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Abstract: Microalgae have been increasingly considered as a sustainable “biofactory” with huge
potentials to fill up the current and future shortages of food and nutrition. They have become an
economically and technologically viable solution to produce a great diversity of high-value bioactive
compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and
positively affect a number of diseases, including cardiovascular and neurodegenerative disorders.
As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades.
Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and
maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as
an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and
market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the
shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the popu-
lation. This review focuses on the biosynthesis pathways and recombinant engineering approaches
that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in
heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the
food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.

Keywords: microalgae; n-3 PUFA; EPA and DHA; biosynthesis pathways; heterotrophic cultivation;
micronutrients; lipid purification; microencapsulation

1. Introduction

Microalgae are a group of multilineage and highly diverse microorganisms, rang-
ing from prokaryotic cyanobacteria to eukaryotic single-celled organisms, which grow
in freshwater and saltwater [1,2]. Additionally, these microorganisms can carry out pho-
tosynthesis, while some species are heterotrophic and can grow in an organic matrix in
a contained fermentation process. Microalgal diversity across the planet is conservative
and estimated to have over hundreds of thousands of species, but only tens of thousands
have been classified and about a hundred species have been fully studied [3–5]. Although
limited, available information shows that many high-value biomolecules are produced by
microalgae, including proteins, n-3 polyunsaturated fatty acids (PUFA), polysaccharides,
vitamins, pigments, and antioxidants. Among them, n-3 PUFA have been of great interest
because of their various nutritional and physiological values and health benefits, such as
antioxidant, antihypertensive, anti-inflammatory, immune regulation, antiviral, liver protec-
tion, neuroprotection, cardiovascular prevention, cholesterol reduction and anticancer [6].
The development of large-scale technologies for microalgae cultivation dates back to the
1960s [7]. Nowadays, microalgae have already become one of the main biological systems
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of n-3 PUFA production and the main source of n-3 PUFA for vegetarians. Compared
with terrestrial plants, microalgae have several superior characteristics, such as high yield,
short production cycle, free irrigation land, flexible metabolism, environmental protection,
etc. and thus have been recognized as “strategic crops” [8]. Some microalgal species have
been reported to produce lipids in quantities as high as 70% of their dry matter [9]. The
advantages of microalgae become more relevant today than ever before as the supply
of n-3 PUFA has encountered serious challenges as a result of an increase in the global
population, climate change, overfishing of marine species, and insufficient production of
aquaculture [10]. The current review focuses on (1) various biosynthesis pathways and
recombinant engineering approaches that can be used to manipulate microalgal growth
and produce specific n-3 PUFA, (2) growth conditions in heterotrophic cultivation and
their influences on n-3 PUFA production, (3) extraction and purification technologies, and
(4) technologies that have been applied at industrial scales to produce, process, and protect
n-3 PUFA, particularly EPA and DHA in food and dietary supplement industries.

2. Literature Search and Analysis

A comprehensive literature search was conducted by accessing several databases,
such as PubMed, ISI-Medline, and Google Scholar. The keywords were chosen based
on the key objectives of this review paper that are reflected in the title, subtitles and
contexts. The published papers including patents in the past 20 years have been mainly
selected, mirroring the time window for the knowledge creation, technology development,
industrial production and commercialization of microalgal n-3 PUFA products. A total of
352 references have been included in this review. In each section, the selected references
were summarized and analyzed to support our statements or help to explain the differences
or discrepancies between different studies. We also attempted to draw our conclusions and
point out the strengths and weaknesses, and accordingly, the areas or directions that need
to be addressed in future research and technology/product developments.

3. Characteristics of Microalgal Polyunsaturated Fatty Acids

A number of microalgal species are typically rich in fatty acids, waxes, sterols, short-
and long-chain hydrocarbons, pigments and many other biomolecules that are valuable
for human nutrition and health. One group of the most prominent biomolecules are the
PUFA-rich lipids [11,12]. There are two classes of PUFA, n-3 or n-6, depending on the
position of the first double bond from the methyl end [13,14]. n-3 PUFA are characterized
by the presence of the first double bond located at the third carbon from the methyl group,
including hexadecatrienoic acid (HTA), eicosatetraenoic acid (ETA), α-linolenic acid (ALA),
eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid
(DHA) [15]. ALA is the precursor of DHA and EPA, which are very important to human
physiological functions and health [14,16,17]. Different from n-3 PUFA, n-6 PUFA have the
first double bond positioned at the sixth carbon from the methyl group, including linoleic
acid (LA), γ-linolenic acid (GLA), and arachidonic acid (ARA) [18]. LA is the essential
n-6 fatty acid and the precursor of ARA and other longer chain n-6 PUFA. Although ALA
can be converted into longer chain n-3 PUFA in the human body, the efficiency is low and
thus the direct intake and/or supplementation of EPA and DHA have been well recognized
as an important approach to meet the nutritional requirements and maintain health.

In addition to marine sources such as fish, microalgae have been emerging as cost-
effective sources of n-3 PUFA, particularly EPA and DHA [19]. Some microalgae accumu-
late high amounts of lipids, ranging from 20% to 70% of the total dry biomass [9,20,21].
Chlorella, Spirulina, Porphyridium cruentum, Phaeodactylum tricornutum, Pavlova lutheri, and
Arthrospira platensis have been used to produce novel dietary and pharmaceutical lipid
supplements due to their high contents of n-3 PUFA [22,23]. In addition, microalgae repre-
sent the primary sources of essential fatty acids in food webs for zooplankton, fish, and
other multicellular organisms [24,25]. Fish are rich in both EPA and DHA as a result of
food web magnification of DHA from flagellates and EPA from diatoms [22,24]. In fact,
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microalgal lipids have become an effective substitute of fish oil in foods and dietary sup-
plements, providing the essential fatty acids (especially n-3 EPA and DHA) in humans
without the drawbacks associated with fish oils, such as a fishy smell, unsustainability, and
non-vegetarian nature [26].

Due to their advantages in production, environmental footprint and downstream
utilization, microalgae have been regarded as promising sources of n-3 PUFA. These
microorganisms are increasingly cultivated at industrial scales for the production of
n-3 PUFA, which is used alone or to enrich fish oil with DHA and/or EPA in a num-
ber of food and dietary applications [1,3,11]. n-3 EPA and DHA are currently used mainly
in food and dietary supplement products, especially infant formula due to limited sup-
ply [27]. However, with the ageing of the global population and increasing awareness of
the health benefits of n-3 PUFA, the consumption of n-3 PUFA has been steadily increasing
in the past few decades and will continuously rise [28–30]. Accordingly, the increase of
n-3 PUFA production using microalgae by discovering new species, developing and ap-
plying new or improved production and processing technologies has been emerging as a
strategic approach [1,31–33].

3.1. Microalgal Production of n-3 PUFA
3.1.1. Production of n-3 PUFA in Wild-Type Microalgae

Microalgae possess the potential to synthesize and accumulate a high amount of PUFA
in comparison to other biology systems that produce edible oils [12]. Generally, the carbon
chain length of fatty acids in natural microalgae is between C16 and C22; however, some
species can synthesize very-long-chain fatty acids, such as those with 24 carbons [34].
There is a large range in the content of PUFA in microalgae. It is reported that C. cohnii
accumulated 25–60% DHA [35], and EPA in Nannochloropsis oculata accounted for 49% of
the total fatty acids [36,37]. The fatty acid composition of cyanobacteria is generally simpler
and predominated by those with 16 and 18 carbons, of which the PUFA mainly include
LA (18:2∆9,12), ALA (18:3∆9,12,15), and GLA (18:3∆6,9,12) [38]. Chlorophytes (Plantae)
contain a high amount of PUFA with 18 carbons, while rhodophytes and glaucophytes are
rich in PUFA with 20 carbons, with ARA and EPA being exemplified in a study on Por-
phyridium cruentum (Porphyridiophyceae) [39]. Other studies have shown that Xanthophyceae
and Eustigmatophyceae (Chromista—Ochrophyta) are rich sources of ARA and EPA [40,41].
A small amount (less than 1%) of very-long-chain PUFA C28:7(n-6) and C28:8(n-3) were
found in the toxic dinoflagellate Karenia brevis (Dinophyceae) [41–43]. Diatoms contain high
contents of long-chain unsaturated fatty acids and have attracted the greatest attention in
fatty acid research and product development [44–46]. The fatty acid composition is princi-
pally associated with the distribution of lipid classes. In general, fatty acids C14:0, C16:0,
and C16:1 are associated with triacylglycerols, while EPA and DHA are associated with
polar lipids [47–50]. The fatty acid composition in some microalgal species is summarized
in Table 1 [12,51].

Table 1. Fatty acid composition (% of total fatty acids) of different microalgae species.

Species
14:0 16:0 16:1 18:0 18:1 18:2 18:3 20:5 EPA 22:6 DHA Total

(%DM) Ref.
% of Total Fatty Acids

Aurantiochytrium 2.9 39.8 0.5 0.5 0.1 0.4 0.5 46.7 40–55 [52,53]
Chlamydomonas reinhardtii 4–20 3.8 1–16 1–10 2–22 0–5.4 12–64 [54]
Crypthecodiniumcohnii 18 12–45 3 8 13–55 25–63 [53,55,56]
Dunaliella sp. 10–28 12–16 8–11 5.9 12–36 14–21 12–46 [36,53]
Emiliana huxleyi 18.9 10.3 10.8 19.8 9.2 [41]
Euglena gracilis 0.9 11.3 1.3 3.1 3.5 19.3 9.0 [41]
Heterococcus chodati 10.0 30.6 8.1 32.6 [41]
Nannochloropsis oculata 4.2 14–24 24–30 3–5 2.9 0–9 27–49 22–37 [36,37]
Pavlova lutheri 9.7 20.1 26.3 1.7 0.5 0.4 18.2 9.8 35 [41]
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Table 1. Cont.

Species
14:0 16:0 16:1 18:0 18:1 18:2 18:3 20:5 EPA 22:6 DHA Total

(%DM) Ref.
% of Total Fatty Acids

Phaeodactylum tricornutum 4.4 14–16 40–60 8.1 1.0 20–30 18.4 1.4 32 [57]
Scenedesmus obliquus 30.7 23.3 6–25 8–18 10–33 21–58 [58]
Schizochytrium 2–8 20–45 4.8 38.4 7.9 1.2 5–12 5–50 51–71 [53,59,60]
Thraustochytrium sp. 1.6 16.8 0.2 0.2 0.2 7.5 69 13 [52]
Tribonema vulgare 4.1 13.3 34.4 10.5 17.4 [41]
Ulkenia sp. 25–30 10–12 5–15 15–30 20–52 [52]

3.1.2. Production of PUFA in Recombinant Microalgae

The development of transcriptomic and proteomic platforms coupled with advances
in novel genetic techniques, such as CRISPR/Cas9, have nowadays provided important
tools in understanding and selecting microalgae species/strains for the production of
target compounds such as n-3 PUFA, especially EPA and DHA [61]. The production of
target fatty acids in microalgae can be enhanced using genetic manipulations that alter the
metabolic pathways of lipid anabolism and catabolism [62]. Whole genomes are available
in over 20 microalgal species, and some molecular tools can be used to improve lipid
production [63]. A few studies led to the selection of species Phaeodactylum tricornutum
and Schizochytrium sp. for improved triacylglycerol yield [64]. One genetic approach
is the target knockdown of a key gene involved in triacylglycerol catabolism [65] or by
disabling the competitive carbon metabolic pathways with starchless mutants [66]. Another
approach is the transfer of novel fatty acid biosynthesis genes from other microalgae or
microorganisms, with the directed gene up-regulation strategy being employed more
frequently. By expressing ∆5-elongase from Ostreococcus tauri and a glucose transporter
from the moss Physcomitrella patens, Phaeodactylum tricornutum produces 36.5% DHA and
23.6% EPA of the total fatty acids, making the technology highly attractive in the commercial
production of n-3 EPA and DHA [67]. Exchanging the acyltransferase gene via deletion
and replacement of the native acyltransferase with its homologue, Shewanella sp. produces
DHA and EPA at levels up to 28.8 and 2.3 g/L [68]. Disrupting the expression of the
fatty acid synthase gene combined with the overexpression of acetyl-CoA carboxylase and
diacylglycerol acyltransferase in Thraustochytrid Aurantiochytrium resulted in a high yield
of DHA, 61% of the total fatty acids [69].

Many studies have been conducted to improve the productivity of specific biomolecules
in microalgae through recombinant DNA and various genetic techniques. To date, a few
recombinant products have been successfully produced in microalgae, with the majority being
achieved in Chlamydomonas reinhardtii [11,70–73]. Moreover, these techniques are predomi-
nantly at the laboratory stage or scale; few recombinant microalga products are produced and
marketed commercially. It is apparent that research and product development in microalgae
using recombinant techniques are still at early stages and more work is warranted.

3.2. Synthetic Pathways of PUFA in Microalgae

Microalgae are highly diversified biological systems, accounting for 40% of global
photosynthesis. Because of their high contents of PUFA and wide adaptations to environ-
mental factors, they are considered to have great commercial potential [74]. Subsequently,
understanding the utilization and transformation of solar energy by microalgae becomes
a key element in studying microalgal lipid metabolism, which is of great benefit to the
industrial production of high value n-3 EPA and DHA [20].

In microalgae, sufficient acetyl-CoA should be generated or provided to maximize
PUFA synthesis. Glucose or carbon dioxide (CO2) can be used as the carbon source, which
distinguishes autotrophic, mixotrophic, and heterotrophic microalgae [75]. Glucose can be
transformed into acetyl-CoA via glycolysis, while CO2 needs to be fixed through the Calvin
cycle before glycolysis. Acetyl-CoA in microalgae has two possible fates: participating
in tricarboxylic acid (TCA) cycle or transforming to malonyl-CoA for fatty acid synthesis.
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When grown in nitrogen-rich media, microalgal cells allocate more acetyl-CoA to the
TCA cycle where an intermediate α-ketoglutarate is an essential substrate for nitrogen
assimilation [76]. As such, the nitrogen-deficient medium is more favorable to fatty acid
synthesis, where acetyl CoA carboxylase catalyzes the formation of malonyl-CoA from
acetyl-CoA [17,61].

There are two fundamentally different pathways, aerobic and anaerobic, to synthesize
PUFA in microalgae (Figure 1). The aerobic pathway is catalyzed by alternating desaturases
and elongases, with multiple desaturations and extensions. Acyl carrier protein (ACP)
transacylase transfers the malonyl group from malonyl-CoA to malonyl-ACP. Acyl-ACP
is the carbon source for chain elongation. This reaction is catalyzed by ketoacyl-ACP
synthases (KASIII, KASI, and KASII). After each condensation, a reduction, dehydration,
and second reduction occur [77]. The synthesized fatty acids undergo chain elongation
and unsaturation in the presence of elongases and desaturases, respectively, and are then
transported into the cell cytoplasm where triacylglycerols are assembled. Regarding the
synthesis of PUFA for example, EPA a palmitic acid is synthesized and elongated to a
stearic acid by adding two carbon atoms to the main chain through a reaction catalyzed by
an elongase [1]. After the introduction of two double bonds with the first double bond at
the third carbon from the methyl group, the stearic acid becomes ALA, and this process
involves a reaction catalyzed by stearoyl ACP desaturase; ALA is further transformed into
EPA through processes catalyzed by elongase and desaturase [78]. The second mechanism
of fatty acid synthesis in microalgae is the anaerobic pathway involving polyketide synthase
(PKS pathway), which requires fewer reducing equivalents and produces specific fatty acids,
such as DPA and DHA. The PKS pathway involves seven proteins, which are 3-ketoacyl
synthase, 3-ketoacyl-ACP-reductase, dehydrase, enoyl reductase, dehydratase/2-trans 3-cis
isomerase, dehydratase/2-trans, and 2-cis isomerase, with the addition of two carbons
and/or a double bond. Acetyl-CoA and malonyl-CoA as the primary building blocks do
not require in situ reduction of the intermediate because oxygen is not involved in double-
bond generation. This pathway occurs in Schizochytrium sp. and other Thraustochytrid
organisms [75,76,79].
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4. Commercial Production of PUFA Using Microalgae
4.1. Environmental Factors Influencing Microalgal PUFA Production

Microalgae interact with environmental factors to regulate the synthesis and accu-
mulation of various biomolecules, including fatty acids. These factors mainly include
light, temperature, salinity, and nutrients. In terms of nutrients, carbon, nitrogen, and
phosphorus are the most important ones, while other minerals also need to be optimal in
order to obtain a high yield and a favorable fatty acid profile of lipids.

4.1.1. Light

It is well understood that light is essential to photosynthetic organisms [80,81] and
plays a key role in microalgae growth [82]. The wavelength, intensity and duration all
influence the synthesis and accumulation of PUFA [83,84]. Generally, a high light intensity
results in a low content of PUFA in microalgae biomass. In Nannochloropsis sp., the degree
of unsaturation of fatty acids decreases with the increase in irradiance, with a threefold
decrease in the percentage of total n-3 fatty acids (from 29% down to 8% of the total fatty
acids), caused mainly by a decrease in EPA content [85]. A study demonstrated that in
Chlorella vulgaris, the increase in light intensity from 37.7 to 100.0 µmol m−2 s−1 resulted in
a decrease in PUFA from 27.4% to 21.7% of the total fatty acids, especially EPA and DHA,
which were decreased by 70% and 50%, respectively [86]. In S. piluliferum, a high light
intensity resulted in a decrease in almost all fatty acids [87]. The observed effects of light on
PUFA synthesis and accumulation in microalgae can be partly attributed to the generation
of intracellular reactive oxygen species (ROS), which increase PUFA oxidation [1]. As the
other extremity of light intensity, the effect of darkness on the lipid content and fatty acid
composition has also been studied [80,88]. For example, in green algae S. capricornutum,
dark treatment decreased the oleate content but increased the linoleate content [89].

In addition to light intensity, light wavelength also affects the synthesis and accu-
mulation of PUFA in algal cells [90]. In a study, Chlorella vulgaris, Chlorella pyrenoidosa,
Scenedesmus quadricauda and Scenedesmus obliquus were cultivated under light with differ-
ent wavelengths, and it was discovered that blue light was much more favorable to the
accumulation of LA in all four algal strains than red light [91]. It was also observed that
the ratios of n-6/n-3 PUFA in Chlorella and Scenedesmus cultured under blue light were
much lower than those grown under red light [92,93]. It was reported that ultraviolet light
induced the biosynthesis of PUFA in the acidophilic microalga Coccomyxa onubensis, and the
efficacy was dependent on the sensitivity or tolerance of microalgae [94]. The reductions
of EPA and DHA by ultraviolet were more sensitive in nutrient-deprived cells [95]. It is
apparent that the light wavelength, intensity, and duration substantially affect the synthesis
and accumulation of PUFA in microalgal cells, and optimization is critical to the maximal
production of n-3 PUFA, particularly EPA and DHA.

4.1.2. Temperature

Temperature is another important environmental factor that influences microalgae
growth, lipid content and fatty acid composition [80,96]. Temperature can be used as a
stressor to encourage the production of valuable metabolites and improve the content and
profile of PUFA in microalgae lipids [92,93,97,98]. It was found that Leptocylindrus danicus
grown at 14 ◦C yielded higher levels of PUFA than those grown at 26 ◦C [93]. The positive
effect of low temperatures on PUFA synthesis was also observed in other species, such as
Nannochloropsis salina, Isochrysis galbana, Rhodomonas salina, and Dixioniella grisea [93,97,99].

In general, higher temperatures favor cell growth while lower temperatures favor fatty
acid synthesis in microalgae [100,101]. PUFA are functional elements of algal membrane
lipids in the forms of phospholipids and glycolipids and contribute to cell-signaling and
physiological functions. Cultivation under low temperature conditions promotes the
accretion of PUFA in the cell membrane, which increases membrane fluidity [102], while
cultivation at high temperatures leads to the opposite effects [103]. The analysis of lipids
and fatty acids of microalgae cultivated under different temperatures revealed that total
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lipids accumulated at a higher rate at 30 ◦C with a slight decrease in the proportion of non-
polar lipids, while algae grown at 15 ◦C had higher contents of ALA and DHA but lower
amounts of monounsaturated and saturated fatty acids [104]. The impact of temperature
on lipid accumulation and fatty acid profiles is consistent with observations in marine
species including fish. This knowledge is highly valuable to algal cultivation targeting the
production of n-3 PUFA, EPA and DHA.

4.1.3. Salinity

Salinity in a cultivation system also influences the fatty acid profile of algal lipids [100].
For the cultivation of marine microalgae, it is necessary to simulate the salinity of the
ocean, but it is also easy to corrode the fermentation tank [1]. In freshwater microal-
gae cultivation, a high salinity level often has a negative effect on the accumulation of
PUFA [105]. A decrease in PUFA content with increasing salinity levels was observed in
Chlamydomonas reinhardtii grown in media supplemented with 0.1, 0.2, and 0.3 M NaCl, and
higher salinity (0.2 and 0.3 M) was even fatal to microalgae [106]. It was reported that the
PUFA content in Desmodesmus abundans grown in media supplemented with 20 g/L NaCl
was much lower than the control without salt supplementation [107]. It was observed that
NaCl induced an increase in ROS in Chlorococcum humicola and Chlorella vulgaris, resulting
in the increased oxidation of algal PUFA and thus lower PUFA contents [108,109]. Similar
results were observed in Microcystis aeruginosa [110]. Contrarily, a few studies showed
that salt stress may promote lipid accumulation in other microalgae [111]. For example, in
Dunaliella salina, cultivation at low-to-high salt concentrations (0.5–3.5 M NaCl) resulted in
an increased expression of β-ketoacyl-coenzyme A (CoA) synthase (Kcs), which catalyzes
the first and the rate-limiting step of fatty acid chain extension [112]. The salt-induced Kcs,
jointly with fatty acid desaturases, was thought to change fatty acid synthesis and play an
important role in the adaptation of the intracellular membrane compartments, resulting
in high internal glycerol concentrations to balance the external osmotic pressure created
by high salinity levels [112]. Preventing over-oxidation of lipids in algal cells requires
a strict control of salinity levels in culture media. This can be achieved by determining
the correlation between the salinity levels and total lipid and PUFA contents in a given
microalgal species or strain.

4.1.4. Carbon

Carbon, as a macronutrient [113], is critical to the biosynthesis of PUFA and lipids in
microalgae cells, and the sources include inorganic and organic carbons [114–116]. The in-
organic carbon required for photosynthesis can be normally obtained from the atmospheric
CO2 or from dissolved bicarbonate ions in the media [113,117]. The concentration of inor-
ganic carbon has a significant effect on the composition and content of fatty acids [60,118].
It was observed in Pavlova lutheri that when bicarbonate concentration in the medium
increased from 2 to 8 mM, the percentage of PUFA in total fatty acids increased by 5.6%,
while the total fatty acids increased by 0.8 pg/cell [119]. In Chlorella kessleri, more ALA
was produced when they were cultivated in media containing lower levels of CO2 [120]. It
was observed that unsaturation levels were higher in microalgae cultured at lower CO2
concentrations, which was attributed at least in part to the repressed fatty acid synthesis,
allowing desaturation of the pre-existing fatty acids [120]. The effect of CO2 concentration
on the content and composition in chloroplast lipids and whole cell lipids has also been
investigated in a unicellular halophilic green alga Dunaliella salina, which is known to
be susceptible to CO2 stress [121]. It was found in this study that even a one-day-long
increase in medium CO2 concentration from 2% to 10% provoked an increase in total fatty
acids by 30%. The results of this study indicate that high CO2 concentrations increase fatty
acid synthesis de novo but inhibit fatty acid elongation and desaturation. These changes
might represent an adaptation process and mechanism to ensure effective photosynthesis
of microalgae in environments with different CO2 levels.



Foods 2022, 11, 1215 8 of 33

Organic carbon sources are relatively expensive if used for microalgae fermenta-
tion [100]. Glucose is commonly used in commercial production and usually comes from
glucose syrup produced by amylase conversion of cereal or potato starches. The concentra-
tion of glucose in the fermentation media is in a range of 5–40 g/L [122]. Although glycerol
is a potential substitute of glucose, it is often associated with chemical impurities [123]. In
microalgae, both glucose and glycerol are first converted to pyruvic acid then to acetyl CoA
via the citric acid cycle, serving as the basic carbon source for lipid production [100]. Since
the metabolic pathway for the conversion of glucose to acetyl-CoA in algal cell is much
shorter than that of CO2 to acetyl-CoA, glucose might be more favorable to the synthesis of
lipids and PUFA than CO2 in microalgae [1]. This explains why the heterotrophic mode
of organic carbon source is mainly used commercially to achieve high yields of lipids and
PUFA in microalgae [124]. Different carbon sources can be selected for the production of
different compounds using microalgae cultivation and fermentation. From the perspective
of environmental protection and cost savings, inorganic carbon sources should be consid-
ered for biofuel production, while organic carbon sources may be used for the production
of higher value products, such as PUFA. It is evident that the selection of carbon source
in microalgae cultivation and fermentation depend on the final products of interest and
production systems employed [125,126].

4.1.5. Nitrogen

Similar to carbon, nitrogen for microalgae is also divided into inorganic (nitrate, nitrite,
ammonia, and molecular nitrogen) and organic (urea, degraded proteins such as yeast
extracts and soya peptones) sources [127–129]. Although inorganic nitrogen sources are rich
and economical, they lack trace minerals and other nutrients, such as vitamins. Organic ni-
trogen sources are more nutritious but more expensive [100]. A nitrogen source is important
during the first phase of algal fermentation or biomass development, where it is used for
amino acid biosynthesis. Sufficient nitrogen supply makes microalgae cells grow and accu-
mulate biomass rapidly. When the nitrogen supply is exhausted in the fermentation media,
microalgae shift their metabolisms to fatty acid synthesis from available carbon sources [3].
Photosynthesis decreased substantially under the condition of nitrogen limitation because
a smaller proportion of nitrogen-rich components were synthesized with respect to energy
storage compounds [90]. Nevertheless, studies on different microalgal species showed that
most microalgae increased lipids and PUFA productions when grown in nitrogen-deficient
media [130,131]. P. tricornutum, Nannochloropsis sp. and Chlorella pyrenoidosa have were
examined in multi-laboratories under nitrogen starvation and increases in lipid content
were observed [44,79,132–134]. Similar phenomena were seen by others in Phaeodacty-
lum tricornutum, Pavlova viridis, and Tetraselmis subcordiformis [135,136]. During nitrogen
starvation, the accumulation of triacylglycerols increased in Chlorella pyrenoidosa, paralleled
by the increase in the gene expression of acetyl-CoA carboxylase and diacylglycerol-O-
acyltransferase [124,134,137]. A study examined the effect of nitrogen starvation on the
lipid production and fatty acid profile in three microalgal species cultured at nitrogen
concentrations between 0 and 1.76 mmol/L, and found that all three microalgae had the
highest lipid accumulation when cultured at a nitrogen concentration of 0.22 mmol/L [136].
As such, nitrogen starvation is commonly used to induce PUFA accumulation in microalgae
cultivation. However, nitrogen starvation reduces the photosynthetic activity and growth
rate [64]. Therefore, it is crucial to adjust the cultivation strategy and make a trade-off
between PUFA content and biomass production rate in order to achieve a maximal yield of
target fatty acids such as n-3 EPA and DHA.

4.1.6. Phosphorus

In microalgae, phosphorus is assimilated mainly as phosphate ions, with the ability
of uptaking organic phosphorus as well [138]. Riekhof et al. showed that C. reinhardtii
reduced the concentration of phosphoglycerides when cultured under a condition of phos-
phorusstarvation [139]. In the freshwater eustigmatophyte for example, Monodus subterra-
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neus, changes in phosphate concentration caused significant changes in the fatty acid and
lipid compositions. As the phosphate concentration decreased from 175 to 52.5, 17.5 and
0 µM (K2HPO4), the percentage of PUFA and EPA in the total fatty acids decreased [140].
Phospholipid synthesis is particularly affected in the phosphorus-limited culture, thus
leading to the increased triacylglycerol accumulation [141–143]. Phosphorus-limitation in
the media led to increased lipid contents in P. tricornutum, Chaetoceros sp. and P. lutheri
but decreased lipid contents in Nannochloris atomus and Tetraselmis sp., and furthermore,
severe phosphorusstarvation resulted in higher contents of palmitate and oleate but lower
contents of stearidonic acid, EPA and DHA [144]. An increased level of PUFA in all
the individual lipids analyzed(phosphatidylcholine, phosphatidylglycerol, digalactosyl-
diacylglycerol, monogalactosyldiacylglycerol, sulphoquinovosyldiacylglycerol) has been
reported in phosphorus-starved cells of the green alga C. kessleri [145,146]. It has been
recognized that phosphatelimitation causes the replacement of membrane phospholipids
with non-phosphorus glycolipids and betaine lipids, an effective phosphate-conserving
mechanism in microalgae [147]. This natural adaptation to poor phosphorus environ-
ments is termed luxury phosphorus uptake [148]. A decrease in phosphorus concentration
changes the way of lipid synthesis, metabolism, and accumulation, similar to the effect of
nitrogen but to different extents [113].

4.1.7. Other Minerals

Micronutrients, needed in trace amounts (such as Co, Cu, Fe, Mg, Mn, Mo, and Zn),
also influence algal growth as well as lipid synthesis and metabolism since they can alter
enzyme activity [19]. However, a high concentration of trace elements is toxic [149,150].
Iron and zinc have been shown to influence triacylglycerol accumulation in Chlamy-
domonas [151,152]. In iron-starved C. reinhardtii, lipid droplets and triacylglycerols were
accumulated and an increased saturation index was noted, suggesting that the desaturase
activity was compromised [151,153]. Like iron, copper is needed for certain enzyme activi-
ties [80,154]. Magnesium, an important component of the photosynthetic apparatus, is also
critical for microalgae growth and biomass production [155,156]. Exposure to heavy metals
(Cu2+, Zn2+ and Cd2+) led to an increase in oleate and altered the percentage of linoleic acid
and stearidonic acid in S. capricornutum, and treatment with these minerals also significantly
increased fatty acid desaturation [120]. Research on the effect of microelements on the
growth and fatty acid profile has fallen behind, and more work is required to understand
the roles of these nutrients in algal growth and biosynthesis of fatty acids in microalgae.

4.2. Commercial Cultivation Systems for Microalgal PUFA Production

The growing interest in microalgae has led to a diversification of cultivation systems
tailored to different microalgal species and biomolecules [12]. Accordingly, various meth-
ods and technologies have been created for cultivating and processing microalgae for food,
feed, biofuels, and other high-value biomolecules [157–160]. Open ponds and closed pho-
tobioreactors for autotrophic cultivation along with industrial fermenters for heterotrophic
production play important roles in lipid and PUFA production using microalgae [12]. To
date, the production of high-value PUFA using microalgae is becoming available com-
mercially, whereas developing more cost-effective technologies in both cultivation and
downstream processing remain as continued challenges.

4.2.1. Photoautotrophic Cultivation

Presently, photoautotrophic cultivation is considered as the most frequently used
tactic for growing microalgae [161], which mainly includes photobioreactors and open
ponds [162]. Among them, open-pond cultivation is the oldest, most widely used, and least
complicated system. The development of this technology dates back to the 1950s [163]. A
large open system mainly consists of a raceway pond with paddle wheels (a shallow basin
lower than 0.3 m) [164,165]. This traditional method has some drawbacks, such as low
productivity, difficulty controlling the growth conditions due to seasonal changes, easy pol-
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lution by microorganisms, and insufficient light caused by mechanical stirring [12,113,166].
However, because of its low energy consumption, simple process, and easy maintenance,
open-pond cultivation is considered to be an economical system [167–169].

From the 1980s to 1990s, a closed autotrophic photobioreactor system remained as
the research hotspot of microalgae biotechnology and for the industrial production of
microalgae biomass and biomolecules of interest [170–172]. Compared with an open-pond
system, a closed photobioreactor has several advantages, such as smaller land requirement,
control of operational/growth conditions, larger surface area, high nutrient utilization rate,
and a closed environment, allowing aseptic cultures [173–175]. The close photo bioreactoris
also adaptable to different growing conditions required for different microalgae species,
even delicate species, and produce a higher purity of target products [176,177]. However,
culturing microalgae in a photobioreactor system also has some disadvantages, such as
high construction and operation costs and oxygen accumulation resulting from photosyn-
thesis. In addition, light limitation is the main factor affecting autotrophic productivity,
and the illumination in photobioreactor is not uniform. Light penetration or intensity
decreases rapidly as a result of geometric structure, system hydrodynamic properties, cell
auto-shading and the formation of biofilms [177]. In order to reduce the impact of the
obstacles attached to the traditional photoautotrophic technology, researchers have been
actively exploring new methods, such as the use of a scalable membrane photobioreactor
(SM-PBR), which was proposed to realize high-efficiency nutrient recovery for microalgal
lipid production [178]. A study showed that microalgae in the traditional photobioreactor
(T-PBR) died in two days, while microalgae in the SM-PBR grew well, with the biomass
concentration increasing from 0.10 g/L to the maximum of 2.13 g/L in ten days [179]. In
addition, an outdoor photobioreactor using fed-batch cultivation technology has been re-
ported. In this study, the microalgae Scenedesmus abundans were cultivated in five identical
airlift photobioreactors in batch and fed-batch modes. It was found that the fed-batch mode
produced higher amounts of biomass and lipids (ALA up to 14% (w/w) of the total fatty
acids) in harsh outdoor conditions [180]. A novel pyramid photo-bioreactor (PBR) was
created, which is a modified version of flat-plate PBR and consisted of four completely sep-
arated equal-volume chambers. This system uses both external and internal light sources
to improve the control of light intensity and light homogeneity, and can thus be used to
better manage the production rate of target biomolecules or biomass of a given microalgae
species [181].

4.2.2. Heterotrophic Fermentation

Heterotrophic fermentation is another microalgae culture technology commonly used
in the industrial production in which the energy is provided by organic matter [182,183].
Many microalgal species can grow on organic carbon sources such as glucose, which can
be easily absorbed and converted to acetyl-CoA and greatly improve the yield of lipids
and PUFA. At present, most vegetarians in the world obtain n-3 PUFA from microal-
gae, and the production is carried out in heterotrophic fermentation tanks. Dinophyceae,
Schizochytrium sp. and Thrustochytriaceae are the most commonly cultured and have a lipid
content of 40–60%. The lipid content of Aurantiochytrium limacinum SR21 can reach up to
84% when cultured with glucose or glycerol as a carbon source [184]. After the optimization
of growth conditions, a high content of PUFA can be produced in microalgae [185], which
can be used as an eccentric source of DHA and EPA in foods and dietary supplements.

Heterotrophic culture of microalgae can significantly increase cell mass and total
lipids [161,186]. Compared to photo autotrophy, biomass concentration can be increased
to 18 g L−1 [187] and 24 g L−1 [188], which is 30–50% of the total lipids (50 or 60 g L−1)
produced by the traditional industrial yeast fermentation [189,190]. Compared with the
autotrophic fermentation, heterotrophic fermentation accumulates 3–4 times more lipids.
Similarly, the lipid production rate of Scenedesmus obliquus in mixotrophic cultivation
(11.6–58.6%) was higher than that in the photoautotrophic cultivation (7.14%) [191]. The
mixotrophic cultivation of Chlorella vulgaris produced biomass that was 4.43 times higher
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than the photoautotrophic cultivation [192]. However, the production cost of this culture
system is very high due to the cost for maintaining sterile conditions, in addition to the
costs of organic carbon source and oxygen supply. For example, the production of 1 ton of
microalgae in a heterotrophic cultivation system requires up to 5 tons of sugar [3].

Microalgae biofilm combines the advantages of heterotrophic fermentation (high
biomass yield) and autotrophic photobioreactor (sunlight as energy source and CO2 as
carbon source) [193,194]. Biofilms can be formed with different microorganisms (bacteria,
yeasts, microalgae), which are usually known for their negative effects of biological pol-
lution and drug resistance in many applications [194]. In recent years, researchers have
found that many biofilm cultivation systems show great potential, such as constantly or
intermittently submerged and perfused systems [195]. Biofilm cultivation not only has a
higher productivity but can also be harvested by simple scraping, which can greatly reduce
energy consumption [196,197].

4.3. Harvesting and Drying of Microalgae

Harvesting is the solid–liquid separation of microalgae cells from the growth media.
Because the concentration of microalgae biomass in the culture medium is very low, it
is impossible to perform further downstream treatments, such as cell fragmentation and
oil extraction and fractionation [113]. The typically low biomass yield in microalgae
production systems imposes severe economic and energetic restrictions to harvesting and
subsequent biorefinery [12]. Therefore, the harvest of microalgae cells is the key prerequisite
operational step for the production of microalgae oil. Preconcentration and dehydration are
the main collection methods of microalgae cells. Preconcentration of microalgal cells can be
accomplished by several methods such as flocculation, centrifugation, sedimentation and
filtration, aiming to increase the initial biomass content from 0.5–1.0% to around 3% [198].
Microalgae generally carry negative charges and require positive-ion-containing flocculants
such as iron chloride and aluminum sulphate for coagulating the biomass [199]. For larger
sized filamentous microalgae such as A. platensis, the biomass can be efficiently harvested
using vibrating sieves, a relatively simple technology [200]. The representative harvesting
methods of microalgae are summarized in Table 2.

Table 2. Harvesting method of microalgae cells.

Method Description Advantage Disadvantage Example Ref.

Sedimentation

Natural gravity sedimentation relies on the
particle size of microalgae cells and the density
difference of culture environment to harvest;
suitable for large biomass and fast
sedimentation rate.

Simple;
Inexpensive

Affected by cell
morphology, not
applicable to
small-diameter and
low-density algae

The filamentous Spirulina
platensis having a
sedimentation velocity of
0.64 m/h.

[201]

The diatom Amphora having
a velocity of 2.91 m/h. [202]

Monoraphidium sp. can be
harvested after 24 h with a
yield of 98%.

[203]

Coagulation-
Flocculation

Coagulation and flocculation employ chemical
(coagulant, zeta potential and pH) or
physicochemical (e.g., hydrodynamics)
principles to promote cell aggregation and form
large particles for separation purposes

Efficient;
Inexpensive

Possible
coagulant
contamination

At high pH, Fe3+, Ca2+ and
Mg2+ induced coagulation
of C. reinhardtii at <5 mM
with >90% biomass
harvesting efficiency.

[204]

Adjusted pH to 9.5 induced
coagulation of Chaetoceros
calcitrans with 89% of cells
were harvested.

[205]
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Table 2. Cont.

Method Description Advantage Disadvantage Example Ref.

Centrifugation

Centrifugal method uses acceleration to harvest
cells. Various types of centrifugal equipment can
be used to harvest microalgae, such as spiral
plate centrifuge, decanter centrifuge, disk stack
centrifuge, and hydrocyclone.

Efficient;
No chemical
pollution

High energy
consumption;
Expensive;
Affected by algae
morphology

A low biomass harvest
efficiency of approx.
50% at 9000× g for
Helical A. platensis
filaments.

[206]

A harvest efficiency of
99.3% achieved at
3000× g for 10 min for
S. obliquus cells.

[207]

Flotation

Flotation is a method to transfer microalgae to
the surface of culture medium by introducing
bubbles (air or ozone), and then collect
microalgae by skimming.

Efficient
High energy
consumption

Using 3.8 L flotation cell
and dissolved air
flotation, the harvest
efficiency reaches 91%.

[208]

The heat-induced flotation
of Scenedesmus dimorphus
at 85 ◦C, with a harvest
efficiency around 80%.

[209]

Membrane
filtration

Membrane filtration can be employed as
dead-end or tangential flow filtration mode with
membrane pore size varied from 0.1 µm to 10
µm for microfiltration and a few nanometers to
0.1 µm for ultrafiltration membrane respectively.

Pollution-free

Easy to be corroded
by medium;
Blockages need to
be cleaned

Driven by gravity, A.
platensis cultures
collected using 5 µm
nylon membrane with
over 90% harvest rate.

[206]

In the harvesting of
Arthrospira sp. with
ceramic microfiltration
and ultrafiltration
membranes, fluxes of
230 L m−2 h−1 and
93 L m−2 h−1 reported,
respectively.

[210]

Drying

The water content of microalgae can be reduced
to 10%. There are many drying methods, such as
sun-drying, freeze-drying, oven-drying, spray
drying, and drum drying.

Lower
moisture
content;
Efficient

Long time;
High energy
consumption;
Uneconomical
(except sun drying)

Sun drying is done under
sunlight, usually at
18–27 ◦C; the efficiency is
400–1200 mmol m−2 s−1;
takes 2–3 days.

[211]

Oven drying is done
using hot air, usually at
60 ◦C, takes 12 h.

[211]

Oil is often extracted from the dry matter of microalgae [212]. To obtain dry matter,
the harvested microalgae is first concentrated by a dewatering process to contain around
25% biomass [198]. Then, different drying technologies have been used to dry the concen-
trated microalgal pastes, including spray drying, drum drying, freeze drying, sun drying,
and oven drying. Nevertheless, each method possesses its own pros and cons [213]. Freeze
drying, also known as lyophilization or cryodesiccation, has been found to be an efficient
but costly method, and oven drying consumes even more energy [12]. The choice of har-
vesting and drying methods is dependent on multiple factors, for example, the species of
microalgae, cultivation time, maintenance and suitability of cultures for commercializa-
tion [214]. To overcome the negative repercussions related to the conventional methods,
there is a large demand to develop new methods and technologies for cell harvesting and
drying [215–217].

4.4. Pretreatment of Microalgae by Cell Wall Disruption

The application of cell wall disruption in the extraction of microalgal oil depends
on the cell wall structure, which varies greatly among species [215,218–220]. Cell disrup-
tion can be achieved by physical (ultrasonication, high-pressure homogenization, bead
milling, cryogenic grinding, and pulsed electric field), chemical (acid, alkaline, and oxida-



Foods 2022, 11, 1215 13 of 33

tion), thermal (hydrothermal, and steam explosion) and biological (enzymatic treatment)
methods [221–223]. Brief descriptions of each method have been provided in Table 3.

Table 3. Overview of major microalgae cell disruption methods.

Method Description Advantage Disadvantage Ref.

Chemical Method

Hydrothermal

Hydrothermal pretreatment is based
on cell wall rupture due to internal
pressure build-up from the heating,
and hydrolysis of cell wall
components by steam explosion,
autoclave and water bath treatment.

Unrestricted moisture content;
Suitable for low value targets;
No chemical reagent;
Simple operation

High temperature may
oxidize and degrade lipids
and other bioactives;
High energy consumption

[224,225]

Acid/Alkaline
treatment

Inorganic acid or alkaline solution is
used to catalyze and promote
hydrolysis processes as an improved
version of hydrothermal
pretreatment

Efficient;
Simple operation

Enhance the
soluble chemical oxygen
demand; Degradation of
sensitive compounds

[226,227]

Oxidative pretreatment

Strong oxidant (such as ozone or
hydrogen peroxide)is used
togenerate hydroxyl radicals (OH-)
that attack and disrupt the cell walls
of microalgae.

Efficient;
Suitable for the preparation of
biofuels

Destroy highly oxidizable
compounds [228–230]

Physical method

Pressing

A mechanical force is used to
demolish the thick membrane of
microalgae and release the oil
content. Screw press, extruder, and
biomass spraying are the main
means of the mechanical pressing.

High purity of the target
products;
No chemical pollution

Require highdryness of
the biomass [231]

Bead beating
The membrane of microalgae is
disrupted by the action of
fast-moving spinning beads.

Simple equipment;
Efficient;
Wide application range

Need cooling equipment;
high temperature
destabilize target
compounds;
Emulsification of products

[232]

High-pressure
homogenization (HPH)

HPH is typically used for
emulsification but is also suitable for
a large-scale disruption of
microalgae cells.

Efficient;
High biomass concentration;
Reduction of viscosity

Product emulsification
affects subsequent
extraction

[233–235]

Ultrasonication
Highpressure bubbles and their
cavitation generate shock waves,
producing high shear forces.

Simple;
Suitable for combination with
other methods

Oxidation target product;
Affect fatty acid chain
length;
Low efficiency

[236,237]

Pulsed Electric Field

An intense electric field for very
short durations (pulses)applied to
microalgae cells to induces reversible
or irreversible pores creation
(electroporation) on the cell
membranes to aid their disruption.

Suitable for freshwater
microalgae;
Gentle

Low efficiency;
Additional steps to
remove salt (cost up);
Not applicable to marine
microalgae

[238–240]

Other novel pretreatment methods

Enzymatic methods

It is a specific pretreatment method,
and requires high selectivity of
suitable enzymeson the cell wall
structure and composition of a special
typeof algae.

High specificity;
Mild reaction conditions;
Low energy consumption

High enzyme cost;
Short process time [232,241,242]

CO2 explosion

It pressurizes CO2 inside the cell and
increases intracellular gas
concentration, leading to excessive
expansion and cell rupture. Other
non-reactive gasses such as N2 are
also used.

Prevent degradation of target
products;
Efficient

High-cost [243,244]
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Table 3. Cont.

Method Description Advantage Disadvantage Ref.

Electricity-based
methods

High voltage electric discharges
(HVED) utilizes electrodes of
needle-plate geometry to deliver
high voltage pulses to microalgae
suspensions. HVED additionally
induces thermal and mechanical
effects to the cells due to cavitation
and shockwave formation.
Non-thermal plasma is another
electricity-based method where a
needle-to-plate electrode geometry
is placed in an argon filled reactor.

No chemical pollution;
High extraction rate

Not suitable for extraction
of unsaturated fatty acids [233,245,246]

Osmotic shock

A week-long pretreatment in which
microalgae cells are broken up due
to the density difference between
cytoplasm and high salt solution.

Simple;
High extraction rate Time consuming [247,248]

Ionic liquids

Ionic liquids form a large number
of hydrogen bonds that interact
with polymers such as cellulose,
and destroy the original hydrogen
bonds in cellulose and break the
cell wall.

High extraction rate;
Room temperature

Loss of ions over time;
Potential ions pollution [249,250]

Viral cell lysis
Virus-assisted cell disruption is a
novel method that appeals for low
energy consumption.

No chemical pollution Unknown control factors [251,252]

High-pressure homogenization is a common cell wall disruption method in industrial
production, but this method can only deal with low concentrations of microalgae biomass.
This method involves high energy and water consumption, and increases the cost of subse-
quent separation and purification of target compounds. High-pressure homogenization
method improves the lipid recovery by up to 30% at a relatively lower temperatures
(47 ◦C) [253]. Bead grinding method breaks cell walls and releases intracellular substances
through high-speed movement of medium together with the grinding beads in the grinding
cavity to generate various mechanical stress effects, such as collision, extrusion and shear
forces [254]. A better disruption efficiency achieved by the bead milling results in the for-
mation of larger lipid droplets compared to the high-pressure homogenization method and
facilitates the downstream recovery of oil. A significant drawback of these two methods is
the release of free fatty acids, decreasing oil stability [254].

Emerging green technologies such as high-intensity pulsed electric field, microwave,
ultrasound, and supercritical fluid extraction have been developed as more powerful
techniques for microalgae cell wall disruption [244,255]. Using high-intensity pulsed
electric fields is a nonthermal technique of electroporation that alters the structure of
cell membranes and walls. Externally applied electrical fields induce pores in the cell
wall and thus improves lipid extractability [256,257]. Microwave technology is a thermal
process wherein water and other polar molecules vibrate in the electromagnetic field
to generate energy, which heats up the culture medium. The increase in intracellular
temperature results in a pressure increase on the cell wall and induces the microalgae
cell disruption [222,256]. When dealing with a small number of samples, the ultrasonic
method has the advantages of simple operation and suitability for combination with other
methods. In ultrasound pretreatment, microalgae are exposed to high ultrasonic waves,
which produce cavitation bubbles around the microalgae cells. When the bubbles collapse,
the induced shockwaves disrupt the cell walls and release or increase accessibility to the
intracellular components, including lipids [122,257]. It has been demonstrated that this
method is powerful in terms of releasing cellular components in contrast to bead milling,
microwave and homogenization methods [258]. However, the ultrasonic method requires
a lot of power if used to process a large number of microalgal cells or a large quantity
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of biomass. In addition, due to the uneven energy distribution, the ultrasonic method is
generally limited to laboratory scale and has not been applied in the industrial production.

Biological pretreatment (antibiotics, enzymes and phage) has also been used for
microalgae cell disruption [222,259]. The conditions of enzymatic method are mild, but
this method can achieve a high cell-wall breaking rate and a low pollution rate. The
most commonly used enzymes include snailase, trypsin, cellulose, lysozyme, β-glucanase,
glucosidase, chitinase, endopeptidase, mannanase and proteases, and the lipid yield after
enzymatic assisted extraction ranges between 7% and 85% depending on the enzymes,
extraction methods, and microalgae species [3]. Considering the mechanisms of enzymatic
reaction, the multilayered structure of microalgal cell wall imposes an additional challenge,
requiring an enzyme cocktail. The microalgae cell structure property requires multi-stage
pretreatments and complicated enzymatic cocktails, thus making it costly. These factors
limit the application of enzymatic methods in the industry scale pretreatment of microalgae.

The selection of a method for microalgal cell-wall disruption requires the considera-
tions of species due to different cell wall structure, cost and efficiency of methods, damage
to the target biomolecules, environmental impact, and yield or recovery of the final prod-
ucts of interest (i.e., lipids). Accordingly, several alternative methods have been developed
that are more cost-effective and protective of the target compounds, such as n-3 PUFA, and
thus, their nutritional values, biological functions, and health benefits.

4.5. Extraction of Microalgae Oil

Extraction is critical to lipid production using microalgae [260,261]. After cell-wall
disruption, oil extraction can be carried out using two different methods: supercritical fluid
extraction and solvent extraction [51,262–265]. The principle of supercritical fluid extraction
is to dissolve raw materials in supercritical gas, then adjust the temperature and pressure
so that the solubility of different components in the raw material is changed, improving the
efficiency of separation and extraction. Studies have shown that the concentration of PUFA
increases while saturated fatty acids decrease with the increase in pressure. Therefore,
supercritical fluid extraction methods can be used not only to extract lipids but also to
achieve preliminary separation of fatty acids. In the solvent extraction method, microalgae
raw materials are extracted first with a solvent mix, and then the matrix is separated into
two phases by adding another solvent or changing the proportion of each solvent in the
solvent mix. This results in the separation of the target compounds into one of two phases
so as to achieve the purpose of preliminary separation and purification [223,266–268].
Chloroform is one of the most efficient solvents in terms of yield; however, it does not
meet the food grade (Europe) or GRAS (USA) and cannot be used for the extraction of
lipids that are targeted for food applications. The substitution with less efficient but GRAS
solvents, such as ethanol, isopropanol, or hexane, is thus essential in the food industry [257].
Moreover, solvents are flammable and generally recognized as unhealthy [122], and thus,
solventless extraction methods have been developed in recent years; for example, a solvent-
free method has been developed to extract lipids from wet N. oculate [262]. In this method,
oil is separated from aqueous phase by a saline solution combined with centrifugation.
However, the oil yield is lower than the conventional solvent extraction method. To solve
this problem, a super-critical extraction method is developed based on green solvents, but it
operates in a high-pressure machine [215,222]. This method is costly and energy intensive;
however, it offers a high selectivity for acylglycerols and minimizes co-extraction of polar
lipids and nonacylglycerol neutral lipids. The selectivity to specific acylglycerols can be
guided using polar modifiers [269].

Supercritical fluid extraction is up to five times faster than the solvent extraction [270].
Supercritical CO2 extraction seems to be the most adapted method for the extraction of high-
value compounds such as n-3 PUFA, especially for meeting a high quality requirement
of the final product. This technology has the advantages of a high extraction rate, no
damage to PUFA, no solvent residue, no adverse impact to product smell, and being
environmentally green. Furthermore, supercritical CO2 extraction has several advantages,
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including but not limited to, great stability, safety, operational convenience, low energy
consumption, and low cost in the long term [222].

4.6. Concentration and Purification of Microalgae Oil

It is often difficult to obtain pure microalgae oil from extraction alone. Typically,
concentration is performed via supercritical fluid equipment, liquid–liquid extraction,
molecular distillation, urea fractionation, membrane extraction, precipitation and crystal-
lization at low temperature, and others [271–273]. These industrial methods can be used to
produce n-3 fatty acids in ethyl ester form with a purity of 90–95%. In the concentrating
methods of methyl ester and ethyl ester, the oil is first esterified then separated and purified
by structural differences between the target and other fatty acids, such as the degree of un-
saturation and carbon chain length. In the urea complexation, fatty acids and urea are fully
mixed and crystallized at a certain temperature; saturated fatty acids and monounsaturated
fatty acids form inclusion complexes with urea while PUFA remain in the solution [274,275].
The freeze crystallization method, also termed “winterization” in the industrial practice,
exploits the principle that different fatty acids differ in their solubility with or without
organic solvents under low temperature conditions. This method is easy to operate, and the
active ingredients are not prone to deterioration. The heavy metal complexation method
is based on a property that metal ions such as silver salts can form polar complexes with
carbon–carbon double bonds in unsaturated fatty acids. This method is costly and heavy
metal contamination blocks this method from being used in food processing [276,277].
Supercritical fluid chromatography is a chromatographic method using supercritical fluid
as the mobile phase. This method takes advantage of both supercritical fluid extraction and
liquid chromatography [278,279].

Purification is the critical stage of the downstream processing of the desired prod-
ucts [280]. Microalgal oil after extraction contains cell debris, protein, and carbohy-
drates [281–283]. During the extraction process, impurities from raw materials and residues
from the added reagents, such as alcohol, glycerol, water and catalyst remained after the
reactions are mixed or left in the oil [271]. Molecular distillation has been applied to purify
oil and yielded 98% segregation at 120 ◦C of evaporator temperature [284]. Free fatty acids
are usually removed by chemical refining, such as alkalization. Bleaching uses typically
absorbent clay or activated carbon to remove color pigments, oxidized products and trace
metals. The bleached oil is then de-waxed to improve its clarity. A high-pressure steam is
added to oil under high vacuum to remove the remaining oil components that contribute to
taste, odor and color [100]. Every method used for oil purification has its advantages and
disadvantages, and a single method cannot achieve a high purity requirement for human
consumption. A solution is thus the use of multiple methods that can be combined to meet
the industrial or commercial requirements for the purity of the final oil products.

5. Protection of PUFA via Microencapsulation

As mentioned in the previous sections, human consumption of PUFA, especially
n-3 EPA and DHA, is insufficient worldwide [285]. Accordingly, food fortification and
nutritional supplementation have been developed and used to address this issue. Multiple
double bonds in PUFA molecules are unstable during food processing and storage due to
their susceptibility to oxidation reactions, leading to the deterioration of product quality.
Microencapsulation technologies can build multiple layers of wall materials around the dis-
persed small/fine oil droplets and effectively protect fatty acids from oxidation, inhibiting
the generation of off-flavors and odors and improving the physicochemical functionalities,
stability and bioavailability of fatty acids [286,287]. The standard microencapsulation tech-
nologies include spray drying, spray cooling/chilling, freeze drying, complex coacervation,
fluidized bed coating, liposome entrapment, extrusion, and coextrusion [288,289].
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5.1. Spray Drying

Spray drying is the most commonly used technique for the encapsulation of oils, which
has the advantage of producing microcapsules through a relatively simple, continuous
and inexpensive process, compared to other microencapsulation technologies [290]. This
technology has been successfully employed for several decades by the food industry to
encapsulate oils rich in PUFA [291]. The process involves the atomization of emulsions
into a gaseous hot drying chamber, resulting in fast water evaporation and the formation
of solid particles, i.e., oil droplets enveloped by solidified matrices (Figure 2) [290]. The
commonly used wall materials in spray drying include proteins, carbohydrates, and gums,
which are used either alone or in combination to achieve desired encapsulation efficiency
and storage stability [292]. Carbohydrates and gums are the most widely used wall materi-
als in the food industry simply because they are natural products, relatively inexpensive,
and comparatively effortless in the acquirement of food regulatory approval. Proteins
have excellent functionalities of film forming, gelation, foaming, emulsification and water
holding capacity [293,294]. Due to their amphiphilic nature, proteins are natural emulsifiers
that can reach the oil/water interface to form a physical barrier. Gelatin has been the first
choice for coacervates-based encapsulation due to its biocompatibility, biodegradability,
water retention ability and film formation ability [293,295]. Researchers from academia
and industry are continually searching for an alternative to mammalian gelatin (porcine
and bovine) due to socio-cultural and health-related concerns [296]. Plant proteins are less
allergenic than their animal-derived counterparts [295,297]. A review on 14 research works
published between 2013 and 2016 on the spray-drying encapsulation of omega-3-6-9 fatty
acids-rich oils using protein-based emulsions concluded that plant proteins are gaining
wider attention in recent years, in line with the consumer awareness and demands for
“green” products [298]. Various emulsion systems can be used for the microencapsulation
of oily or oil-soluble ingredients in the food industry including single-layered oil-in-water
emulsion, multiple emulsion, and multilayered oil-in-water emulsion [290]. For the encap-
sulation of n-3 PUFA-rich oils, the oil-in-water emulsion is commonly used [293,299]. The
droplet size and emulsion stability can be altered based on the characteristics of the wall
materials, including the molecular weight, concentration, and emulsifying capability as
well as other conditions such as solvent properties, pH, salt concentration, temperature,
loading levels, and homogenization conditions [300–309].
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Although there are several advantages, some drawbacks are linked to microcapsules
prepared using spray-drying technology. Since the spray-drying process in the food
industry is typically carried out using aqueous formulations, shell materials must have
sufficient water solubility [290,310,311]. The fine powder produced in the spray-drying
process can expose an explosion hazard to the surrounding areas and needs to be safely
managed. In addition, high temperatures involved in the spray-drying process result in
the oxidation of unsaturated fatty acids, especially PUFA, and other biomolecules that are
sensitive to oxidation, consequently compromising the storage stability of oils [290].

5.2. Spray Cooling/Chilling (or Prilling)

Spray cooling is the process of solidifying an atomized liquid spray into particles. It is
also referred to as spray chilling, spray congealing, or prilling. This process is often used
to coat solid particles in a stream of cold gas to form micron-sized melt droplets, and the
common matrix materials include fats, waxes, lipids, and gelling hydrocolloids [310,312].
Microspheres are the most common encapsulation morphology prepared with this technique,
with an active ingredient dispersed homogeneously throughout the encapsulating matrix. The
key difference between spray cooling and spray drying processes is that the former relies on
cooling to solidify the final particles while the latter uses hot air to remove water to form dry
particles. For the spray-chilling, the melting temperature of lipophilic materials is generally in
a range of 34–42 ◦C, while for spray-cooling, the melting temperature is higher [313]. These
two processes can be combined for double encapsulation of sensitive core ingredients. For
instance, in a study, algal oil containing DHA was entrapped within a soy protein/sugar
matrix with spray drying to produce microparticles around 80 µm, followed by spray chilling
in a wax matrix to yield a particle size of 157 µm. The double encapsulation is more compact
and can effectively prevent the oxidation of the core material [314].

5.3. Freeze Drying

Spray freeze-drying (SFD) overcomes the limitations associated with spray drying in
the microencapsulation process. The SFD technique is a three-step operation: (1) spray the
feed into droplets using an atomizer, (2) freeze the droplets with a freezing medium, and
(3) sublime the water away from the droplets to a dried powder in a freeze dryer [315]. One
unique advantage of this technique is that the processing temperature can be as low as that
of the cryogenic liquid [316]. Therefore, it has been frequently used for thermos-sensitive
core materials [317]. Studies have shown that the SFD powders have the appearance
of higher porosity, which may result in enhanced oxygen penetration during storage
and compromise the oxidative stability [290]. On the other hand, this feature may offer
a higher release of active ingredients [318]. It is worth noting that SFD has a higher
energy consumption, a longer processing time, and a high cost, which are disadvantageous
compared to other drying methods [319].

5.4. Complex Coacervation

Complex coacervation is a phase-separation process in which the attractive electrostatic
interactions drive oppositely charged biopolymers to form tiny aggregated colloidal parti-
cles [320,321]. Complex coacervation process generally consists of four steps (Figure 3), which
are emulsification, coacervation, cooling/gelation, and solidification [322,323]. Among the
various proteins and polysaccharides, gelatin and Arabic gum are the most widely studied
and a pair of wall materials are used in the complex coacervation [293,295,297,324,325].
Nowadays, there is a trend to replace animal proteins with plant proteins in microencapsu-
lating PUFA-rich oils [322]; soybean and pea protein isolates are the most commonly used
plant proteins [326–329]. A formation of complex coacervation using chia seed protein
isolate and chia seed gum has also been explored [330]. The same group has also used
CPI-CSG (Chia seed protein isolate and chia seed gum) complex coacervates to microencap-
sulate PUFA-rich oils [330,331]. Complex coacervation technology has a higher embedding
rate and can effectively protect ingredients that are senstive to oxidation, offering better
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emulsification and stability of the target comounds, although its process is complex and
involves strict control point requirements and a high cost.
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5.5. Nanoemulsions and Self-Emulsifying Emulsions

Nanoemulsions and self-emulsifying emulsions have become increasingly attractive
in recent years, partly due to the demand for novel delivery vehicles to enhance the
bioavailability of bioactive compounds [332–334]. Nanoemulsions have higher colloidal
stability against gravity than the conventional emulsions [335]. The nano-sized droplets
scatter less light, make the products transparent or translucent, and can be used to develop
fortified beverages, soups, and sauces [334], with greatly improved bioavailability [336]. An
oil-in-water nanoemulsion product was prepared using flaxseed oil that is rich in n-3 PUFA
and different wall materials (alginate-whey protein/whey protein-sodium alginate) [336]. A
study examined the oxidative stability of n-3 PUFA nanoemulsions, prepared by ultrasound
using natural and synthetic emulsifiers, for a storage time of 5 weeks at 4 ◦C, 20 ◦C,
and 40 ◦C, respectively [337]. The results of this study showed that Tween 40 is better
than lecithin as an emulsifier in improving the oxidative stability of PUFA in oil-in-water
nanoemulsions. In another study on the antioxidant and antibacterial activities of n-3 PUFA-
rich oil nanoemulsions loaded in chitosan and alginate-based microbeads, the addition of
natural antioxidant curcumin enhanced the encapsulation efficiency, loading capacity, and
antioxidant activity of the formulated microbeads [338].

In recent years, a self-nanoemulsifying system has received increasing attention in
n-3 PUFA delivery [339]. This system combines n-3 PUFA-rich oil, surfactant, cosurfac-
tant/solvents, and other active components in a concentrated oil phase. Upon mixing
into an aqueous solution, it spontaneously forms nanoemulsions by thermodynamic en-
tropy gain and Gibbs-free energy reduction, resulting in the formation of fine droplets
(<200 nm) [340–342]. The self-nanoemulsifying delivery system increases the product solu-
bility, enhances the dissolution and improves the stability and bioavailability of the oil [341].
It has been reported that a self-nanoemulsifying emulsion formulation of DHA-rich oil
improved the bioavailability and therapeutic efficacy of DHA and other PUFA [343]. Evi-
dence is emerging that nanoemulsion is a promising technology to deliver n-3 PUFA-rich
oil in foods, aiming at protecting the oil from oxidation, masking undesirable smells and
flavors, and improving bioavailability [337,344,345].

5.6. Liposome

Liposome technology has been successfully applied in the pharmaceutical industry as
a unique drug-delivery tool and is now finding its way into the food industry. Liposomes
are spherical or nearly spherical vesicles with a bilayer membrane structure of various
forms composed of different phospholipids. In a product preparation, n-3 PUFA-rich
oil successfully embedded into liposomes through membrane hydration combined with
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ultrasound assistance [346]. In another study, carboxymethyl chitosan-coated n-3 PUFA-
rich oil (fish oil extracted from Nile tilapia viscera) nanoliposomes, prepared using thin-film
hydration combined with ultrasound, showed a better oxidative stability than uncoated
liposomes. This finding suggests that the carboxymethyl chitosan layer probably had an
inhibitory effect on the liposome decomposition and might have performed as a “shield”
on the surface of liposome because of its stability in water [347].

6. Conclusions

Microalgae are a huge kingdom of microorganisms. Although research is falling
behind in the understanding of lipids and fatty acid content and composition, especially
n-3 PUFA in different species and strains, it has been well recognized that many microalgae
species contain high contents of lipids and n-3 PUFA, and more importantly, the highly
demanded EPA and DHA. The supply of n-3 PUFA from fish has increasingly been a
challenge due to over-harvesting from marine sources and climate change. Aquaculture has
been blooming in recent decades to address the shortage of marine sources; however, this
industry sector requires a significant amount of n-3 PUFA-rich oils, which in fact compete
with pets and humans. In seeking out alternative sources of n-3 PUFA, microalgae have
been emerging as strategic crops because of their superior sustainability, environmental
impact, high productivity, and abilities to synthesize and accumulate contents of oil as
well as other high-value biomolecules, including but not limited to antioxidants. Thus,
microalgae have been used commercially to produce n-3 PUFA, particularly EPA and/or
DHA due to their significant interactions with growing conditions or environmental factors
and accessibility for the application of bioengineering technologies. The biggest change
for the time being is still the cost of production and processing. As such, microalgae
are currently used mainly for the production of high-value EPA and DHA, which are
applied predominantly in infant formulae, medicinal foods, and foods for the special
population groups. There are a large number of species that are currently underexploited
for their lipid profiles and production rates as a biological system to produce massive
n-3 PUFA-rich oils. In addition, the harvesting and downstream processing require more
research and technology/equipment developments to reduce the final cost. Although
microcapsule technology can improve the bioavailability and prevent the degradation
or deterioration of n-3 PUFA caused by oxidation, it is warranted to continue with the
creation of new knowledge and the development of new technologies with significantly
improved efficiencies. It is believed that with the advances in research on the biochemical
composition of new species, the optimization of growing conditions, the development
and application of bioengineering techniques and tools, the development of cultivation
technology and facility, and the advances in product processing and delivery, the efficiency
and profit of microalgae as a platform for commercial production of n-3 PUFA-rich oils
will be substantially improved, contributing to the expected wide use of n-3 PUFA as an
important functional ingredient for human consumption via foods or dietary supplements
because of the long-recognized health benefits.
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170. Segečová, A.; Červený, J.; Roitsch, T. Cultivation of photoautotrophic plant suspension cultures in photobioreactors. Nature 2015,
262, 47–48.

171. Taya, M. Effective Cultures of Photoautotrophic Cells in Photobioreactors; The Society for Biotechnology: Osaka, Japan, 1997.
172. Richmond, A.; Qiang, H. Principles for efficient utilization of light for mass production of photoautotrophic microorganisms.

Appl. Biochem. Biotechnol. 1997, 63–65, 649. [CrossRef] [PubMed]
173. Demirbas, A.; Demirbas, M.F. Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 2011, 52, 163–170. [CrossRef]
174. Jorquera, O.; Kiperstok, A.; Sales, E.A.; Embiruçu, M.; Ghirardi, M.L. Comparative energy life-cycle analyses of microalgal

biomass production in open ponds and photobioreactors. Bioresour. Technol. 2010, 101, 1406–1413. [CrossRef] [PubMed]
175. Schade, S.; Meier, T. Distinct microalgae species for food—Part 1: A methodological (top-down) approach for the life cycle

assessment of microalgae cultivation in tubular photobioreactors. J. Appl. Phycol. 2020, 32, 2977–2995. [CrossRef]
176. Acién Fernández, F.G.; Fernández Sevilla, J.M.; Molina Grima, E. Photobioreactors for the production of microalgae. Rev. Environ.

Sci. Bio/Technol. 2013, 12, 131–151. [CrossRef]
177. Carvalho, A.P.; Silva, S.O.; Baptista, J.M.; Malcata, F.X. Light requirements in microalgal photobioreactors: An overview of

biophotonic aspects. Appl. Microbiol. Biotechnol. 2011, 89, 1275–1288. [CrossRef]
178. Mayers, J.J.; Ekman Nilsson, A.; Svensson, E.; Albers, E. Integrating Microalgal Production with Industrial Outputs-Reducing

Process Inputs and Quantifying the Benefits. Ind. Biotechnol. 2016, 12, 219–234. [CrossRef]
179. Chang, H.; Fu, Q.; Zhong, N.; Yang, X.; Quan, X.; Li, S.; Fu, J.; Xiao, C. Microalgal lipids production and nutrients recovery from

landfill leachate using membrane photobioreactor. Bioresour. Technol. 2019, 277, 18–26. [CrossRef]
180. Gupta, S.; Pawar, S.B.; Pandey, R.A.; Kanade, G.S.; Lokhande, S.K. Outdoor microalgae cultivation in airlift photobioreactor at

high irradiance and temperature conditions: Effect of batch and fed-batch strategies, photoinhibition, and temperature stress.
Bioprocess Biosyst. Eng. 2019, 42, 331–344. [CrossRef] [PubMed]

181. Khoobkar, Z.; Shariati, F.P.; Safekordi, A.A.; Amrei, H.D. Performance Assessment of a Novel Pyramid Photo-Bioreactor for
Cultivation of Microalgae using External and Internal Light Sources. Food Technol. Biotechnol. 2019, 57, 68. [CrossRef] [PubMed]

182. Sun, X.-M.; Ren, L.-J.; Zhao, Q.-Y.; Ji, X.-J.; Huang, H. Microalgae for the production of lipid and carotenoids: A review with focus
on stress regulation and adaptation. Biotechnol. Biofuels 2018, 11, 272. [CrossRef] [PubMed]

183. Chang, K.L.; Paul, H.; Nichols, P.D.; Koutoulis, A.; Blackburn, S.I. Australian thraustochytrids: Potential production of dietary
long-chain omega-3 oils using crude glycerol. J. Funct. Foods 2015, 6, 810–820. [CrossRef]

184. Li, J.; Liu, R.; Chang, G.; Li, X.; Chang, M.; Liu, Y.; Jin, Q.; Wang, X. A strategy for the highly efficient production of docosahexaenoic
acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresour. Technol. 2015, 177,
51–57. [CrossRef]

185. Marchan, L.F.; Chang, K.L.; Nichols, P.D.; Polglase, J.L.; Mitchell, W.J.; Gutierrez, T. Screening of new British thraustochytrids
isolates for docosahexaenoic acid (DHA) production. J. Appl. Phycol. 2017, 29, 2831–2843. [CrossRef]

186. Najafabadi, H.A.; Malekzadeh, M.; Jalilian, F.; Vossoughi, M.; Pazuki, G. Effect of various carbon sources on biomass and lipid
production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions. Bioresour. Technol. 2015, 180, 311–317.
[CrossRef]

187. Cheng, Y.S.; Labavitch, J.; Vandergheynst, J.S. Organic and Inorganic Nitrogen Impact Chlorella variabilis Productivity and Host
Quality for Viral Production and Cell Lysis. Appl. Biochem. Biotechnol. 2015, 176, 326–331. [CrossRef]

188. Chen, Y.H.; Walker, T.H. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-
derived crude glycerol. Biotechnol. Lett. 2011, 33, 1973–1983. [CrossRef]

https://books.google.com.hk/books?hl=zh-CN&lr=&id=Cv_3jJ5hp0AC&oi=fnd&pg=PA1&dq=Algae+Energy:+Algae+as+a+New+Source+of+Biodiesel&ots=od98QGOWML&sig=9-41ZaDgeUreGJn9YxdMbhFrsMQ&redir_esc=y#v=onepage&q=Algae%20Energy%3A%20Algae%20as%20a%20New%20Source%20of%20Biodiesel&f=false
https://books.google.com.hk/books?hl=zh-CN&lr=&id=Cv_3jJ5hp0AC&oi=fnd&pg=PA1&dq=Algae+Energy:+Algae+as+a+New+Source+of+Biodiesel&ots=od98QGOWML&sig=9-41ZaDgeUreGJn9YxdMbhFrsMQ&redir_esc=y#v=onepage&q=Algae%20Energy%3A%20Algae%20as%20a%20New%20Source%20of%20Biodiesel&f=false
https://books.google.com.hk/books?hl=zh-CN&lr=&id=Cv_3jJ5hp0AC&oi=fnd&pg=PA1&dq=Algae+Energy:+Algae+as+a+New+Source+of+Biodiesel&ots=od98QGOWML&sig=9-41ZaDgeUreGJn9YxdMbhFrsMQ&redir_esc=y#v=onepage&q=Algae%20Energy%3A%20Algae%20as%20a%20New%20Source%20of%20Biodiesel&f=false
http://doi.org/10.1080/07388551.2019.1571007
http://doi.org/10.1023/A:1017560006941
http://doi.org/10.1109/TPS.2013.2274805
http://doi.org/10.1016/j.biotechadv.2010.08.005
http://doi.org/10.3923/biotech.2012.127.132
https://www.sciencedirect.com/science/article/pii/B9780081010235000017
https://www.sciencedirect.com/science/article/pii/B9780081010235000017
http://doi.org/10.1007/BF02920463
http://www.ncbi.nlm.nih.gov/pubmed/18576120
http://doi.org/10.1016/j.enconman.2010.06.055
http://doi.org/10.1016/j.biortech.2009.09.038
http://www.ncbi.nlm.nih.gov/pubmed/19800784
http://doi.org/10.1007/s10811-020-02177-2
http://doi.org/10.1007/s11157-012-9307-6
http://doi.org/10.1007/s00253-010-3047-8
http://doi.org/10.1089/ind.2016.0006
http://doi.org/10.1016/j.biortech.2019.01.027
http://doi.org/10.1007/s00449-018-2037-6
http://www.ncbi.nlm.nih.gov/pubmed/30446818
http://doi.org/10.17113/ftb.57.01.19.5702
http://www.ncbi.nlm.nih.gov/pubmed/31316278
http://doi.org/10.1186/s13068-018-1275-9
http://www.ncbi.nlm.nih.gov/pubmed/30305845
http://doi.org/10.1016/j.jff.2015.01.039
http://doi.org/10.1016/j.biortech.2014.11.046
http://doi.org/10.1007/s10811-017-1149-8
http://doi.org/10.1016/j.biortech.2014.12.076
http://doi.org/10.1007/s12010-015-1588-0
http://doi.org/10.1007/s10529-011-0672-y


Foods 2022, 11, 1215 28 of 33

189. Serio, M.; Tesser, R.; Santacesaria, E. A kinetic and mass transfer model to simulate the growth of baker’s yeast in industrial
bioreactors. Chem. Eng. J. 2001, 82, 347–354. [CrossRef]

190. Gayen, K.; Bhowmik, T.K.; Maity, S.K. Sustainable Downstream Processing of Microalgae for Industrial Application; CRC Press: Boca
Raton, FL, USA, 2019.

191. Katiyar, R.; Bharti, R.K.; Gurjar, B.R.; Kumar, A.; Biswas, S.; Pruthi, V. Utilization of de-oiled algal biomass for enhancing vehicular
quality biodiesel production from Chlorella sp. in mixotrophic cultivation systems. Renew. Energy 2018, 122, 80–88. [CrossRef]

192. Bhatnagar, A.; Bhatnagar, M.; Chinnasamy, S.; Das, K.C. Chlorella minutissima—A promising fuel alga for cultivation in municipal
wastewaters. Appl. Biochem. Biotechnol. 2010, 161, 523–536. [CrossRef] [PubMed]

193. Gross, M.; Henry, W.; Michael, C.; Wen, Z. Development of a rotating algal biofilm growth system for attached microalgae growth
with in situ biomass harvest. Bioresour. Technol. 2013, 150, 195–201. [CrossRef] [PubMed]

194. Roostaei, J.; Zhang, Y.; Gopalakrishnan, K.; Ochocki, A.J. Mixotrophic Microalgae Biofilm: A Novel Algae Cultivation Strategy for
Improved Productivity and Cost-efficiency of Biofuel Feedstock Production. Sci. Rep. 2018, 8, 12528. [CrossRef]

195. Berner, F.; Heimann, K.; Sheehan, M. Microalgal biofilms for biomass production. J. Appl. Phycol. 2015, 27, 1793–1804. [CrossRef]
196. Gross, M.; Mascarenhas, V.; Wen, Z. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal

biofilm (RAB) culture systems. Biotechnol. Bioeng. 2015, 112, 2040–2050. [CrossRef]
197. Ozkan, A.; Kinney, K.; Katz, L.; Berberoglu, H. Reduction of water and energy requirement of algae cultivation using an algae

biofilm photobioreactor. Bioresour. Technol. 2012, 114, 542–548. [CrossRef] [PubMed]
198. Muylaert, K.; Bastiaens, L.; Vandamme, D.; Gouveia, L. 5-Harvesting of microalgae: Overview of process options and their

strengths and drawbacks. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead
Publishing, 2017; pp. 113–132. Available online: https://www.sciencedirect.com/science/article/pii/B9780081010235000054
(accessed on 9 March 2022).

199. Guedes, A.C.; Amaro, H.M.; Barbosa, C.R.; Pereira, R.D.; Malcata, F.X. Fatty acid composition of several wild microalgae and
cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Res. Int.
2011, 44, 2721–2729. [CrossRef]

200. Alexandra, K.; Kristína, G. Microalgae Harvesting: A Review. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 2019, 27, 129–143.
201. Depraetere, O.; Pierre, G.; Deschoenmaeker, F.; Badri, H.; Foubert, I.; Leys, N.; Markou, G.; Wattiez, R.; Michaud, P.; Muylaert, K.

Harvesting carbohydrate-rich Arthrospira platensis by spontaneous settling. Bioresour. Technol. 2015, 180, 16–21. [CrossRef]
202. Chtourou, H.; Dahmen, I.; Jebali, A.; Karray, F.; Hassairi, I.; Abdelkafi, S.; Ayadi, H.; Sayadi, S.; Dhouib, A. Characterization of

Amphora sp. a newly isolated diatom wild strain, potentially usable for biodiesel production. Bioprocess Biosyst. Eng. 2015, 38,
1381–1392. [CrossRef] [PubMed]

203. Yu, X.; Zhao, P.; He, C.; Li, J.; Tang, X.; Zhou, J.; Huang, Z. Isolation of a novel strain of Monoraphidium sp. and characterization
of its potential application as biodiesel feedstock. Bioresour. Technol. 2012, 121, 256–262. [CrossRef] [PubMed]

204. Fan, J.; Zheng, L.; Bai, Y.; Saroussi, S.; Grossman, A.R. Flocculation of Chlamydomonas reinhardtii with Different Phenotypic Traits
by Metal Cations and High pH. Front. Plant Sci. 2017, 8, 1997. [CrossRef] [PubMed]
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