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Abstract: Leaf morphogenesis requires precise regulation of gene expression to achieve organ sepa-
ration and flat-leaf form. The poplar KNOTTED-like homeobox gene PagKNAT2/6b could change
plant architecture, especially leaf shape, in response to drought stress. However, its regulatory mech-
anism in leaf development remains unclear. In this work, gene expression analyses of PagKNAT2/6b
suggested that PagKNAT2/6b was highly expressed during leaf development. Moreover, the leaf
shape changes along the adaxial-abaxial, medial-lateral, and proximal-distal axes caused by the
mis-expression of PagKNAT2/6b demonstrated that its overexpression (PagKNAT2/6b OE) and SRDX
dominant repression (PagKNAT2/6b SRDX) poplars had an impact on the leaf axial development. The
crinkle leaf of PagKNAT2/6b OE was consistent with the differential expression gene PagBOP1/2a
(BLADE-ON-PETIOLE), which was the critical gene for regulating leaf development. Further study
showed that PagBOP1/2a was directly activated by PagKNAT2/6b through a novel cis-acting element
“CTCTT”. Together, the PagKNAT2/6b-PagBOP1/2a module regulates poplar leaf morphology by
affecting axial development, which provides insights aimed at leaf shape modification for further
improving the drought tolerance of woody plants.

Keywords: Populus; leaf morphogenesis; PagKNAT2/6b; PagBOP1/2a

1. Introduction

The leaf morphology not only reflects the evolution of each lineage characterized
by photosynthesis but also partially determines the response of plants to environmental
stimuli [1]. Several studies on the leaf shape of woody plants, such as grape [2] and
poplar [3], suggest that leaf size and structure are related to paleoclimate. Branch length
and leaf size contribute to the diversity of canopy architecture, and the small leaf size and
compact canopy make forest trees more drought-tolerant [4]. As a woody model species,
Populus are widely distributed in the northern hemisphere with diverse habitats. Therefore,
variation in leaf shape and size may determine their adaptation and coping with global
climate change.

The leaves originate from the shoot apical meristem (SAM) and undergo sequential
coordinated cell proliferation and expansion along multiply axes which determine their
final size and shape [5]. The polarity of leaf development is achieved in three directions:
adaxial-abaxial axis (top-to-bottom), proximal-distal axis (base-to-tip), and subsequent
medial-lateral axis (center-to-edge) [6,7]. These axial developments are regulated by tran-
scriptional regulators, phytohormones, miRNAs, and small regulatory peptides [5]. Sev-
eral known developmental regulators include Class I KNOTTED1-like homeobox (KNOX I)
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genes [8,9], BLADE ON PETIOLE (BOP) [10], ASYMMETRIC LEAVES 1 (AS1), AS2 [6,11],
YABBY [12], and others [13].

The KNOX I gene KNOTTED 1 (KN1), which was first identified by a series of domi-
nant mutations affecting leaf development in maize (Zea mays), was named for the knotted
shape of its leaves [14,15]. Four members of Class I KNOX in Arabidopsis, including SHOOT
MERISTEMLESS (STM), BREVIPEDICELLUS (BP, also named KNAT1), KN1-Like in Ara-
bidopsis thaliana 2 (KNAT2), and KNAT6, play critical roles in establishing and maintaining
SAM activity and organ separation during vegetative growth [9]. Numerous studies have
confirmed, also in other species, their functions in SAM formation [16–18] and lateral organ
separation [8,9]. In addition, three KNOX I genes are also involved in wood formation and
the adaxial xylem cell differentiation [19–21]. The homologs of REVOLUTA (REV), PHABU-
LOSA (PHB), and YABBY in maize are suggested to coordinate the regulation of leaf organ
adaxial/abaxial polarity, based on the cis-acting element “TGAC” in their promoters that
were bound by KN1 [22,23]. On the other hand, the leaf of bop1 bop2 (BLADE-ON-PETIOLE
1 and 2) double mutants display a range of developmental defects [24], whereas BOP1
or BOP2 overexpressing plants exhibit short and compact architecture, hyponastic and
inward curving leaves [25]. In addition, BOP1 and BOP2, which are lateral organ boundary
genes, not only promote morphological asymmetry during leaf development but also
affect floral patterning, indicating that BOP1 and BOP2 are key regulators required for
cells differentiation into lateral organs by determining their fate and polarity [10,24,26].
However, the detailed interaction of the aforementioned regulators on leaf morphogenesis
is still elusive.

In our previous study, we have characterized PagKNAT2/6b in hybrid poplar
(Populus alba × P. glandulosa) ‘84K’, which makes a rapid and long-lasting response to
drought stress [27]. Its overexpression lines exhibit plant architectures similar to plants
grown under drought stress, such as dwarf plants with small leaves. Thus, we hypothesized
that PagKNAT2/6b might affect leaf morphogenesis by regulating the expression of essential
genes related to leaf development. Here, the molecular mechanism of PagKNAT2/6b affect-
ing leaf development is investigated, which not only explores the regulatory mechanism of
poplar leaf shape development but also provides a basis for further improving the drought
tolerance of woody plants by adjusting the leaf shape.

2. Results
2.1. PagKNAT2/6b Is Expressed Broadly in Poplar Leaves

To understand the biological function of PagKNAT2/6b in poplar leaf development,
we firstly evaluated the expression of PagKNAT2/6b in leaves. The leaf plastochron index
(LPI) measured leaves at different developmental stages [28] and the first leaf separated
from the SAM as LPI1. In hybrid poplar ‘84K’, leaves typically achieve full expansion
between LPI3 and LPI4 of one-month-old seedlings. The gene expression of PagKNAT2/6b
increased 5-fold from LPI1 to LPI3 and maintained high expression in LPI3 and LPI4
(Figure 1A). Moreover, β-galactosidase (GUS) staining of PPagKNAT2/6b::GUS transgenic
plants indicated that PagKNAT2/6b is expressed throughout the whole process of leaf
development (Figure 1B). Meanwhile, the GUS signals in SAM, later leaf primordia, and the
boundary between unexpanded leaves were histologically observed (Figure 1C,D), which
suggested that PagKNAT2/6b might play a key role in leaf initiation and separation. The
polar development of leaves is crucial to ensure morphological completion and is achieved
mainly through three directions: the adaxial-abaxial axis, the proximal-distal axis, and
the medial-lateral axis [6,7]. In LPI1, strong GUS signals were detected in the cells on the
adaxial side along the adaxial-abaxial axis and leaf margin cells along the medial-lateral
axis in the unexpanded leaf (Figure 1E). In the main leaf midrib of expanded leaf LPI2, the
GUS signals were mainly concentrated in the xylem and phloem tissue (Figure 1F) and
speculated that these might be involved in regulating adaxial-abaxial axis differentiation in
leaf vascular tissues. Furthermore, an intensive GUS signal was detected in the proximal
position of the proximal-distal axis of LPI2 (Figure 1B), and on the cells near the main
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leaf midrib of the medial-lateral axis of LPI3 via histological observation (Figure 1G).
Taken together, the localization of PagKNAT2/6b on different axes suggested that it may be
involved in the leaf initiation and expansion process in three developmental axes.
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PagKNAT2/6b overexpression lines (OE5 and OE7) and PagKNAT2/6b SRDX dominant re-
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of PagKNAT2/6b-OE and PagKNAT2/6b-SRDX lines displayed significant leaf morphology 
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2C,D). In contrast, LPI3 of SRDX lines showed slender and flat leaves with a smooth 

Figure 1. Expression patterns of PagKNAT2/6b in poplar leaf. (A) The expression profile of PagK-
NAT2/6b during leaf development from leaf plastochron index 1 (LPI1) to LPI4 by qRT-PCR. (B) GUS
staining of PPagKNAT2/6b::GUS transgenic poplar in LPI1 to LPI4, and LPI2 in a magnified view.
(C,D) Transverse sections of the shoot apical meristem (SAM). (E) GUS signals in unexpanded leaf
LPI1. (F) GUS signals in the main veins of LPI2. (G) GUS signals in the middle of LPI3, and the arrow
shows the medial region of LPI3. Experiments were repeated three times and the representatives
were shown. The salient signal is indicated with arrows. Bar = 100 µm.

2.2. Phenotypic Changes of Transgenic Poplars Are Caused by Abnormal Expression
of PagKNAT2/6b

Leaf development was affected by overexpression and dominant repression of
PagKNAT2/6b in poplar. To further explore the regulatory role of PagKNAT2/6b in leaf de-
velopment, a detailed leaf morphological characterization of two-month-old PagKNAT2/6b
overexpression lines (OE5 and OE7) and PagKNAT2/6b SRDX dominant repression lines
(SRDX1 and SRDX20) was performed (Figure 2A). The mature leaves (LPI3) of PagK-
NAT2/6b-OE and PagKNAT2/6b-SRDX lines displayed significant leaf morphology charac-
teristics (Figure 2B). LPI3 of OE lines displayed small, compact leaves, almost no petiole,
and inward curled leaves with deeply lobed serrations on leaf margins (Figure 2C,D). In
contrast, LPI3 of SRDX lines showed slender and flat leaves with a smooth margin which
suggested that PagKNAT2/6b could mainly impact the leaf aspect ratio and margin by
regulating the development of the proximal-distal axis and medial-lateral axis.
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Figure 2. Morphological comparisons of PagKNAT2/6b transgenic and non-transgenic control poplar.
(A) Phenotypes of the seedlings of non-transgenic control poplar (Ctrl), 35S:PagKNAT2/6b over-
expression lines (OE5 and OE7), and PagKNAT2/6b-SRDX dominant repression lines (SRDX1 and
SRDX20). Bars = 6 cm. (B) Phenotypes of LPI3 leaves of Ctrl and PagKNAT2/6b transgenic plants,
respectively. The leaves were embedded in agarose and spread out to facilitate the measurement
of leaf length and width. Bars = 1 cm. (C) The section overviews of the red horizontal arrow area
in (B) of LPI3. Bars = 100 µm. (D) The leaf margin morphology was shown by scanning electron
microscopy. Bars = 1 mm. (E–G) The compute of leaf length, width, and length/width ratio of LPI3
in control and transgenic plants, respectively. Asterisks denote significant differences compared to
Ctrl, * p < 0.05 or ** p < 0.01.

To evaluate the development of poplar leaves in the proximal-distal axis and medial-
lateral axis, we measured the leaf length and width and calculated the length/width ratio
in control and PagKNAT2/6b transgenic lines. Compared with the control plants, the leaf
length and width of the OE and SRDX lines were significantly reduced (Figure 2E,F).
However, the length/width ratio of OE and SRDX lines showed opposite trends—the



Int. J. Mol. Sci. 2022, 23, 5581 5 of 15

length/width ratios of OE5 and OE7 were significantly reduced by 31% and 75%, but
that of SRDX1 and SRDX20 increased by 15% and 27%, respectively (Figure 2G). These
results indicate that PagKNAT2/6b regulates the development of poplar leaves in both the
proximal-distal axis and medial-lateral axis.

On the adaxial-abaxial axis compared with the control plants (Figure 3A), the cell
number decreased on the adaxial side of the main leaf midrib and increased on the abaxial
side of the lateral leaf midrib in OE lines (Figure 3B,C). In contrast, the cell number
only decreased on the abaxial side of the lateral leaf midrib in SRDX lines (Figure 3D,E).
This suggests that the inwardly curled leaves of OE lines may be due to the asymmetric
differentiation of the cells along the adaxial and abaxial sides, and the chief function of
PagKNAT2/6b may be to regulate the asymmetric differentiation of the lateral leaf midrib
based on the SRDX phenotype.
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Figure 3. Abnormal expression of PagKNAT2/6b affects leaf adaxial-abaxial development. The left
panel of (A–E) are morphologic overviews of LPI3. The white dotted line shows the positions for
microsection preparation in the middle and right panels. The middle panel shows views of the main
leaf midrib, and the red dotted lines point to the differences on the adaxial side of the main leaf
midrib in different genotypes (A–E). The right panel shows views of the lateral leaf midrib, and the
black arrows and red dotted lines show the difference on the abaxial side of the lateral leaf midrib of
different genotypes (A–E). (A–E), Ctrl, OE5, OE7, SRDX1, and SRDX20, respectively. Bars = 100 µm.
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2.3. Key Genes for Leaf Development Are Affected in PagKNAT2/6b Transgenic Plants

As overexpression of PagKNAT2/6b altered the leaf shape, we analyzed the gene expres-
sion profiles during the leaf expansion stage (from LPI2 to LPI4) in two-month-old PagK-
NAT2/6b transgenic and control lines using RNA-Seq. Compared with the control plants,
1999 and 1051 genes were up-regulated and 1664 and 733 genes were down-regulated in
OE5 and OE7, respectively (Figure S1). In the SRDX lines, 60 up- and 68 down-regulated
genes were identified in SRDX1, but 945 up- and 1316 down-regulated genes were identi-
fied in SRDX20, respectively (Figure S1a). The difference in the number of differentially
expressed genes (DEGs) between the two SRDX lines might be caused by the difference in
the expression levels of PagKNAT2/6b-SRDX. A total of 144 common-DEGs were identified
(Table S1A), which were defined as the opposite expression patterns in the OE and SRDX
lines, i.e., 107 genes were up-regulated in OE5 or OE7 but down-regulated in SRDX1 or
SRDX20, and 37 genes were down-regulated in OE5 or OE7 but up-regulated in SRDX1
or SRDX20 (Figure 4A). Among the common-DEGs, ten known leaf development-related
genes were selected as key-DEGs (Table S2) and further validated by qRT-PCR, and whose
expressions were consistent with that of the RNA-Seq (Figure 4B).
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Figure 4. The analysis of changes in gene expression in leaves in PagKNAT2/6b transgenic lines.
(A) Heatmap of common differentially expressed genes (common-DEGs) in control plants (Ctrl) and
PagKNAT2/6b transgenic lines. A total of 107 genes were up-regulated in OE5 or OE7 and down-
regulated in SRDX1 or SRDX20, and 37 genes were down-regulated in OE and up-regulated in SRDX
lines. The ten key-DEGs related to leaf development are marked on the right. (B) qRT-PCR validation
of the relative expression of the key-DEGs. Asterisks denote significant differences compared to Ctrl,
* p < 0.05 or ** p < 0.01.
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To validate the potential function of the common-DEGs, we generated a 1-hop co-
expression network centered on PagKANT2/6b and the common-DEGs based on the Populus
Gene Atlas database covering various tissues and organs (Figure S1B). The GO enrichment
analysis of genes in the co-expression network revealed that the common-DEGs affected
by the mis-expression of PagKNAT2/6b were associated with the biological processes of
“response to oxidative/biotic/chemical stresses” and “cell wall organization/modification”
(Figure S1C). These results indicate that poplars overexpressing PagKNAT2/6b mimic the
changes in leaf morphogenesis in response to stress, and these changes are also associated
with cell wall organization.

2.4. PagKNAT2/6b Directly Activates PagBOP1/2a Expression

Among the key-DEGs, PagBOP1/2a and PagBOP1/2b, orthologs of leaf polarity develop-
mental genes BOP1 and BOP2 in Arabidopsis [29], were highly induced in PagKNAT2/6b-OE
lines and repressed in SRDX line (Figure S2). The leaf morphology of PagKNAT2/6b over-
expressing poplars was similar to BOP1 and BOP2 overexpressing Arabidopsis [25]. The
expression of PagBOP1/2a in the leaf of PagKNAT2/6b OE and SRDX significantly increased
and decreased than that of PagBOP1/2b. Moreover, the expression of PagBOP1/2a was
rapidly induced by drought stress, which is similar to PagKNAT2/6b (Figure S3). There-
fore, we tested the transactivation activity of PagKNAT2/6b to the promoter of PagBOP1/2a
using a transient expression assay. As shown in Figure 5A, the promoter of PagBOP1/2a
was highly activated by PagKNAT2/6b. To further investigate whether the activation
of PagBOP1/2a by PagKNAT2/6b was dependent on the previously identified cis-acting
element “TGAC” of its homolog gene KN1 in maize, we divided the 500-bp PagBOP1/2a
promoter region (Pro) into two fragments (“Pro1” containing two “TGAC” elements and
“Pro2” without “TGAC”) and compared the activation of PagKNAT2/6b to the fragments
using Y1H assay. Interestingly, PagKNAT2/6b could bind to the “Pro2” without “TGAC”
of PagBOP1/2a promoter but could not bind to the “Pro1” containing two “TGAC” ele-
ments (Figure 5B). This result suggested that PagKNAT2/6b might bind to the promoter of
PagBOP1/2a through other cis-acting elements and activate its expression in poplar.

To discover the cis-acting elements recognized by PagKNAT2/6b in poplar, we per-
formed a transcription factor-centered yeast one-hybrid (TF-centered Y1H) assay [30].
Sequencing analysis of 144 positive clones revealed that 20 harbored the insertion sequence
“GCCTCTT”, which overlapped with the putative nodulin consensus sequence NOD-
CON2GM “CTCTT” when analyzed using the New PLACE webserver. In addition, the
Y1H assay confirmed the specific binding of PagKNAT2/6b to the “CTCTT” sequence
(Figure S4). Meanwhile, we found all of the key-DEGs containing the “CTCTT” element
through screening the 2-kb promoter regions of key-DEGs, and the PagBOP1/2a promoter
had the highest number of 13 “CTCTT” elements (Table S3). The results indicated that
PagKNAT2/6b might directly regulate these leaf development-related genes to affect leaf
development in poplar.

We then rescanned the 500-bp PagBOP1/2a promoter region and identified 5 “CTCTT”
binding sites (Figure S5). To further verify the binding activity of PagKNAT2/6b to
“CTCTT”, the 500-bp promoter of PagBOP1/2a was re-divided into three fragments P1,
P2, and P3, which contain 0, 2, and 3 “CTCTT” binding sites, respectively (Figure 5C).
Subsequently, we mutated 2 “CTCTT” sites to “GGGGG” in fragment P2 and used it as
a negative control (P2M). Based on the Y1H assay, PagKNAT2/6b can bind to P2 and P3
that contain “CTCTT”, but not P1 and P2M (Figure 5C). Moreover, the EMSA experiment
showed that the DNA-Protein complex could be observed when the PagKNAT2/6b protein
interacted with the 3× “CTCTT” sequence, and the signal faded gradually by increasing
competition for unlabeled probes (Figure 5D). These results indicated that PagKNAT2/6b
directly activates the expression of PagBOP1/2a through binding to the “CTCTT” element.
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The 2-kb promoter region of PagBOP1/2a was used to construct the reporter vector. Asterisks represent
significant differences compared to control, ** p < 0.01. (B) Yeast one-hybrid assay to examine binding
affinity of PagKNAT2/6b for the different fragments including “TGAC” elements or not of the
promoter of PagBOP1/2a. PagBOP1/2a-Pro (500-bp promoter region), PagBOP1/2a-Pro1 (including
two “TGAC” elements, the black lines), and PagBOP1/2a-Pro2 (without “TGAC” elements) were
inserted separately into vector pHIS2 and then co-transformed into Y187 with PagKNAT2/6b-AD
(pGAD-Rec2-PagKNAT2/6b), respectively. (C) Yeast one-hybrid assay to examine binding affinity of
PagKNAT2/6b for the different fragments including “CTCTT” elements or not of the promoter of
PagBOP1/2a. PagBOP1/2a-P1 (without “CTCTT” elements), PagBOP1/2a-P2 (including two “CTCTT”
elements, the black lines), PagBOP1/2a-P3 (including three “CTCTT” elements), and PagBOP1/2a-
P2M (the two “CTCTT” elements in fragment P2 were mutated to “GGGGG”) were separately
inserted into vector pHIS2 and then co-transformed into Y187 with pGAD-Rec2-PagKNAT2/6b
(PagKNAT2/6b-AD), respectively. Vector combinations p53HIS2 + pGAD-Rec2-53 and p53HIS2
+ pGAD-Rec2-PagKNAT2/6b were used as the positive and negative control, respectively, in B
and C. (D) Electrophoretic mobility shift assay (EMSA) for detection of PagKNAT2/6b binding
to “CTCTT” sequence. EMSA was performed using the purified PagKNAT2/6b proteins and 3×
“CTCTT” sequence labeled with biotin as probes. Competition to the labeled probe was tested by
adding 100- and 200-fold excess of the unlabeled probes.

3. Discussion

Plants ensure meristem proliferation activities in response to various external stimuli
to modify tissue/organs morphology for enhancing plant adaptability [31]. For instance,
plants under long-term drought stress will reduce height and leaf size to cope with adverse
environments [32]. KNOX I genes are involved in maintaining meristems and the specificity
of lateral organs [33]. Dominant mutation of the first KNOX I gene KN1 of maize alters
patterns of development in the leaf [14]. Recently, AtKNAT3, a KNOX II member, has
been identified as a direct regulator in Arabidopsis leaf morphogenesis [34], indicating the
vital role of KNOX family in leaf development. In the perennial poplar, PagKNAT2/6b was
expressed in leaf primordium, axillary bud, and developing leaves (Figure 1). The altered
expression of PagKNAT2/6b severely affected the leaf shape of transgenic plants (Figure 2).

We proposed that PagKNAT2/6b affects leaf axial development by modulating tissue
growth relative to a polarity field. Firstly, PagKNAT2/6b was expressed in adaxial, proximal,
and medial side cells along the adaxial-abaxial, proximal-distal, and medial-lateral axis,
respectively (Figure 1), indicating that it may be involved in axial development. Secondly,
altered expression of PagKNAT2/6b resulted in changes in the leaf length/width ratio, which
is caused by differences in cell differentiation on the proximal-distal and medial-lateral
axis (Figure 2G), as well as the asymmetric development of the main and lateral veins on
the adaxial and abaxial sides (Figure 3). This indicated that PagKNAT2/6b regulated leaf
morphology by influencing leaf triaxial development. Moreover, key-DEGs related to leaf
development identified from RNA-Seq data support the regulatory role of PagKNAT2/6b in
leaf development.

To analyze the downstream target genes of PagKNAT2/6b in leaf development, we used
a TF-centered Y1H assay [30] to identify the cis-acting element bound by PagKNAT2/6b.
A new “CTCTT” cis-element was found as the binding site for PagKNAT2/6b, which is
different from the canonical “TGAC” [35]. PagBOP1/2a, as the key factor in leaf develop-
ment, contains 5 “CTCTT” elements in its 500-bp promoter and is highly up-regulated in
leaves of PagKNAT2/6b overexpression plants (Figures 4B and S2B). The leaf phenotypes
of PagKNAT2/6b overexpression were similar to 35S::BOP1 and 35S::BOP2 Arabidopsis. In
addition, BOP1 and BOP2 are relatively upstream transcription factors in establishing leaf
polarity through regulating PHB, FIL, and AS2 [25,29]. Therefore, to confirm the potential
activation of PagKNAT2/6b on the expression PagBOP1/2a, we have performed transient
expression and EMSA assay (Figure 5A,D), which showed that PagKNAT2/6b could up-
regulate PagBOP1/2a through binding to its “CTCTT” cis-element in the promoter region.
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Taken together, we concluded that PagKNAT2/6b could directly regulate PagBOP1/2a to
modulate leaf polarity development.

The first confirmed KNOX I gene conserved binding cis-acting element is “TGAC”
reported in barley [36]. Then, it has been shown that KNOX I gene KN1 in maize can
bind to the “TGAC” elements in the promoter regions of HB, YABBY, and REVOLUTA
(REV), and these genes may coordinate the development of leaf polarity [22]. In this study,
we identified that PagKNAT2/6b binds to the NODCON2GM element “CTCTT” of Pag-
BOP1/2a in poplar leaf development, instead of the reported binding sequence “TGAC”
of gibberellin catabolism gene ga20x1 by KN1 in the establishment and maintenance of
SAM in maize [35]. The NODCON2GM element bonded by PagKNAT2/6b, as a nodulin
consensus sequence, is conserved among nodulin genes [37,38]. Interestingly, MtKNAT3,
MtKNAT4, and MtKNAT5 (MtKNAT3/4/5) are highly expressed during nodule formation,
and MtKNAT3, an orthologue of the Arabidopsis KNAT3, overexpression could induce
the formation of root-nodules in Medicago truncatula [39]. In addition, MtEFD1 (Ethylene
response Factor required for nodule Differentiation) is regulated by MtKNAT3/4/5 during
nodule development [40]. Two “CTCTT” elements were found in the 500-bp promoter re-
gion of MtEFD1 (Figure S5). These results suggested that KNOX might regulate the nodulin
genes through “CTCTT” elements to promote nodulation in M. truncatula. Therefore, in
contrast to the previous suggestion that KN1 regulates the expression of ga2ox1 by binding
the “TGAC” element in maize, it was shown that their members may have evolved to
different transcriptional regulation modes in different scenarios across tissues/species.

Here, we proposed PagKNAT2/6b-PagBOP1/2a regulatory module (Figure 6). When
drought signals stimulate the expression of PagKNAT2/6b in poplar [27], the high abundance
of PagKNAT2/6b directly activates the expression of PagBOP1/2a. The latter changes the
rate of axial differentiation of cells, thereby regulating the leaves developed in a small and
wrinkled manner. Size-reduced and curled leaves can effectively reduce water evaporation,
thus increasing drought resistance.
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Figure 6. The PagKNAT2/6b-PagBOP1/2a regulatory module regulates leaf morphology under
drought stress. The leaves receive drought signals and produce more PagKNAT2/6b proteins, which
bind to the “CTCTT” element of the PagBOP1/2a promoter and activate the expression of PagBOP1/2a
for the regulation of leaf development.
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4. Materials and Methods
4.1. Plant Materials

Hybrid poplar (Populus alba × P. glandulosa) ‘84K’ and the 35S:PagKNAT2/6b, PagK-
NAT2/6b-SRDX, and pPagKNAT2/6b::GUS transgenic plants were obtained previously [21].
One or two-month-old soil-cultured poplar materials were grown at 23–25 ◦C under a
16/8 h (day/night) photoperiod. Leaf plastochron index (LPI) was used to index the age of
leaves [28].

4.2. Leaf Morphological Analysis

The leaf of non-transgenic controls (84K) and PagKNAT2/6b transgenic lines were
detached and photographed. The leaves were spread and fixed in 5% agarose and the
length and width of the leaves were calculated using ImageJ software. Subsequently, the
ratio of length/width was calculated.

4.3. Tissue Sections Preparation and Microscopy

GUS staining was conducted as previously reported [41]. In brief, one-month-old
PPagKNAT2/6b::GUS transgenic plants were incubated in 90% acetone for at least 2 h at ice, and
washed three times with wash buffer (0.2 mol/L NaH2PO4, 0.2 mol/L Na2HPO4, 2 mmol/L
K3[Fe(CN)6], 2 mmol/L K4[Fe(CN)6]) and then set the plants in GUS stain buffer (wash
buffer with 1 mM X-Gluc) at 37 ◦C for 10 h. Following staining, plants were cleared with
75% ethanol. A series of leaves from PPagKNAT2/6b::GUS transgenic plants were sectioned
using a vibratome (Leica). The SAM, LPI1, and LPI2 of PPagKNAT2/6b::GUS transgenic lines
were cut into a 30-µm-thick section using vibratome and stained with 0.05% (w/v) toluidine
blue O for 1 min. Finally, the sections were observed with bright light under Zeiss Axio
Scope (Zeiss, Docuval, Germany).

4.4. Quantitative Real-Time PCR

RNA was isolated using an RNeasy Plant Mini Kit following the manufacturer’s
protocols (Qiagen, Hilden, Germany). cDNA synthesis was carried out with 1 µg RNA
using the Superscript III reverse transcription kit (Thermo Fisher, In. Co. Ltd., Waltham,
MA, USA). qRT-PCR was performed using the SYBR Premix ExTaqTM Kit (TaKaRa, Beijing,
China) on a Roche Light Cycle 480 Real-time PCR System (Roche, Basel, Switzerland).
At least six seedlings were pooled for each sample and at least three biological replicates
were examined. Relative expression levels were normalized to the expression of PtACTIN
(Potri.001G309500) and PtUBIQUITIN (Potri.001G418500). The gene-specific primers for
qRT-PCR are listed in Table S4.

4.5. RNA-Seq and Data Analyses

LPI2 to LPI4 leaves were collected separately from two-month-old control, PagK-
NAT2/6b overexpression and PagKNAT2/6b-SRDX plants, and total RNAs were isolated
using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany), three biological replicates for
each genotype. Approximately 20 µg of total RNA was used for Illumina sequencing at
GENE DENOVO (Guangzhou, China). Each library was constructed by NEBNext Ultra
RNA Library Prep Kit for Illumina (NEB, Beijing, China). Fragment per kb per million
reads (FPKM) was used to estimate the abundance of the transcripts. The DESeq2 package
(http://www.r-project.org/) was used to identify differentially expressed genes (DEGs)
across genotypes. We identified genes with |log2FC|>1 and a false discovery rate (FDR)
corrected p < 0.05 as significant DEGs. The functional analysis of DEGs was performed us-
ing Gene Ontology (GO) enrichment through AgriGo [42]. The sequencing reads from each
sequencing library have been deposited at National Center for Biotechnology Information
(NCBI) with the Project ID PRJNA719233.

http://www.r-project.org/
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4.6. Co-Expression Analysis

For co-expression network construction, expression data were obtained in the Populus
Gene Atlas database (https://phytozome.jgi.doe.gov) which covers various tissues and
organs. Pearson correlation coefficients (PCCs) were calculated in parallel between all pairs
of gene expression vectors. A threshold of p < 0.05 and absolute PCC ≥ 0.90 were applied
to the significant correlations, and their co-expression relationships were visualized by
Cytoscape [43].

4.7. Transient Expression Assay

Transient expression assays in Nicotiana benthamiana leaves were performed as pre-
viously described [44]. The 2-kb promoter of PagBOP1/2a was amplified and cloned into
pGreenII 0800-LUC vectors, which generated the reporter constructs PPagBOP1/2a::LUC, re-
spectively. The effector (35S::PagKNAT2/6b) was constructed by cloning the open reading
frame of the PagKNAT2/6b into the pGreenII 62-SK vector. The recombinant plasmids and
negative control vectors were introduced into Agrobacterium tumefaciens GV3101. The effec-
tor and reporter vectors were then co-transformed into N. benthamiana leaves as previously
described [44]. GloMax 20/20 Luminometer (Promega, Madison, WI, USA) and a Dual-
Luciferase Assay Kit (Promega, Madison, WI, USA) were used to test the LUC activity. The
experiment was performed more than three times and included three biological replicates
for each experiment.

4.8. Yeast One-Hybrid Assay (Y1H)

Yeast one-hybrid assay was performed as previously reported [45]. The assay was
carried out using the Matchmaker™ Gold Yeast one-hybrid System (Clontech, Beijing,
China). Different promoter fragments from the PagBOP1/2a promoter were inserted into
the pHIS2 vector as the reporter. The coding sequence (CDS) of the PagKNAT2/6b gene
was inserted into the pGADT7-Rec2 vector to generate the effector. Then, the effector and
reporter constructs were co-transformed into the Y187 yeast strain, and the transformed
yeast cells were selected and screened on SD medium lacking leucine (Leu) and trypto-
phan (Trp) (SD/–Leu/–Trp, DDO) and on SD medium lacking Leu, Trp, and histidine
(His) (SD/–Leu/–Trp/–His, TDO) medium with 40 mM 3-AT (3-Amino-1, 2, 4-triazole).
p53HIS2 + pGAD-Rec2-53 and pHIS2 + pGAD-Rec2-PagKNAT2/6b were used here as
positive controls and negative control, respectively. The experiment was performed three
times and similar results were obtained.

4.9. Transcription Factor (TF)-Centered Y1H Analysis

TF-Centered Y1H screening was performed to determine the cis-acting elements bound
by PagKNAT2/6b according to Ji et al. [30], and the Y187 yeast library containing random
short DNA sequences insertion of pHIS2 was kindly provided by Prof. Yucheng Wang
(Shenyang Agricultural University) as baits. The CDS of PagKNAT2/6b was cloned into
vector PGADT7-Rec2 as the prey. In brief, 2 mL tube containing Y187 yeast library cells,
1 µg PGADT7-PagKNAT2/6b, 25 µL carrier DNA (stock concentration 2 mg/ml), 17 µL
LiAc (stock concentration 1 M), and 120 µL PEG3350 (stock concentration 50%) were
incubated at 42 ◦C for 2 h. The yeast cells were pelleted by centrifuge at 700× g for 5 min at
room temperature, then the supernatant was removed, and the pellet was re-suspended
in 100 µL water. The cells were spread on DDO and TDO containing 40 mM 3-AT to
select the transformants. p53HIS2 + pGAD-Rec2-53 and Y187 yeast library + pGADT7-
Rec2 were used here as positive controls and negative, respectively. All positive clones
were sequenced after amplification with F and R primers of pHIS2 (Table S1), and the
insertion sequences were analyzed to determine cis-acting elements using New PLACE
(https://www.dna.affrc.go.jp/PLACE, 5 March 2022). Finally, the selected element was
validated with Y1H as described above.

https://phytozome.jgi.doe.gov
https://www.dna.affrc.go.jp/PLACE
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4.10. Electrophoretic Mobility Shift Assay (EMSA)

The His-PagKNAT2/6b recombinant proteins were prepared according to our previous
study [21] and purified with beads IDA-Nickel (Sloarbio, Beijing, China). The probes with
or without biotin labeling were synthesized by the company (Tsingke, Beijing, China). The
probes were then incubated with the recombinant proteins and assayed using the EMSA
kit (Beyotime, Shanghai, China). The sequence of the probe used for EMSA is listed in
Table S4.

4.11. Statistical Analysis

Data are presented as means ± standard deviations (SD). The significance of differ-
ences was calculated using the Student’s t-test. Differences were considered significant
when p < 0.01. At least three biological replicates were used in all tests.

5. Conclusions

In conclusion, PagKNAT2/6b directly activates the expression of PagBOP1/2a under
drought stress to change leaf shape, which confirmed our previous hypothesis that PagK-
NAT2/6b acts as an upstream key transcription factor influencing leaf morphogenesis
by regulating the expression of downstream leaf development-related genes. Therefore,
PagKNAT2/6b-PagBOP1/2a regulatory module provides a strategy for the molecular
breeding of woody plants with drought tolerance by adjusting leaf architecture.
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