as their trait compositions were not distin-
guishable from those of randomized data heritable factors.

Imposed directionality of latent traits
Like an eigenvector, the direction of each factor (column of K) is
arbitrary. To aid interpretation of the latent traits, we imposed di-
rectionality on each factor by multiplying its trait loadings and
latent trait values by the sign of its mean trait loading (i.e. by þ1
or �1, depending on whether the average loading was positive or
negative). This allowed us to investigate whether extreme var-
iants were more likely to be associated with an overall increase
or decrease in gene expression across the variance-standardized
traits significantly affected by the latent factor.

Investigating potential causes of covariation in
expression
Genetic covariance in gene expression, as with other traits, can
arise due to pleiotropy or linkage. Pleiotropic loci affecting ex-
pression of large numbers of genes (e.g. Wang et al. 2010;
Lukowski et al. 2017) have been identified, and as such it is plausi-
ble that heritable factors reflect among-line allelic divergence at
pleiotropic loci. However, the experimental data analyzed here
cannot directly determine the genetic variant(s) responsible for
the coexpression revealed by the BSFG, and thus whether pleiot-
ropy is responsible. We can further address the alternative hy-
pothesis that genes coassociated with a heritable factor are

colocalized in the genome, reflecting physical linkage disequilib-
rium.

Allen et al. (2013) mapped 95% of all expressed sequence tags
(ESTs) on the D. serrata microarray analyzed here to D. mela-
nogaster chromosomes. Subsequent publication of the D. serrata
genome assembly (available on NCBI: BioProject: PRJNA355616;
Allen et al. 2017) was consistent with the previous inference of
strong gene location conservation between D. serrata and D. mela-
nogaster (Stocker et al. 2012). A more recent scaffolding using
DovetailTM Hi-C technology (Dovetail Genomics) greatly im-
proved the contiguity of the assembly from an N50 of just under
1 Mb (Allen et al. 2017) to an N50 of 30.3 Mb (Allen S, personal
communication). Chromosome locations of the constructed scaf-
folds were determined based on 78 physical and linkage markers
with known chromosome location (as identified by Stocker et al.
2012).

We queried the sequences of the 3,385 ESTs against the scaf-
folded D. serrata reference using the default settings in BLASTN
(version 2.2.27þ; Altschul et al. 1990). This resulted in 94% of the
ESTs mapping to the chromosomes X, 2L, 2R, 3L, and 3R, which
were, respectively, associated with 446, 545, 683, 688, and 817
ESTs. ESTs that did not successfully align with the reference ge-
nome were categorized as “other,” and are likely to have been de-
rived from genes on chromosomes 4 or Y. We assumed the
frequencies with which ESTS mapped to chromosomes were rep-
resentative of an underlying multinomial distribution and used
chi-square tests to determine whether subsets of ESTs corre-
sponding to each heritable factor were distributed nonrandomly
across chromosomes.

To investigate the potential role of linkage disequilibrium in
the identification of D. melanogaster heritable factors, we focused
specifically on the inversions that have been identified for these
lines (Huang et al. 2014). Inversion genotypes (downloaded from:
http://dgrp2.gnets.ncsu.edu/data.html) were available for 29 of
the 30 lines analyzed here. Across these 29 lines, 5 known inver-
sions were segregating, present as 1 or 2 copies across 11 lines (in-
cluding one line carrying 2 inversions). Two of the 5 inversions,
In(2L)t and In(3R)Mo, are associated with variation in the expres-
sion levels of hundreds of genes (Lavington and Kern 2017). Here,
we were particularly interested in whether large changes in gene
expression (i.e. heritable factors with outliers) could be attributed
to the presence of any of these inversions.

Investigating differentiation in genetic roles of
different classes of heritable factor
We conducted functional enrichment analyses on the subsets of
genes represented by heritable factors. For D. melanogaster, we
used FlyBase Gene IDs corresponding to the Affymetrix probe set
IDs as listed on the Gene Expression Omnibus (accession number
GPL1322). Of the 3,385 probe sets analyzed, 3,119 were associated
with a single FlyBase Gene ID (110 had none, while the 156 probe
sets associated with multiple FlyBase Gene IDs were also omit-
ted). For D. serrata, we used FlyBase gene IDs corresponding to
orthologs in D. melanogaster of the D. serrata transcript-level cod-
ing sequence, matched to D. serrata ESTs using BLASTN (default
settings, version 2.2.27þ; Altschul et al. 1990). Orthologs were
assigned using OrthoDB (Kriventseva et al. 2019). Transcript-level
coding sequence was extracted from the annotation GFF file at
NCBI D. serrata Annotation Release 100 (https://www.ncbi.nlm.
nih.gov/genome/annotation_euk/Drosophila_serrata/100/) using
GffRead (Pertea and Pertea 2020). At least one ortholog was iden-
tified for 2,486 of the 3,385 D. serrata ESTs, including 5 ESTs with
multiple orthologs and 90 orthologs that were represented by
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between 2 and 4 ESTs, resulting in 2,154 unique D. melanogaster
orthologs. Enrichment analyses were conducted using the gost
function in the gprofiler2 R package (Raudvere et al. 2019) using
the false discovery rate method of multiple testing correction
with a threshold of 0.05. Queries were made against annotated
genes from custom backgrounds corresponding to the 3,119 (D.
melanogaster) or 2,154 (D. serrata) FlyBase Gene IDs. Limiting the
background to only the genes that could have been in the gene
set of interest reduces the probability of detecting significant en-
richment where there is none (Timmons et al. 2015). We imple-
mented semantic similarity analysis on any identified enriched
terms for each heritable factor using the R package GOSemSim
(Yu et al. 2010).

Results
The BSFG analysis returned evidence consistent with previous
analyses of these data, namely that a substantial portion of the
variation in expression was shared among traits, not trait spe-
cific. In D. serrata, all 59 (i.e. the maximum specified) factors were
statistically supported, collectively explaining 59% of the total
phenotypic variance in the 3,385 expression traits, while in D. mel-
anogaster 39% of the phenotypic variance was explained by 47 sta-
tistically supported factors. We assessed the effect of these latent
traits on the distribution of gene expression phenotypes and, in
particular, whether the observed extreme gene expression values
(Fig. 1) were accounted for by shared variation (i.e. these factors)
or instead reflected trait-specific effects. To do this, we adjusted
the observed data by subtracting the predicted contribution of
the latent traits to the observed traits (Table 1), and centered and
scaled these adjusted values by their trait-specific medians and
IQR. Comparing the IQR-scaled outlier-line traits before and after
fitting the BSFG model (Fig. 3, top row), we found that there were
approximately 62% (74%) fewer extreme values in the adjusted
data in D. serrata (D. melanogaster). That is, latent factors contrib-
uted more than trait-specific effects did to extreme values in the
data.

In D. serrata and D. melanogaster, respectively, 32 and 22 of the
latent factors were significantly heritable and met the additional
criteria from the randomization analysis (Supplementary Fig. 3).
In D. serrata, heritability estimates for these heritable factors
ranged from 0.33 to 0.99 (Supplementary Fig. 1), with individual
heritable factors significantly influencing between 4 and 483
traits (Supplementary Table 4). In D. melanogaster, factor herita-
bility similarly ranged from 0.30 to 0.99 (Supplementary Fig. 2)
with between 5 and 549 traits significantly influenced by a herita-
ble latent factor (Supplementary Table 5). We assessed the effect
of the heritable latent traits on the distribution of genotypic val-
ues for the gene expression traits. Comparing the IQR-scaled ge-
notypic values of outlier-line traits before and after fitting the
BSFG model (Fig. 3, bottom row), we found that a 92% (D. serrata)
or 94% (D. melanogaster) reduction in extreme genotypic values af-
ter model fit. This suggests that the majority of extreme geno-
typic values may arise via processes affecting multiple traits.

Inspection of the distributions of genotypic values for each of
the 32 D. serrata and 22 D. melanogaster latent factors for which
heritability was statistically supported revealed patterns that
suggested only some of the heritable factors may contribute to
the extreme genotypic values. For 7 (22%) and 11 (50%) of the her-
itable factors in D. serrata and D. melanogaster, respectively, there
were no outlier lines (Supplementary Figs. 1 and 2; e.g. Fig. 4, top
left). For the other 25 (78%) and 11 (50%) heritable factors in D.
serrata and D. melanogaster, respectively, there was at least one

outlier line (Supplementary Figs. 1 and 2; Fig. 4, center and bot-
tom left). Every D. serrata line was an outlier for at least one heri-
table factor, while 8 lines were extreme for 2 and 1 line was
extreme for 3 heritable factors, resulting in 40 outlier line values
(4.2%) across the 960 (30 lines � 32 heritable factors) latent trait
values (Supplementary Fig. 1). Most (14) of these 25 heritable fac-
tors with extreme values had only one outlier line
(Supplementary Fig. 1; e.g. Fig. 4, center left), but some had 2 or 3
(7 and 4 heritable factors, respectively; Supplementary Fig. 1; e.g.
Fig. 4, bottom left). In D. melanogaster, there were 11 extreme val-
ues (1.7%) across the 660 (30 lines � 22 heritable factors) latent
trait values, with at most a single extreme value for any given
line or heritable factor (Supplementary Fig. 2).

The joint observations that extreme trait observations
reflected trait covariance (Fig. 2) and that a subset of heritable la-
tent factors was associated with outlier values (Supplementary
Figs. 1 and 2) suggests that it is the latent factors with outlier ge-
notypic values that result in outlier genotypic values in individual
traits. We investigated this taking 2 approaches. First, we con-
firmed that heritable factors with outliers were disproportion-
ately associated with outlier line values for individual traits. Of
the 3,385 traits measured, 3.9% (D. serrata) or 6.7% (D. mela-
nogaster) had at least one outlier line (Supplementary Table 2),
with some lines deviating up to 18 (D. serrata) or 19 (D. mela-
nogaster) IQR from the median (Fig. 1). In D. serrata, 132 individual
expression traits had outlier line(s); 127 of these traits were also
associated with heritable factors with outlier line(s)
(Supplementary Table 2). Similarly for D. melanogaster, traits with
outliers were disproportionately associated with heritable factors
with outliers, although the relationship was not as definitive: for
the outlier traits associated with any heritable factor, 64.5% of
outliers were influenced by heritable factors with an outlier line,
while 20.1% were influenced by heritable factors without an out-
lier line (Supplementary Table 2; the remaining 15.4% were influ-
enced by both types of heritable factor).

Second, we investigated whether the frequency of outlier trait
values for individual lines could be predicted by the magnitude of
the latent trait value. We observed a statistically significant but
imperfect association (Fig. 5). Individual lines that were not out-
liers on a given heritable factor (grey points <3 IQR on the x-axis
in Fig. 5) rarely had outlier values of any associated individual
trait (i.e. have a value of 0 on the y-axis in Fig. 5), while lines that
were outliers for a heritable factor (colored points >3 IQR on the
x-axis in Fig. 5) tended to also be outliers for a higher proportion
of the traits influenced by that factor (higher values on y-axis in
Fig. 5).

While there was a strong association between outlier lines for
latent heritable factors and individual traits, there were also
exceptions. First, not all traits with outlier lines were accounted
for by factors (Supplementary Table 2), indicating trait-specific
genetic effects of large magnitude. Second, some traits with out-
lier lines were associated with both types of heritable factor (i.e.
with and without outlier lines; Supplementary Table 2); this is
reflected in some lines that were not outliers for a given factor
being outliers for up to 10% (D. serrata) or 20% (D. melanogaster) of
the associated individual traits (grey points with values > 0 on
the y-axis in Fig. 5). Third, most D. serrata line(s) that were outliers
for a heritable factor were outliers for only a small proportion
(<10%) of the associated individual traits (Fig. 5), suggesting that
latent factors do not consistently cause outlier values of all influ-
enced traits. To summarize, evidence from both species was con-
sistent with some latent factors with outlier line values
accounting for heritable extreme values of individual expression
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traits, although extreme values for the line on the heritable factor
did not inevitably result in all coinfluenced traits having extreme
values.

The presence or absence of outlier lines was associated with
several differences in the nature of the heritable factor. In both
species, heritable factors with outliers exhibited higher heritabil-
ity (Fig. 6, top row) and less bias in the direction of significant
loadings (Fig. 6, second row). Specifically, for heritable factors
with no outliers, most significantly loading traits were influenced
in the same direction, corresponding to an axis of variation con-
trasting lines that upregulated this set of genes with lines that
downregulated expression of all these genes, relative to the popu-
lation mean expression levels (e.g. Fig. 4, top right;
Supplementary Figs. 4 and 5). In contrast, heritable factors with

outliers exhibited a more symmetrical distribution of loadings
(e.g. Fig. 4, middle and bottom right; Supplementary Figs. 4
and 5).

The number of traits significantly influenced by a heritable
factor also significantly varied with the presence or absence of
outlier lines, but not consistently between the species. In D. ser-
rata, heritable factors with outliers had more significant loadings
(Fig. 6, left panel, 3rd row), while in D. melanogaster they had fewer
(Fig. 6, right panel, 3rd row). The average magnitude of significant
trait loadings did not differ significantly between heritable factors
with vs without outliers for either species (Fig. 6, 4th row). Thus,
where a trait was significantly influenced by a heritable factor,
the proportion of phenotypic variance in the trait attributable to
that heritable factor (approximated as the square of the trait
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loading) was, on average, not significantly different for heritable
factors with vs without outliers.

Having observed that heritable factors with outliers had signif-
icantly less bias in the direction of their individual trait loadings
(Fig. 6, 2nd row), we further investigated the distribution of the
extreme values on these factors, and the individual expression
traits they were predicted to affect. Note that the imposed trait

loading directionality (see Methods) allowed us to infer positive
(negative) extreme latent trait values to indicate an overall in-
crease (decrease) in variance-standardized gene expression when
summed across the traits significantly associated with the factor.
In the 25 heritable factors with outliers in D. serrata, 33 of the 40
outlier values deviated above the median (Fig. 7a; Supplementary
Fig. 1). No directional bias was apparent across the 11 heritable
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factors with outliers in D. melanogaster, although the most ex-
treme values deviated below the median (Fig. 7b, Supplementary
Fig. 2). In both species, there were slightly more (52%) individual
trait values deviating above than below the median (Fig. 7), where
for D. serrata more of the extreme deviations were above the me-
dian (consistent with the pattern observed for the heritable fac-
tors themselves: Fig. 7a), while in D. melanogaster the most
extreme values were biased toward decreased expression (again
consistent with the pattern for the heritable factors: Fig. 7b).

Is coexpression on heritable factors consistent
with physical linkage?
In D. serrata, we investigated whether genes coassociated with
the same heritable factor colocalized in the genome. Observed
chromosome frequencies did deviate significantly from expected
frequencies for 7 of the 32 heritable factors (Supplementary
Table 6). However, in only one case were all genes associated
with a given heritable factor colocalized to the same chromo-
some (arm): 10 traits associated with heritable factor 31 did not
map to a major chromosome, suggesting they occur on Y or 4
(Supplementary Table 6). Notably, heritable factors for which
gene colocalization was statistically supported represent both
those with extreme outlier lines (heritable factors 2, 4, 20, 22, and
23) and those without outliers (heritable factors 26 and 31;
Supplementary Table 6).

In D. melanogaster, we investigated whether colocalization of
genes within an inversion could account for the large changes in
gene expression in the lines with outlying latent trait values.
However, there was no consistent association between outlier
status and inversion karyotype for any of the heritable factors
with outliers (Supplementary Table 7). For any given inversion

and factor combination, there were either no outlier lines with
the inversion, or there was at least one representative of each
class of line (with vs without an outlier) that had one or more
copies of the inversion.

Functional characteristics of heritable factors
In D. serrata, 6 of 7 heritable factors without outliers were signifi-
cantly enriched for terms in one or more of the GO categories
(BP—biological process, CC—cellular component, and MF—mo-
lecular function; Supplementary Table 8). Heritable factor 29 was
associated with the largest number of terms, which broadly re-
lated to development. Of the 25 heritable factors with outliers,
only heritable factor 22 was significantly enriched, with 29 BP
terms relating to meiosis, and the detection of stimulus or taxis.
In D. melanogaster, of the 11 heritable factors without outliers, 10
were significantly enriched for terms in at least one of the GO cat-
egories (Supplementary Table 8). Eight of the 11 heritable factors
with outliers were significantly enriched for terms from one or
more of the BP or MF categories, while terms from the CC cate-
gory were notably absent; the overall number of enriched terms
was substantially lower for heritable factors with outliers than
those without (Supplementary Table 8; Fig. 6, bottom row). Given
the larger number of trait loadings for D. serrata heritable factors
with vs without outliers (Fig. 6), we considered whether this could
have caused the pattern of differential enrichment observed.
However, we note the numbers of genes in the focal and back-
ground lists are key parameters of the hypergeometric test, ac-
counting for differences in gene number among focal lists.
Furthermore, despite the overall mean difference in gene num-
ber, heritable factors across both classes had comparable num-
bers of genes in the analyses. For example, heritable factors 27–
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factors with at least one outlier line (Supplementary Figs. 1 and 2).
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29 (without outliers) were associated with the largest number of
enriched terms for D. serrata and had gene sets ranging in size
from 44 to 123 genes (Supplementary Table 8). Heritable factors
4–16, 18, and 19 (with outliers) all had gene set sizes within this
range but were not enriched for any terms in the GO categories
(Supplementary Table 8).

Discussion
In this study, we interrogated the multivariate distribution of ge-
netic variance in quantitative phenotypes to characterize pat-
terns of shared variation among traits. Here, we consider the
implications of these multivariate observations for the mainte-
nance of genetic variance in natural populations, focusing on
theoretical considerations of the multivariate distribution of ef-
fect sizes. For individual traits, a rare direct test of HoC over
Gaussian mutation models (Hodgins-Davis et al. 2015), along with
observations from genetic mapping studies in humans and model
taxa (Battle et al. 2014; Bloom et al. 2019), suggest rare mutations
with large fitness effects contribute strongly to the maintenance
of genetic variance. Consistent with this emerging body of evi-
dence, we also detected lines (genotypes) with extreme values for
individual gene expression traits in our analyses of datasets from
the 2 species of Drosophila. Importantly, we also observed rare, ex-
treme genotypes when examining multivariate combinations of
these individual traits.

At least half of the heritable factors observed in the 2 indepen-
dent datasets (species) had at least one extreme genotype (line),
resulting in higher heritability of these multivariate traits relative
to other multivariate traits lacking extreme genotypic values.
While extreme latent trait values typically occurred for lines
(genotypes) with a higher proportion of individual trait outliers,
individual traits could be extreme without resulting in extreme
latent trait values for the heritable factor that they were influ-
enced by, and conversely, extreme latent trait values were

observed when the heritable factor did not cause extreme values
of any individual trait (Fig. 5). Thus, the presence of rare, extreme
values for multivariate expression traits could not be simply pre-
dicted from inspection of the individual trait distributions.

Given several simplifying assumptions, we use the frequency
of these large effect variants to make some tentative observa-
tions concerning the strength of selection in the natural
Drosophila populations. First, we presume that extreme trait val-
ues are caused by single loci, where for heritable factors these
loci have pleiotropic effects. Trans-regulatory factors can influ-
ence expression of large numbers of genes (Brem et al. 2002;
Albert et al. 2018; Cesar et al. 2018), and generate extensive genetic
covariation of expression (Denver et al. 2005; Lukowski et al. 2017).
Therefore, it is plausible that the observed patterns of covariation
reflect trans-acting pleiotropic alleles. Chromosomal location of
loci, or inheritance of chromosomal inversions, were not consis-
tent with loci affected by the same heritable factor being in close
physical linkage, but nonetheless, we cannot exclude chance
sampling of extreme alleles at independent loci (and the resulting
transient linkage) as causing the covariance captured by the heri-
table factors; we further consider the nature of the heritable fac-
tors below.

Given the presumption of a single (pleiotropic) locus, and the
observation that, for most individual and latent traits, only one
extreme line was observed, we infer that alleles with (homozy-
gous) major effects were segregating in the base population at a
frequency of q� 1% (�1 in the �120 genomes sampled to found
the panel of 30 lines in these diploid species). Applying equation
(2.13) of Falconer and Mackay (1996), s ¼ l=q2 , where l is the genic
mutation rate, predicts that the strength of selection required to
maintain q at 1% was �0.01–0.1, given l of 10�5–10�6 (Lynch and
Walsh 1998). If the true q is in fact lower (higher) than our sample
suggests, s must be stronger (weaker) to maintain the allele fre-
quency, assuming l remains the same. Genomic mutation rates
are heterogeneous across the genome (Nachman and Crowell
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2000; Hodgkinson and Eyre-Walker 2011; Smith et al. 2018; Nesta
et al. 2021), and mutations with larger effects might occur more
rarely than smaller effect mutations (Mackay et al. 1992; Davies
et al. 1999; Eyre-Walker and Keightley 2007; Heilbron et al. 2014;
McGuigan, Collet, McGraw et al. 2014; Kim et al. 2017); such vari-
ability, resulting in higher (lower) genic mutation rates would
correspond to stronger (weaker) selection to maintain q � 1%.
Finally, this prediction assumes that the large-effect alleles are
recessive; if the observed outlier lines in fact carry alleles with ad-
ditive or dominant effects, then the resultant increased visibility
to selection means that selection 50–100 times weaker could
maintain alleles at 1% frequency (Falconer and Mackay 1996,
equations 2.14 and 2.15).

The predicted strength of selection (s � 0.01–0.1) detailed
above is within the range estimated for new mutations affecting
fitness traits, such as viability and fecundity, based on the ratio
of mutational to genetic variance (�0.02: Houle et al. 1996), and
consistent with the estimated average deleterious effect of het-
erozygous lethal genes in wild and laboratory Drosophila popula-
tions (�0.02: Crow and Temin 1964). The ratio of mutational to
genetic variance was also used to estimate s for smaller sets (5) of
gene expression traits in the D. serrata lines analyzed here, infer-
ring selection within the same range for 5D multivariate axes of
expression (median s¼ 0.032), but weaker selection on the indi-
vidual gene expression traits (median s¼ 0.005; McGuigan, Collet,
Allen, et al. 2014). Nonetheless, while the strength of selection in-
ferred to be required to maintain q � 1% is consistent with other
evidence, we need further information on mutation rates specific
to loci that have been characterized as large effect variants, and
on the frequency spectrum of those alleles in natural popula-
tions, to gain further insight into the mutation–selection interac-
tion underpinning extreme multivariate trait observations.

Puzzlingly, we observed that while enrichment analyses iden-
tified coexpression patterns associated with gene functions for
heritable factors without outliers, there was little evidence of
common function among heritable factors with outliers, particu-
larly in D. serrata. The 2 classes of heritable factor also differed in
the pattern of coexpression. Heritable factors lacking outliers
showed biased direction of influence on individual expression
traits, corresponding to lines with relatively high vs low expres-
sion of all affected traits. This is consistent with a previous analy-
sis of these D. serrata lines, where Blows et al. (2015) applied a
matrix-building approach to estimate a single multivariate axis
of genetic variation in expression of 8,750 expression traits. This
coexpression axis was characterized by biased direction of trait
loadings (indicating co-ordinated up-down regulation of many
genes), and was enriched for multiple GO terms related to tran-
scriptional regulation (Blows et al. 2015).

Heritable factors with outliers were less likely to be enriched
for specific functions and exhibited patterns among lines where
expression was elevated for some traits but depressed for others
(i.e. unbiased direction of loadings). There are several possible
nonexclusive explanations for these observations, which our
data cannot further distinguish among. Heritable factors with
outliers might capture gene coexpression caused by a mixture of
so-called horizontal (e.g. shared chromatin status) and vertical
(e.g. shared transcription factors) processes. Van Dyke et al. (2021)
recently demonstrated that genomic “hotspots,” containing QTL
with trans-effects on multiple expression traits (eQTL) cause coor-
dinated changes in expression of functionally unrelated genes via
horizontal mechanisms. Second, the observed pattern (large phe-
notypic effect, apparently unrelated function) of heritable factors
with outliers could reflect extreme values of pleiotropic effects.

The distribution of effects of pleiotropic alleles across multiple
traits is largely unknown, but might be expected to include alleles
with very weak effects on some trait(s) (Hill and Zhang 2012;
Paaby and Rockman 2013); the heritable factor outlier patterns
observed in this study could reflect rare pleiotropic alleles, with
effects in the extreme tails of the distribution of joint effects.
Alleles with such extreme pleiotropic effects might be selectively
eliminated, or subject to epistatic modification to limit the range
of biological processes influenced. Thus, a third plausible expla-
nation of these data is that epistatic effects on gene expression
might generate large phenotypic outliers through sampling
effects (chance segregation within a single line of an unusual
combination of alleles across physically unlinked loci), or, as sug-
gested by Mackay (2014), the presence of recent mutation (i.e.
rare allele) for which the population has yet to evolve epistatic
amelioration of effects.

Quantitative genetic theories of the maintenance of genetic
variance that incorporate indirect (apparent) stabilizing selection
assume that mutations have directionally biased effects on fit-
ness itself (decreasing it), but that the pleiotropic effects of those
mutations on other traits are unbiased, equally frequently in-
creasing as decreasing trait values (Barton 1990; Kondrashov and
Turelli 1992; Johnson and Barton 2005). Empirical data to assess
the assumption are sparse. For the relatively well-studied trait of
size, studies in several taxa suggest that mutations typically de-
crease body size (Keightley and Ohnishi 1998; Lynch et al. 1998;
Azevedo et al. 2002; Estes et al. 2005; Ostrow et al. 2007), with
larger effect (Santiago et al. 1992) or more deleterious (McGuigan
and Blows 2013) mutations being particularly biased. Intensive
study of mutational effects in Saccharomyces cerevisiae found that
mutations more frequently increased than decreased expression
of 2 of the 10 genes studied, while a third gene exhibited the op-
posite bias, with more mutations decreasing expression
(Hodgins-Davis et al. 2019). Thus, directional bias of mutational
effects might be more prevalent than appreciated. Here, in D. ser-
rata, for heritable factors with outliers (and to a lesser extent for
the individual traits influenced by these factors), expression was
biased upward; the question of emergent strong bias in the multi-
variate distribution of phenotypic effects warrants further inves-
tigation.

Conclusions
Resolution of theory predicting the maintenance of genetic varia-
tion for quantitative phenotypes depends on better insight into
the distributions of (pleiotropic) allelic effects on multiple traits
and fitness. Widespread availability of data on many expression
traits from the same genotypes provides a particularly powerful
system for investigating shared variation among high-
dimensional phenotypes, while the intermediary causal nature of
expression traits, connecting genotype to more complex traits (Li
et al. 2017), adds to their appeal. Our results suggest that the
growing evidence that genetic variance might be due predomi-
nately to relatively large effect variants, consistent with HoC mu-
tation models, might extend to multivariate gene expression
phenotypes. However, it also remains to be determined whether
the simple genetic basis of the large latent factors inferred here
could be peculiar to gene expression traits, where the potential
for hierarchical control of gene regulation would lend itself to
master regulators of expression. Therefore, further investigations
of other types of traits are required to determine whether com-
plex trait covariances are typically consistent with large effect
mutation contributing strongly to standing genetic covariance.
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Data availability
The full Drosophila serrata dataset is available at the Gene

Expression Omnibus (GEO) database under accession number
GSE45801. We used the Drosophila melanogaster data as summa-

rized for the original demonstration of the BSFG presented by

Runcie and Mukherjee (2013). The subsets of 3,385 expression
traits measured in 2 replicate pools of male RNA from each of 30

lines analyzed here, for both species, along with the R code to im-
plement the BSFG analyses and generate the parameters consid-

ered in this manuscript, can be downloaded from UQ eSpace

(https://doi.org/10.48610/a3c5652).
Supplemental material is available at GENETICS online.
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