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Abstract: High mobility group box 1 protein (HMGB1), a highly conserved nuclear DNA-binding
protein, is a “damage-associated molecular pattern” molecule (DAMP) implicated in both stimulating
and inhibiting innate immunity. As reviewed here, HMGB1 is an oxidation-reduction sensitive
DAMP bearing three cysteines, and the post-translational modification of these residues establishes
its proinflammatory and anti-inflammatory activities by binding to different extracellular cell surface
receptors. The redox-sensitive signaling mechanisms of HMGB1 also occupy an important niche
in innate immunity because HMGB1 may carry other DAMPs and pathogen-associated molecular
pattern molecules (PAMPs). HMGB1 with DAMP/PAMP cofactors bind to the receptor for advanced
glycation end products (RAGE) which internalizes the HMGB1 complexes by endocytosis for in-
corporation in lysosomal compartments. Intra-lysosomal HMGB1 disrupts lysosomal membranes
thereby releasing the HMGB1-transported molecules to stimulate cytosolic sensors that mediate
inflammation. This HMGB1-DAMP/PAMP cofactor pathway slowed the development of HMGB1-
binding antagonists for diagnostic or therapeutic use. However, recent discoveries that HMGB1
released from neurons mediates inflammation via the TLR4 receptor system, and that cancer cells
express fully oxidized HMGB1 as an immunosuppressive mechanism, offer new paths to targeting
HMGB1 for inflammation, pain, and cancer.

Keywords: HMGB1; RAGE; TLR4; DAMP; SIRT1; α7-nicotinic acetylcholine receptor; nociceptor;
inflammation; cancer; COVID-19

1. Introduction

High mobility group box 1 protein (HMGB1)s a DNA-binding molecule bound to chro-
matin in all eukaryotic cells [1]. When passively released by dying cells or actively secreted
by activated immune and other cells, it is an alarmin and damage-associated molecular
pattern molecule (DAMP). In general, alarmins perform distinct intracellular tasks during
homeostatic conditions but promote inflammation to initiate repair mechanisms when
released extracellularly in response to danger signals [2]. However, exaggerated alarmin
responses can increase tissue injury and cause organ dysfunction, a central mechanism
in the pathogenesis of acute and chronic inflammatory diseases. Extracellular HMGB1
has been implicated in chemokine, cytokine, metabolic, inflammatory, neuroinflammatory,
and anti-inflammatory activities, a diverse range of functions that depend on the molec-
ular binding partners of HMGB1, its extracellular or intracellular location, and its redox
state [3,4].

2. Extracellular HMGB1 Release

HMGB1 expresses 214 amino acids arranged in two consecutive DNA-binding HMG
box domains (box A and box B) and an acidic C-terminal tail, containing a stretch of thirty
continuous glutamic and aspartic acids (Figure 1).
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Figure 1. Position of binding sites for HMGB1-receptors, heparin, LPS, and the two nuclear localization sites (NLSs) in the
HMGB1 molecule.

The two DNA-binding boxes of HMGB1 contain three cysteines and the redox state
of each of these residues is critically important for the ability of the nuclear molecule
to be secreted and for the extracellular receptor usage. All three cysteines reside in a
fully reduced state with thiol groups (all-thiol HMGB1) in inactive cells. Mild HMGB1
oxidation generates disulfide HMGB1 characterized by a disulfide bond between Cys23
and Cys45 while keeping Cys106 in the reduced form. Further oxidation of HMGB1 will
produce sulfonyl groups on any or all cysteine residues creating an isoform called sulfonyl
HMGB1 [1]. Homo-dimerization of HMGB1 at Cys106 has recently but described to take
place both in the nucleus and extracellularly [5]. The biological significance of this molecule
needs further investigation.

Active HMGB1 release occurs in several steps. First, nuclear HMGB1 translocates
to the cytoplasm, a process that requires JAK-STAT1 signaling that will generate acety-
lation of critical lysine residues located in the two nuclear localization sites (NLSs) [6,7]
(Figure 1). Hyperacetylation of HMGB1 prevents the continuous bidirectional shuttle of
HMGB1 between the cytoplasm and the nucleus present in all cells and leads to cytoplasmic
accumulation of HMGB1. Nuclear hyperacetylation is also accomplished via increased
histone-acetylase (HAT) activity as well as decreased histone-deacetylase (HDAC) activ-
ity [7–9]. Several agents including metformin, resveratrol, and curcumin (which all enhance
sirtuin 1 (SIRT1) deacetylase activity) decrease extracellular HMGB1 release and reduce
HMGB1-dependent inflammation [10–18]. Decreased activity of SIRT1, a nicotinamide
adenine dinucleotide-dependent HDAC, occurs in aging and senescence, suggesting a
role for HMGB1 in the inflammation associated with aging (“inflammageing”) [19–21].
Additional HDACs including HDAC1 and HDAC4 have likewise been demonstrated to
efficiently inhibit active HMGB1 release [8,9,22]. Ethanol reduces HDAC1/4 performance
and thus enhances neuronal HMGB1 release [9]. Ischemia-reperfusion injury is another
cause of reduced nuclear HDAC1 and HDAC4 activities that generate increased levels of
extracellular hyperacetylated HMGB1 [8].

Intranuclear oxidation of HMGB1 to the disulfide isoform is also a prerequisite for
the translocation of HMGB1 to the cytosol [23]. Nuclear peroxiredoxins I and II induce
an intramolecular disulfide formation between Cys23 and Cys45 to generate disulfide
HMGB1 that will be transported out of the nucleus by binding to the nuclear exportin
chromosome-region maintenance 1 (CRM1) interacting with the two nuclear export signal
sites present in each of the HMG boxes of HMGB1 [7].

Second, cytoplasmic HMGB1 is released extracellularly via several mechanisms. One
route proceeds via exocytosis of secretory lysosomes, a pathway also used for IL-1β se-
cretion, although HMGB1 and IL-1β are stored in separate vesicles [24] (Figure 2A). The
intracellular events that control the sequestration of cytoplasmic HMGB1 in secretory lyso-
somes remain to be elucidated. A second route for HMGB1 to exit cells is via its expression
on the surface of microparticles derived from activated platelets [25,26]. Vascular injury
induces the massive extracellular release of HMGB1 from platelets displaying an important
role in the pathogenesis of thrombosis formation and neutrophil activation [27–29].
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Figure 2. Selected examples of mechanisms for HMGB1 release. (A) HMGB1 lacks a secretory signal
sequence and is instead packed into secretory lysosomes in hematopoietic cells, before being released
extracellularly. (B) Pyroptosis and necrosis are both lytic processes that generate HMGB1 release,
(C) Inflammasome-activated gasdermin D creates pore formation in the outer cell membrane enabling
HMGB1 release even before cell lysis may occur. (D) Stimulated nociceptors release HMGB1 in a
retrograde manner.

Programmed, proinflammatory cell death (pyroptosis) is an additional mechanism
for the regulated release of HMGB1, which is hyperacetylated and expresses the disulfide
redox isoform [30–32] (Figure 2B,C). This process takes place due to increased caspase-
1/caspase-11 activity that generates inflammasome activation and gasdermin D cleavage
inducing pore formation and eventually ruptures the outer cell membrane [33]. Gasdermin
D-generated nanopore formation and pyroptosis have been implicated as the dominant
pathway for HMGB1 release during gram-negative sepsis when caspase-1/caspase-11
double-deficient mice express markedly reduced systemic HMGB1 levels [34]. Recent evi-
dence indicates that stimulated sensory neurons actively secrete HMGB1 in an antidromic
fashion by molecular mechanisms that remain elusive [35] (Figure 2D). The neuronally
released HMGB1 is most likely disulfide HMGB1 since it acts via TLR4 to mediate in-
flammation and pain [13,36–47] and disulfide HMGB1 is the single redox form of HMGB1
capable of binding to the MD-2/TLR4 receptor complex [48]. Functional consequences
regarding the neuronal HMGB1-regulation of inflammation will be discussed later in
this review.

Various forms of cell deaths generate passive HMGB1 release expressing different
isoforms. Necrosis releases fully reduced, non-acetylated HMGB1 (the habitual nuclear
HMGB1 isoform), which acts as a chemotactic factor when bound to CXCL12 gener-
ating enhanced CXCR4 signaling [49,50]. Apoptosis causes insignificant extracellular
HMGB1 release since the nuclear HMGB1 strongly attached to modified DNA is retained in
membrane-sealed apoptotic bodies [51]. However, if the phagocytic clearance of the apop-
totic bodies fails this debris may undergo secondary-necrosis and discharge non-acetylated
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HMGB1 mainly in the sulfonyl redox isoform [52]. As already described, pyroptosis
generates disulfide, hyperacetylated HMGB1 [30–32].

3. HMGB1 Receptor Usage

The redox state of HMGB1 determines the ability for receptor interactions and thus
the functional outcome of extracellular HMGB1 interactions. TLR4 and the receptor for
advanced glycated end-products (RAGE) are the most extensively studied HMGB1 recep-
tors. TLR4 is the HMGB1 receptor causing cytokine and type 1 interferon production [53]
(Figure 3). This interaction requires disulfide HMGB1 to bind at low nanomolar avidity
to the TLR4 co-receptor MD-2, in an analogous way to LPS, but attaching at another
position [48].

Figure 3. Disulfide HMGB1 binds to MD-2 and activates the TLR4 receptor complex via two separate
intracellular signal pathways. Proinflammatory cytokines are formed when the adapter molecule
TIRAP gets associated with toll-like receptor 4 and the myeloid differentiation factor 88 (MyD88) that
activates the NF-κB signaling pathway. Interferon-β is produced when TRAM (TRIF-related adaptor
molecule) associates with TRIF (TIR-domain-containing adapter-inducing interferon-β).

RAGE is a multi-ligand receptor expressed by many cell types, predominantly as a
preformed intracellular molecule available for rapid NF-κB-controlled translocation to
the cell surface [54,55]. RAGE was originally identified as an HMGB1-receptor in the
context of studies of neurite outgrowth in the fetal brain without any signs of concomi-
tant proinflammatory activity. This RAGE-binding site in HMGB1 is located in sequence
150–83 [56] (Figure 1). One additional RAGE-binding site situated in the HMGB1 box A
domain (sequence 23–50) was later identified and RAGE-interaction with this site has pro-
found proinflammatory effects [57]. Extracellular HMGB1 readily forms heterocomplexes
with multiple extracellular DAMPs and PAMPs [58], which are subsequently endocytosed
by HMGB1 binding to RAGE for further intracellular transport to the endolysosomal
compartment [34,59–69]. Heparin, recombinant truncated HMGB1 box A protein, and
acetylcholine each blocks the endocytosis of HMGB1 and its partner molecules [60,70].
HMGB1 heterocomplexes are endocytosed via RAGE expressed on macrophages and finally
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accumulate in the lysosomal compartment [34] (Figure 4). HMGB1, at high concentration,
then accomplishes a unique function inside acidic lysosomes because HMGB1 disrupts the
lysosomal membrane at low pH allowing its partner molecules to circumvent degradation
and leak into the cytosol. In contrast, any molecule imported into the lysosomal system via
antibodies in the absence of HMGB1 is normally degraded there. The HMGB1-imported
extracellular DAMPs and PAMPs released from the ruptured lysosomes will subsequently
bind and activate cognate cytosolic sensors, a mechanism that would not occur in the ab-
sence of the RAGE/HMGB1-assisted transport. Stimulation of proinflammatory cytosolic
sensors generates inflammasome activation, pyroptosis, the release of proinflammatory
mediators, and activation of the extrinsic coagulation cascade [34,71,72]. Inflammasomes
cleave and activate inflammatory caspases such as caspase 1, 4, 5, and 11 resulting in acti-
vation of cytoplasmic gasdermin D. The truncated gasdermin D then forms oligomerized
molecules producing nanopores in the plasma membrane culminating in pyroptotic cell
death (Figure 2C). This process in live and dying cells mediates the release of IL-1α, IL-1β,
IL-18, and HMGB1 [30,31,71] (Figure 4). Furthermore, cleaved gasdermin D also activates
a membrane-located scramblase inducing phosphatidylserine externalization on the cell
surface, where the molecule assembles a complex of cofactor proteases of the coagulation
cascade initiating coagulation [33,73,74].

Figure 4. LPS needs HMGB1 to trigger severe inflammation. Injected LPS and type 1 interferon,
(which generates HMGB1 release) in TLR4 gene-deficient mice is lethal in contrast to when adminis-
tered to caspase-11 knockout mice [75,76]. The initial event in LPS toxicity is due to extracellular LPS
activation of cell surface TLR4, which triggers extracellular HMGB1 release. HMGB1 has two LPS-
binding sites (Figure 1) and thus forms extracellular HMGB1-LPS complexes that get endocytosed
via RAGE to finally reach the cytosol culminating in caspase-11 activation (in mice; caspases 4/5 in
humans) causing inflammation and coagulation.

Surprising new findings in tumor biology reveal that oxidized HMGB1 (sulfonyl
HMGB1) is an anti-inflammatory molecule that signals via RAGE [77] (Table 1). Sulfonyl
HMGB1 has until now been considered as a functionally inert molecule, mainly defined
by an absent capacity to generate inflammation, but these new observations implicate
sulfonyl HMGB1 in recruiting immunocompetent cells which inhibit cytotoxic cells, thereby
impairing their ability to attack and kill the tumor cells. Immunosuppressive cells recruited
by sulfonyl HMGB1 include regulatory T lymphocytes (Tregs), M2 macrophages, and
myeloid-derived suppressor cells (MDSC). Sulfonyl HMGB1 also downregulates antigen-
presenting cells including dendritic cells and plasmacytoid dendritic cells (summarized in
Table 1).
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Table 1. Extracellular HMGB1 redox forms determine functional outcomes in inflammation.

HMGB1 Redox
Form Partner Molecule Receptor Biological

Response Reference

All-thiol CXCL12 CXCR4 Chemotaxis [50]
Disulfide None TLR4 Cytokines [53]

Sulfonyl Unknown RAGE
Accumulation of Tregs and MDSCs,
enhanced M2/M1 macrophage ratio

and dendritic cell tolerogenicity
[77]

Undetermined Many PAMPs and
DAMPs RAGE

Inflammasome activation,
hyperinflammation, coagulation,

pyroptosis
[34]

Undetermined None CD24+ Siglec-10 NF-κB inhibition [78]

Administration of HMGB1 inhibitors improved outcomes from cancer in several
experimental models. Anti-HMGB1 therapy inhibited tumor growth, diminished the
recruitment of immunosuppressive cells, and enhanced the antigen-presenting capacity of
tumor-associated dendritic cells [77]. Furthermore, the therapeutic efficacy of checkpoint
immune inhibitors was enhanced when concomitant HMGB1 blocking treatment was
provided. These results suggest a very intriguing scenario where sulfonyl HMGB1 may
occupy a supportive role in the resolution of inflammation, but a detrimental role in the
defense against tumors. The results suggest further studies of the mechanism are warranted
to determine the role of sulfonyl HMGB1/ RAGE-dependent biology in cancer because it
offers an interesting experimental therapeutic strategy (Figure 5).

Figure 5. Fully oxidized HMGB1 inhibits cytotoxicity versus tumors. Tumor secreting sulfonyl
HMGB1 which attracts M2 macrophages, regulatory T cells, and myeloid-derived suppressor cells
(MDSC) which all inhibit a cytotoxic cell response against the tumor.

The immunosuppressive regulation of sulfonyl HMGB1 via RAGE is not the only
HMGB1 anti-inflammatory mechanism [77]. It has previously been demonstrated that
HMGB1, of undefined redox isoform, binds to CD24 (Table 1) [78]. This cell surface
sialoglycoprotein is expressed by several cell types including dendritic cells, where it
provides costimulatory signals to T cells but lacks a mechanism for signal transduction.
HMGB1-CD24 forms a trimolecular complex on dendritic cells with the signaling receptor
Siglec-10, which subsequently associates with the tyrosine phosphatase SHP-1, a negative
regulator of nuclear factor-kB (NF-κB) activation [78] (Figure 6).

The consequence of these molecular events is thus downregulated inflammation.
Experimental administration of CD24-Fc fusion protein inhibited inflammation in pre-
clinical models of virus infection, autoimmunity, and graft-versus-host disease [79–81].
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Clinical studies based on the administration of soluble CD24 and CD24Fc are in progress
for patients with severe COVID-19 [82].

Figure 6. An anti-inflammatory HMGB1-dependent pathway. A trimolecular complex formed by HMGB1, CD24, and
Siglec-10 generates intracellular cell signaling that turns off NF-κB-dependent inflammatory processes.

4. Sensory Neurons Direct Inflammation via HMGB1 Release

Sensory neurons, termed “nociceptors” mediate neuroinflammation through the ret-
rograde or “antidromic” release of neuropeptides, neurotransmitters, and incompletely
defined mediators. Recently we reported that HMGB1 is a necessary and sufficient media-
tor of neuroinflammation because nociceptors harvested from transgenic mice expressing
channelrhodopsin-2 (ChR2) directly release HMGB1 when stimulated by light [35]. In
collagen antibody-induced arthritis in mice, ablation of neuronal HMGB1 decreased hyper-
algesia, delayed onset, and reduced intensity of joint inflammation and cartilage destruction
compared to wild type (WT) or HMGB1 floxed (HMGB1fl/fl) control mice (Figure 7).

Figure 7. Ablation of neuronal HMGB1 reduces joint inflammation. Polyarthritis was induced by
the administration of anti-collagen antibodies in mice. Wild type (WT) and HMGB1fl/fl control mice
developed severe polyarthritis. Significantly delayed onset and reduced severity of polyarthritis were
observed in neuronally HMGB1 gene-deficient mice (Syn-Cre/HMGB1fl/fl). *: p < 0.05, ****: p < 0.0001
vs. HMGB1fl/fl control. Reproduced from Yang et al. [35].
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Furthermore, sterile sciatic nerve injury produces inflammation, swelling, and hyper-
algesia in the paws of wild type mice (WT) and HMGB1 floxed HMGB1fl/fl mice, but these
responses are attenuated in neuronal-specific HMGB1 knock-out (Syn-Cre/HMGB1fl/fl)
mice (Figure 8A,B) [35]. These and other results indicate neuronal HMGB1 is required to
mediate nerve injury-induced tissue inflammation and neuropathic pain.

Figure 8. Ablation of neuronal HMGB1 reduces inflammation and hyperalgesia after sciatic nerve injury. Standardized
sciatic nerve injury was induced via nerve ligation. (A) HMGB1 levels were significantly increased in paw tissue from WT
and HMGB1fl/fl control mice in contrast to Syn-Cre/ HMGB1fl/fl mice (* p < 0.05, ** p < 0.01, *** p < 0.001). (B) Mechanical
sensitivity assessed using von Frey filaments and the Dixon up-down method to calculate the threshold response demon-
strated that hyperalgesia after sciatic nerve injury was significantly reduced in Syn-Cre/HMGB1fl/fl mice as compared to
HMGB fl/fl control mice (**** p < 0.0001). Reproduced from Yang et al. [35].

The redox state of the neuronally released HMGB1 is yet to be defined, but it is likely
the disulfide form because neuroinflammation and hyperalgesia are TLR4-dependent, and
disulfide HMGB1 is a specific TLR4 ligand [83–86]. Neuronal TLR4 KO mice are also
significantly protected from sciatic injury-induced allodynia and skin inflammation [87].
Other studies of global TLR4 knockout mice likewise indicate that TLR4 is required for
HMGB1-mediated hyperalgesia [83,84].

Active neuronal HMGB1 release is not restricted to peripheral sensory nerves but
has been demonstrated to occur in yet undefined neurons in the central nervous system
too [9,46,88–90]. Cultured primary cortical neurons stimulated by TNF release HMGB1 [88].
Ethanol triggers HMGB1 release from neurons in rat hippocampal-entorhinal cortex brain
slice cultures [9], as ethanol reduces HDAC activity which promotes the release of acety-
lated HMGB1. Targeting neuronal HMGB1 reduces the expression of TNF and IL-1β in
microglia cells in the cultured brain slices. Hyperexcitatory brain neurons from Alzheimer’s
patients also release HMGB1, which binds to TLR4 and mediates neurite degeneration [46].
A recently developed HMGB1-specific mAb blocking the TLR4-binding epitope of HMGB1
has demonstrated beneficial therapeutic effects in mouse models of preclinical Alzheimer´s
disease [46,91], and other neutralizing anti-HMGB1 mAbs exerted neuroprotection in a
rat model of Parkinson´s disease [89]. In the anti-HMGB1 mAb-treated group, HMGB1
was retained in the nucleus of neurons and astrocytes, whereas in the control mAb-treated
group cytoplasmic HMGB1 translocation was observed in both neurons and astrocytes.

In summary, these multiple observations suggest that HMGB1 is actively released dur-
ing neuronal depolarization and plays a key etiologic role in the initiation and amplification
of inflammation.
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5. HMGB1 in COVID-19

There are presently almost 200,000 publications about COVID-19 listed on PubMed
but only 40 of them investigated the role of HMGB1, out of which only 4 reports on
elevated systemic HMGB1 levels in COVID-19 patients [92–95]. This is a remarkably small
number considering that extensive necrosis and hyperinflammation in the disease should
generate substantial HMGB1 release. A hyperexcited HMGB1-RAGE axis would also be
expected since the respiratory tract macrophages, epithelial, and endothelial cells release
large amounts of extracellular HMGB1, and its cognate receptor RAGE is constitutively
abundantly expressed in the lungs only. It is therefore highly surprising that only a few
papers are documenting robustly increased systemic amounts of HMGB1 during the acute
stage of severe COVID-19. The HMGB1 ELISAs used in the four reports that demonstrated
high HMGB1 levels included antibodies with different specificities for HMGB1 than those
applied in standardized HMGB1 ELISAs used in the majority of HMGB1 studies. It is most
likely that these four papers reflect COVID-19 pathophysiology. We further speculate that
during the acute stage of the disease large amounts of extracellular endogenous DNA and
other DAMPs are released by extensive cell death. This combined with extracellular viral
RNA and other PAMPs bound to HMGB1 may interfere with HMGB1 assays. Standard
HMGB1 ELISA methods commonly include buffer steps to dissociate HMGB1 and partner
molecules bound to HMGB1 enabling the ELISA antibodies to recognize HMGB1. Based
on our unpublished results we suspect that some standardized HMGB1 ELISAs do not
perform accurately with COVID-19 plasma samples and fail to remove complex-bound
molecules efficiently from HMGB1, which produces confounding results.

This view is supported by our recent analysis of plasma samples from 9 COVID-19
patients with severe hyperinflammation using ELISA methods that revealed HMGB1 levels
within the normal range (Figure 9A). However, immunoblotting analysis under reducing
conditions of the same samples demonstrated highly elevated HMGB1 levels as compared
to normal controls indicating pathologically increased plasma concentrations (Figure 9B).
Pretreatment of the plasma samples with perchloric acid [96] to dissociate molecules at-
tached to HMGB1 shifted the ELISA results to demonstrate increased, pathological HMGB1
levels, despite that the harsh acidic handling partly damaged the samples (Figure 9A).
Taken together, it seems that there are exceptional problems regarding systemic HMGB1
quantification during acute COVID-19, due to yet undefined partner molecules attaching
strongly to HMGB1 and causing steric hindrance for antibody recognition.

Figure 9. Plasma HMGB1 levels are increased in patients with severe COVID-19. (A) Multiple plasma samples from
COVID-19 patients (27 samples from 9 patients) and healthy controls (14 samples from 4 healthy controls) were analyzed
in HMGB1 ELISA (IBL International GmbH, Germany). The samples were either pretreated by perchloric acid (PCA) or
not [96]. (B) Plasma samples from two COVID-19 patients and two healthy controls were subjected to SDS polyacrylamide
gel electrophoresis in reducing conditions and probed with a monoclonal anti-HMGB1 antibody. Lanes 1-4 shows plasma
samples from day 0, 2, 3, 4 from the admission of a patient with lethal Covid-19 infection; lanes 5–6 represent samples from
a severely ill COVID-19 patient on day 0 and 1 from admission, while lanes 7–8 demonstrate results in two healthy controls.
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ELISA measurement of systemic HMGB1 levels in some other clinical conditions
including active systemic lupus erythematosus (SLE) or septic shock has previously been
reported to underestimate results reminding of the problems that we encountered in our
pilot study in COVID-19 patients. Barnay-Verdier et al. studied HMGB1 quantification
using ELISA in plasma samples from patients with septic shock [96]. They compared
results in plasma versus plasma subjected to perchloric acid exposure prior to ELISA. The
results were straightforward, PCA-ELISA detected significantly higher amounts of HMGB1
in plasma samples compared to conventional ELISA. Another study unexpectedly found
that lupus patients with active disease had HMGB1 levels measured by ELISA to be at
the same or even at lower levels than in healthy controls [97]. In contrast, western blot
assessment demonstrated huge differences between healthy controls and patients with
active lupus, who expressed high HMGB1 levels. The plasma molecules that presumably
bound and masked HMGB1 in ELISA measurements were not identified.

6. HMGB1 and Acetylcholine-Potent Antagonists Balancing Inflammation

Over the past 20 years, amazingly consistent and successful results from preclinical
and in vitro studies have revealed that acetylcholine is a strong inhibitor of HMGB1-
provoked inflammation and pain [60,98–110]. The two ancient molecules acetylcholine
and HMGB1 have during evolution formed a functional yin-yang relationship. Homeosta-
sis in inflammation is obtained when the functional influences mediated by HMGB1
and acetylcholine are in balance. Therapeutic results in preclinical studies using va-
gus nerve stimulation, choline esterase inhibitors, or α7-nicotinic acetylcholine receptor
(α7nAChR) agonists are strikingly similar to those seen after HMGB1-specific blocking
treatment regarding kinetics and final outcome [3,111–114]. Acetylcholine inhibits HMGB1
release [102,103,105–107,115–117], TLR4/MyD88/NF-κB signaling [118], and RAGE-
mediated endocytosis of HMGB1 and HMGB1 complex-bound to DAMPs or PAMPs [60].
Each one of these inhibitory accomplishments is beneficial for controlling HMGB1-mediated
inflammation. SIRT1 functions were enhanced by α7nAChR-specific agonist stimulation
and inhibited by an α7nAChR- specific antagonists supporting a role for α7nAChR signal-
ing to mediate increased SIRT1 activity inhibiting HMGB1 release [119]. Furthermore, elec-
troacupuncture pretreatment using a specific acupoint termed ST36 attenuated acute lung
injury through α7nAChR-mediated inhibition of HMGB1 release in rats after cardiopul-
monary bypass [107]. It was recently demonstrated that low-intensity electroacupuncture
stimulation of the ST36 acupoint excited PROKR2-expressing sensory neurons to activate
the cholinergic anti-inflammatory system [116].

Enhancing nuclear HMGB1 deacetylation to inhibit the nucleocytoplasmic translo-
cation and subsequent extracellular release may thus offer a promising treatment for
HMGB1-mediated inflammation. This insight should encourage further clinical studies us-
ing non-invasive transcutaneous auricular vagus nerve stimulation or electroacupuncture
stimulation at carefully selected acupoints to treat uncontrolled HMGB1-triggered inflam-
mation and neuropathic pain [101,120]. These α7nAChR-mediated therapeutic means
augment SIRT1 function and thus inhibit HMGB1 release and subsequent inflammation. It
is thus conceivable that HMGB1 antagonists and cholinergic anti-inflammatory activation
generate almost interchangeable results in preclinical treatment studies since acetylcholine
inhibits extracellular HMGB1 release.

7. Key Challenges in the HMGB1 Field

Even though extracellular HMGB1 has been intensely studied for more than two
decades there are basic methodological shortcomings that need urgent attention. We need
improved methods to quantify extracellular levels of HMGB1 isoforms in clinical samples.
The problem of steric hindrance generated by molecules complex-bound to HMGB1 in vivo
has here been exemplified in the context of COVID-19, SLE, and septic shock and must
be resolved via the invention of improved tools for diagnostic and therapeutic purposes.
There are presently no existing methods to quantify HMGB1 redox isoforms or other
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posttranslational modifications. These obstacles severely delay a further exploration of the
fascinating and important biology created by extracellular HMGB1.

Despite numerous successful preclinical therapeutic studies with HMGB1 antagonists
in inflammation and pain conditions there is still no clinically approved treatment targeting
HMGB1 specifically, which is both disappointing and inspiring. The HMGB1 protein
expresses 99% identity among mammals, which should facilitate the process, while on the
other hand molecules attached to the extracellular HMGB1 complicate the development
of HMGB1-binding antagonists, especially when HMGB1-RAGE endocytosis needs to
be targeted. One academic research group in Japan has generated an anti-HMGB1 mAb
recognizing the repetitive C-terminal part of the molecule, which conceivably might be
an element less engaged by partner molecules in vivo [89,121–132]. This antibody has
exhibited impressive therapeutic efficacy in many animal models of neuroinflammation
both in the central nervous system and in the periphery, most of which events are TLR4-
dependent. Another Japanese research group recently reported a successful creation of an
HMGB1-specific mAb blocking the HMGB1 sequence engaged in MD-2/TLR4 interaction.
This antibody impeded HMGB1-mediated TLR4-dependent biological effects in vitro and
exerted beneficial therapeutic effects in a preclinical model of Alzheimer´s disease [91].
These are indeed encouraging examples to guide and inspire further clinical development
of HMGB1-targeted therapy.

Author Contributions: U.A., K.J.T. and H.Y. wrote the draft manuscript and designed the figures
together. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grants to U.A. from the Freemason Lodge Barnhuset
in Stockholm.

Institutional Review Board Statement: The study presented in Figure 9 was conducted according to
the guidelines of the Declaration of Helsinki, and approved by the Swedish Ethical Review Authority
(protocol code 2020-01653; approval date 8 April 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study presented in Figure 9A,B.

Data Availability Statement: Raw data available upon request to corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

HMGB1 high mobility group box 1 protein
RAGE receptor for advanced glycation end-product
TLR4 toll-like receptor 4
MD-2 myeloid differentiation factor 2
TIRAP TIR domain containing adaptor protein
TRAM toll-receptor-associated molecule
MyD88 myeloid differentiation primary response 88
TRIF TIR-domain-containing adapter-inducing interferon-β
CXCL12 C-X-C Motif Chemokine Ligand 12
CXCR4 C-X-C chemokine receptor type 4
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
LPS lipopolysaccharide
DAMP damage-associated molecular pattern molecule
PAMP pathogen-associated molecular pattern molecule
HDAC histone-deacetylase
HAT histone-acetylase
SIRT1 sirtuin 1
CRMI nuclear exportin chromosome-region maintenance 1
NLS nuclear localization site
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SHP-1 Src homology 2 domain-containing protein tyrosine phosphatase 1
a7nAChR a7-nicotinic acetylcholine receptor
MDSC myeloid-derived suppressor cells
Treg cell regulatory T lymphocyte
M1 macrophage proinflammatory macrophage
M2 macrophage anti-inflammatory macrophage
Syn-Cre/HMGB1fl/fl mice neuronally HMGB1 gene-deficient mice
CD24 cluster of differentiation 24
Siglec-10 Sialic acid-binding Ig-like lectin 10
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