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Focus on Early Events:
Pathogenesis of Pulmonary Arterial
Hypertension Development

Olga Rafikova,1 Imad Al Ghouleh,2 and Ruslan Rafikov1

Abstract

Significance: Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature charac-
terized by the proliferation of all vascular wall cell types, including endothelial, smooth muscle, and fibroblasts.
The disease rapidly advances into a form with extensive pulmonary vascular remodeling, leading to a rapid
increase in pulmonary vascular resistance, which results in right heart failure.
Recent Advances: Most current research in the PAH field has been focused on the late stage of the disease,
largely due to an urgent need for patient treatment options in clinics. Further, the pathobiology of PAH is
multifaceted in the advanced disease, and there has been promising recent progress in identifying various
pathological pathways related to the late clinical picture.
Critical Issues: Early stage PAH still requires additional attention from the scientific community, and although
the survival of patients with early diagnosis is comparatively higher, the disease develops in patients asymp-
tomatically, making it difficult to identify and treat early.
Future Directions: There are several reasons to focus on the early stage of PAH. First, the complexity of late
stage disease, owing to multiple pathways being activated in a complex system with intra- and intercellular
signaling, leads to an unclear picture of the key contributors to the pathobiology. Second, an understanding of
early pathophysiological events can increase the ability to identify PAH patients earlier than what is currently
possible. Third, the prompt diagnosis of PAH would allow for the therapy to start earlier, which has proved to be a
more successful strategy, and it ensures better survival in PAH patients. Antioxid. Redox Signal. 31, 933–953.
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Introduction

Pulmonary arterial hypertension (PAH)/pulmonary
hypertension (PH) is a fatal disease characterized by

pathologic vascular remodeling, leading to right heart failure.
Remodeling of the pulmonary arteries results in the thick-
ening of the intima, media, and adventitia. Disease progres-
sion is associated with vessel lumen narrowing and the
eventual occlusion, intimal fibrosis, and the development of

the concentric and plexiform lesions. Despite the recent de-
velopment of new therapeutics, survival remains poor. This is
because at the advanced stage of the disease, the complexity
of disturbed pathways is overwhelmingly complicated for
delineation of causative or consequential mechanisms. Pa-
tients are usually diagnosed after the disease has had consid-
erable progression and this is largely due to the consequence of
the disease being asymptomatic early on. Thus, from a diag-
nostic standpoint, it would be of great benefit if more research
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efforts are focused on dissecting the pathways involved in the
early initiation stages of the disease and the following chro-
nological PAH progression.

Since this endeavor is clinically challenging, a critical
approach would be to utilize preclinical animal models dur-
ing the early and intermediate time-points in longitudinal
studies (29) (Table 1; Fig. 1), rather than the endpoints on
which the vast majority of literature is based. By focusing on
the early disease development stages, it is highly probable
that an understanding of the critical initiating disturbances in
those signaling pathways can be attained. Moreover, it may
be possible to study those disturbances in a more isolated
environment that would alleviate some of the complexity and
a vast number of cellular and molecular reprogramming that
occurs in late-stage advanced disease. It is important to un-
derstand the early vital mechanisms that could help to treat
familial cases of PAH and other predisposed PAH conditions
such as connective tissue disease, hemolytic anemias, HIV,
etc. There is also the importance of identifying early bio-
markers that can move forward the diagnosis of PAH at an

early, potentially reversible stage. This review is focused
on the early mechanisms that were described in literature, and
the potential early biomarkers of the disease. By discussing
the current progress in understanding the mechanisms re-
sponsible for PAH initiation and early progression, we expect
to highlight the importance to continue this line of research to
advance the early PAH diagnostics and treatment.

Metabolic Reprogramming

Recently, with the availability of untargeted metabolomic
approaches, several reports were published that used meta-
bolic profiling to evaluate possible biomarkers and shifts in
metabolites in PAH patients (103, 116, 149, 207–209), ani-
mal models of PH (72, 140, 144, 210), and cells (36, 86, 182).
The cancer-like proliferation of pulmonary vascular cells
requires metabolic adaptation for the heightened demand
of dividing cells. Different vascular cell types can adapt
differently. Metabolomic analyses of human pulmonary mi-
crovascular endothelial cells (ECs) with PAH-causing mu-
tations in the bone morphogenetic protein receptor type 2
(BMPR2) showed the upregulation of glycolysis and pentose
phosphate pathways (36). Glucose, ribose, and their phos-
phorylated intermediates were also significantly increased.
On the other hand, these cells also have exhibited a decrease
in carnitine homeostasis, fatty acid oxidation pathways, and
tricarboxylic acid (TCA) cycle metabolites. Thus, the upre-
gulation of cytosolic glycolysis in ECs was accompanied by a
decrease in mitochondrial-based metabolic pathways. It was
also demonstrated that in the model of increased pulmonary
blood flow due to heart defects, carnitine homeostasis is
downregulated via the inhibition of the carnitine acetylation/
deacetylation system, which is responsible for the trans-
port of fatty acid into the mitochondrion (178). Therefore, the
altered transport of fatty acids could be a significant con-
tributor to the decrease in fatty acid oxidation and subsequent
reduction of TCA cycle activity as well as oxidative phos-
phorylation. On the contrary, smooth muscle cells (SMCs)
from PAH patients instead exhibited decreased glucose me-
tabolism and an increase in fatty acid biosynthesis (86). Other
groups found that SMCs isolated from monocrotaline (MCT)

Table 1. Preclinical Animal Models Utilized to Study Pulmonary Hypertension

at Early and Intermediate Time-Points in the Longitudinal Studies

Early PH animal
models Treatment Hemodynamic changes References

MCT 3, 10, 15 days MCT 60 mg/kg i.p. at day 0, then
analysis on days 3, 10, and 15

RVSP slightly elevated at days 10
and 15 in 25–30 mmHg range.
Fulton index unchanged

(73, 139, 140)

Sugen/hypoxia 7
and 14 days

Sugen 25 mg–50 mg/kg s.c. and
hypoxia 10% O2 at day 0, then
analysis on days 7 and 14

RVSP significantly increased at 7
and 14 days in 50–70 mmHg
range. Fulton index significantly
increased by day 15

(29, 135, 144)

Sugen/hypoxia 21
and 35 days

Sugen 20 mg/kg s.c. and hypoxia
10% O2 (3 weeks) at day 0, then
analysis on days 21 and 35

RVWT significantly elevated at 21
and 35 days

(123)

AA 6 and 12 days AA 0.35 mg/kg i.v. at days 0, 3, and
6, then analysis on days 6 and 12

RVSP slightly elevated at days 6
and 12 in 40–45 mmHg range.
Fulton index unchanged

(143)

AA, antimycin A; i.p., intraperitoneal; , i.v., intravenous; MCT, monocrotaline; PH, pulmonary hypertension; RVSP, right ventricular
systolic pressure; RVWT, right ventricle wall thickness; s.c., subcutaneous.

FIG. 1. Illustration based on longitudinal MCT model
that explains the selection of early time-points for the
study. Early time-points for this model are indicated in green,
where RVSP is slightly raised but without compensatory effect
from the heart. Late pulmonary hypertension (red) is showed as
a pronounced increase in both RVSP and Fulton index. MCT,
monocrotaline; PH, pulmonary hypertension; RVSP, right
ventricular systolic pressure. Color images are available online.
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animals showed reduced oxidative phosphorylation and an
increased rate of glycolysis (107, 139). This discrepancy
could be from many factors, such as stability of metabolic
phenotype in relation to methods of isolation, cell growth, the
influence of cell culture media, etc. The question remains,
however, whether or not endothelial and SMC lineages have
a similar metabolic shift in PAH. Our published data indicate
that inhibition of mitochondrial respiration by antimycin A
(AA) shifts ECs toward glycolysis more effectively than in
SMCs (144).

Currently, hypoxia-inducible factor (HIF) and RAC-alpha
serine/threonine-protein kinase (Akt) are considered to play a
regulatory role in the metabolic switch in PAH (15, 37, 107,
173). HIF upregulates expression of glycolysis genes such as
hexokinase-2, Glut1,3, PFK, and growth factors that, in turn,
can induce Akt (102, 129, 202). Akt activation can lead to cell
proliferation, apoptosis resistance and further activation of
glycolysis by the induction of HIF signaling, and the translo-
cation of Glut4 and mammalian target of rapamycin (mTOR)
phosphorylation. It has been shown that mTOR kinase is an
important regulator of lung vasculature remodeling and right
heart hypertrophy (51, 65, 124). Moreover, increased oxidative
stress contributes to HIF and Akt activation (11, 53, 80, 138);
this generates a feedforward loop. Besides, HIF-1a upregulates
the expression of pyruvate dehydrogenase kinase (PDK), an
inhibitor of the mitochondrial enzyme pyruvate dehydrogenase
(PDH), and decreases intramitochondrial calcium, thus addi-
tionally impairing Ca2+-dependent activity of PDH (7, 28).
Inactivation of PDH was previously found to be an underlying
cause of the disease pathology as the inactivation of PDH lim-
ited pyruvate influx into the TCA cycle (179). By limiting the
formation of oxidative phosphorylation substrates in the mito-
chondrial matrix, PDH insufficiency can contribute to a gly-
colytic switch. Indeed, ex vivo treatment of human PAH lungs
with the PDK inhibitor dichloroacetate (DCA) induced the ac-
tivation of PDH, increased mitochondrial respiration (112), and
improved right ventricle (RV) function in animal models (127).
DCA administrated to idiopathic PAH patients reduced mean
pulmonary artery pressure and pulmonary vascular resistance
and brought improvement in functional capacity, confirming the
critical role of PDH activity in PAH pathogenesis, although
showing a range of individual responses (112).

However, it is still not clear whether the role of mito-
chondrial dysfunction in the process of the glycolytic switch
of vascular cells is a causative event or a consequence of the
disease. We have recently demonstrated that the chronic in-
hibition of mitochondrial respiration by AA resulted in an
increased pulmonary pressure and proliferation of the vas-
cular wall (144). Interestingly, lung glucose and pulmonary
pressure demonstrated a strong correlation in animals treated
with AA. Metabolic assessment of the lung tissue from the
AA model showed an upregulation of glycolytic intermedi-
ates with rising levels of glucose, ribose, and phosphorylated
sugars, as previously seen in ECs with BMPR2 mutation. A
recent study on the chronic hypoxia, Sugen SU5614 (SU)/
hypoxia, and MCT rodent models also confirmed the upre-
gulation of glycolysis and the downregulation of mitochondria-
centered metabolism (63, 96, 98, 107). Studies showed that
adventitia fibroblasts isolated from hypoxic animals ex-
hibited an upregulation of glycolysis (173). Glycolytic fi-
broblasts, in turn, lead to the activation of inflammatory
pathways via fibroblast–macrophage interactions, resulting

in secretion of cytokines and chemokines such as interleukin
(IL)-1b, IL-6, and vascular endothelial growth factor (VEGF)-
A, which contribute to vascular remodeling. Therefore, we
can conclude that the vasculature metabolic reprogramming
could start both from ECs (inside) and from adventitia
(outside).

Importantly, the metabolic shift in PAH discussed earlier
occurs much earlier than the increase in pulmonary arterial
pressure and right heart hypertrophy. By using rats just after
14 days of MCT injection, we found that before signifi-
cantly increased pulmonary pressure and right ventricle hy-
pertrophy, a complete metabolic reprogramming occurs in
the lungs (140). Metabolic profiling indicated that at the early
stage in disease development there were significant changes
in glycolysis and fatty acids beta-oxidation as well as in-
flammatory, oxidative stress, and fibrosis biomarkers, which
were previously described for developing PH (103, 116, 149,
208). Thus, metabolic reprogramming is an early event that
takes place faster than the pathophysiologic changes in the
pulmonary vasculature. Specifically, the accumulation of gly-
colytic intermediates and reductions in acyl-carnitine long-
chain fatty acid metabolites were reported (140). Therefore,
the increase in glycolysis with decreased fatty acid oxidation
appears to occur very early in the disease. Kynurenine and
kynurenate, metabolites of tryptophan degradation that are
produced by activated indoleamine 2,3-dioxygenase during
inflammation, could activate the production of inflammatory
molecules such as IL-6 and could be involved in cell pro-
liferation (175). Both pro- and anti-inflammatory prosta-
glandins, as well as omega-6 fatty acids, were increased
during the development stage. Increased levels of glucos-
amine, its derivatives, and hydroxyproline indicate toward
the predisposition to extracellular matrix (ECM) remodeling.
Together with adventitial fibroblasts activation, this could
involve profibrotic changes in the vasculature. Also, elevated
levels of asymmetric dimethylarginine, an endogenous in-
hibitor of nitric oxide synthase (NOS), and the upregulation
of arginases (75, 174) could increase the consumption of
arginine via the urea cycle with a 14-fold increase in urea,
ornithine, and polyamines content. All these events indicate
a disrupted arginine homeostasis and suggest the bypass of
normal nitric oxide (NO) signaling. Profiling an early PH
animal model may lead not only to finding the key pathways
that modulate cells reprogramming but also to the discov-
ery of metabolites that comprise the blueprint for early PAH
diagnosis.

Early changes in metabolic footprints in the MCT model
were mostly equal to the late stage changes found in patients
with PAH. The plasma of patients with PAH show signifi-
cantly increased TCA cycle intermediates, acyl-carnitines,
urea, tryptophan, and polyamine metabolites, and they are
similar to the early MCT model in the observed upregulation
of these pathways (103, 140, 149). Interestingly, responders
to vasorelaxation therapy, patients whose mean pulmonary
artery pressure dropped >10 mmHg to <40 mmHg with pre-
served cardiac output in response to an acute pulmonary
vasodilator challenge and remained stable on calcium chan-
nel blocker therapy alone, showed normalization of their
metabolic profile back to healthy controls, providing the
evidence of a strong association between the severity of PAH
and metabolic alterations (149). Similar changes in arginine
metabolism, ECM metabolites, polyamines, TCA intermediates,
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as well as increased heme degradation were found in lung
tissues collected from PAH patients (207, 208). Common
metabolites upregulated in PAH patients and the early model
of MCT PH are indicated in Figure 2. This figure illustrates
three main imbalances, which give rise to other metabolic
disturbances. First, the shift from oxidative phosphoryla-
tion to glycolysis results in the activation of glycolysis-fed
pathways involved in nucleotide biosynthesis and ECM re-
modeling. Second, the imbalance between the NO cycle and
the urea cycle led to decreased NO production and increased
polyamine synthesis, which contributed to vasoconstriction
and proliferation. Third, decreased fatty acid oxidation and
the demand for oxidative phosphorylation modify the TCA
cycle by promoting anaplerotic reactions via glutaminolysis
(12, 128), or pyruvate to oxaloacetate reactions, that are
necessary for proliferating cells due to an increased need in
building blocks for protein, fatty acids, and heme biosyn-
thesis. Although those metabolic switches occur in the whole
lung at the development stage of a preclinical model, they
recapitulate metabolic disturbances in patients during the
progressive phase of PAH. Metabolons of the whole lung are
the most inclusive in terms of their variety of altered path-
ways; however, the plasma profile showed similar changes
even with a reduced number of metabolites. Indeed, metab-
olites in plasma are well regulated by the liver, kidneys, and

gut and do not reflect only lung status. However, availability
of the plasma as well as difficulties to obtain lung biopsy
should also be taken into account. Endothelial and SMCs
isolated from animals or patients showed different results in
metabolic profiling that could be explained by phenotype loss
after isolation and cell culture. Thus, individual cell analy-
ses are not so sensitive and could be cumbersome in clinical
practice. Therefore, the profiling of the plasma samples could
be important in the future diagnosis of PAH at the early stage.

Pulmonary Vascular Permeability

Inflammatory pathways in PAH are well accepted as
important mechanisms of pathogenesis (21, 62, 134). PAH
patients have increased infiltration of inflammatory cells
(macrophages, lymphocytes, mast cells) in the perivascular
region and an increased number of circulating cytokines in
the plasma, such as monocyte chemoattractant protein
1 (MCP-1)/CCL2, regulated on activation normal T cell
expressed and secreted/CCL5, tumor necrosis factor (TNF)-
a, IL-1, and IL-6 (70, 91, 122, 130, 160). Importantly, the
overexpression of IL-6 and TNF-a can induce a spontaneous
development of PH in mice (43, 171). The mechanism behind
cytokine-induced PH is based on studies that showed that a
proliferative response could be induced in ECs, SMCs, and

FIG. 2. The generalized metabolic disturbances in PAH lungs indicated by the untargeted metabolic profiling. A
central role of mitochondrial metabolism in reprogramming is attributed to a decrease in oxidative phosphorylation due
to respiratory chain deficiency and reduced glucose oxidation due to pyruvate dehydrogenase deficiency. Reduction in
fatty acid transport leads to a decrease in fatty acid oxidation. TCA cycle metabolites flux is upregulated by anaplerotic
reactions that are required for the building blocks production for cellular proliferation instead of energy metabolism. This
mitochondrial metabolic shift is accompanied with an increase in glycolysis for the energy demand and downstream of
glycolysis metabolic pathways such as pentose phosphate pathway, nucleotide biosynthesis, and increased glycosylation,
leading to proliferation and ECM remodeling. Another point of dysregulation is the nitric oxide and urea cycles, leading to
vasoconstriction, increased reactive oxygen species/reactive nitrogen species, and polyamines production. Overall metabolic
shift in lungs favors proliferation and dysfunction of cellular roles in all varieties of vascular cells. ECM, extracellular matrix;
NO, nitric oxide; PAH, pulmonary arterial hypertension; TCA, tricarboxylic acid. Color images are available online.
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fibroblasts via yes associate protein/TAZ/SLUG, STAT3,
mitogen-activated protein kinase (MAPK), protein kinase C
(PKC), and AKT signaling cascades (24, 172, 192, 201).
Thus, this promotes pulmonary vascular remodeling and
subsequent increases in pulmonary arterial pressure. In the
resolution phase of perivascular inflammation, ECM re-
modeling and the formation of fibrotic tissue can occur in the
pulmonary vasculature (183). Interestingly, sex is an impor-
tant component in the predisposition to a fibrotic phenotype
of vascular remodeling. Our group found that the male sex is
associated with increased inflammatory response and fibrosis
of the pulmonary arteries (143). In a recent paper by Samo-
khin et al., it was found that important crosstalk exists be-
tween developmentally downregulated protein 9 (NEDD9)
and mothers against decapentaplegic homolog 3 (SMAD3)
within profibrotic transforming growth factor (TGF)b sig-
naling (156). Oxidative stress-mediated post-translational
modification in NEDD9 impairs its complex with SMAD3,
leading to increased collagen production independent from
ligand stimulation. Thus, this work established an important
direct link between oxidative stress and vascular fibrosis. It is
well accepted that female hormones mediate antioxidant
responses (169, 206), and, thus, this mechanism may ex-
plain the predisposition of males to fibrotic changes in the
vasculature. Reciprocally, connective tissue disease is known
to be associated with a high risk of PH development (23, 58,
108). Fibrosis of the arteries increases vascular stiffness and
results in an increased load to the heart through the shear
stress of underlying fibrotic tissue vascular cells.

Although the complexity of inflammatory response in the
pathogenesis of PAH is recognized (4, 17, 194), the initial
trigger of inflammation that is involved in PAH development
is not identified. It is still unclear whether initial damage to
pulmonary vasculature activates an inflammatory response or
whether pathogen/toxin-mediated inflammation damages the
lung vasculature. However, both events must occur early in
the development of PH. Initial damage to endothelial and
SMCs induced via toxins or oxidative stress (1, 95, 196) can
lead to damage-associated molecular patterns (DAMPs) ac-
tivation, and a release that subsequently activates inflamma-
tory cells via pattern recognition receptors (PRRs). Ruptured
red blood cells (RBCs) can also be a source of DAMPs (77,
111). The pathogen can release pathogen-associated molec-
ular patents (PAMPs) that also work by activating the in-
flammatory response via PRRs. The importance of one of
the PRRs, receptor for advanced glycation endproducts, in
PH was proven by elegant studies involving patient sample
analysis and different animal models (31, 110). Therefore, a
potentially feasible strategy is that PRRs and DAMPs/PAMPs
inhibitors should be tested for clinical relevance in PAH
management.

Another unanswered question in inflammation-mediated
pathogenesis of PAH is why inflammatory cells have pre-
dominantly perivascular localization. This question may point
to the increased infiltration of inflammatory cells through the
vascular wall, which can be potentiated by the dysfunctional
endothelial barrier. We and others have reported that chronic
endothelial dysfunction due to different pathologies could be
linked to PH (25, 106, 145, 196). In our study, we focused on
the product of hemolysis, heme. Hemolysis leads to the ac-
cumulation of free hemoglobin in plasma, and this has cor-
related significantly with disease progression in PAH patients

(145). Free hemoglobin can release free heme that, on the one
hand, can damage the endothelium (77, 166), and, on the
other hand, can induce disruptive endothelial barrier path-
ways leading to perivascular edema formation (145). Data
indicated that the formation of perivascular edema and en-
dothelial barrier dysfunction are early events in PH. In both
SU/hypoxia and MCT models of PH, the increase in lung
vascular leakage usually occurs during the first 2 weeks of
disease induction and strongly correlates with the initial in-
crease in pulmonary pressure (Fig. 3A, B). At an advanced
stage of PAH, perivascular edema is diminished with highly
increased thickness of the vasculature (145). Therefore, the
perivascular inflammation due to infiltration of inflammatory
cells into the perivascular area, crosstalk with adventitial fi-
broblasts, and the accumulation of cytokines in perivascular
fluids could all be important contributors in the disease de-
velopment phase. Moreover, fluid leakage in the perivascular
area could impose local hypoxia to the flooded vasculature
and induce vascular stiffness. Indeed, our data indicate the
increased expression of carbonic anhydrase IX, the marker of
hypoxic tissue, in the vasculature surrounded by perivascular
fluid (Fig. 3C), but they showed no expression in the vessel
without edema. This will induce HIF-mediated metabolic
reprogramming in the lungs and increase the load on the right
heart, leading to hypertrophy.

Vascular Damage and Inflammation

Injury of pulmonary vascular cells is one of the most
recognized and established early mechanisms involved in
PAH initiation and progression. In 2001, Voelkel and col-
leagues reported that inhibition of the primary endothelial
prosurvival signaling molecule, VEGF, in combination with
hypoxia induces apoptosis of pulmonary ECs and manifests
as a severe angioproliferative PAH (184). This SU/hypoxia
model now becomes a ‘‘gold standard’’ of experimental PAH
that closely replicates the histological features seen in hu-
mans, including the formation of plexiform lesions composed
of highly proliferative pulmonary vascular cells. It has been
proposed that the initial apoptosis of pulmonary ECs induces
a transition of and the selection for the remaining surviv-
ing cells. This causes a highly proliferative and apoptosis-
resistant subpopulation, which, in turn, mediates PAH
progression (154).

This conclusion may be viewed as paradoxical since it
appears to require the initial inhibition of growth factors
before it can promote the emergence of hyperproliferative
cells. However, it seems likely that it is not growth inhibition
itself, rather the induction of vascular cell damage, which is
the main driving force in the stimulation of the proliferative
potential of surviving cells. Indeed, the same apoptosis re-
sistance could be achieved by exposure of naive cells directly
to a conditioned medium from apoptotic cells (154). PAH
could also be induced by the activation of apoptotic pathways
(195). Apoptosis-inducing stimuli, including ultraviolet ir-
radiation (49), drugs and toxins (46, 126), shear stress (155),
mitochondrial dysfunction (203), oxidative/nitrative stress
(186, 199), as well as genetic factors, such as loss of BMPR2
signaling (185), were shown to be directly involved in the
pathogenesis of PAH.

In contrast, apoptosis inhibitors instead protect against
PAH development. In two different studies, overexpression
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of VEGF in lungs blunts the onset of either hypoxia-induced
PAH (35, 123) or PH associated with pulmonary fibrosis.
Hameed et al. showed that the blockade or genetic deletion of
a TNF-related apoptosis-inducing ligand that is responsible
for endothelial apoptosis prevents the development of PAH in
three independent rodent models (60). Another line of evi-
dence comes from the research published by White et al.
showing that attenuation of the programmed cell death 4/
caspase-3/apoptotic pathway potently blocks SU/hypoxia
PAH (195). Antagonizing the biosynthesis of macrophage-
derived leukotriene B4 and directly inducing the apoptosis
of pulmonary artery ECs reverses established PAH in ani-
mal models, as shown by Tian et al. (187). In contrast,
overexpression of 5-lipoxygenase, which catalyzes leukotri-
ene biosynthesis, was shown to have enhanced MCT-induced
PAH (73). This last evidence supports the role of apoptotic
cell death as not only in the initiation of PAH but also for
its role in the continued progression during the developed
stage. Indeed, it seems that PAH-associated damage is not a
‘‘hit and run’’ effect but rather an ongoing process continu-
ously mediating disease progression. Thus, it was noticed that
proapoptotic factors, such as caspase 3 and p53, remain el-
evated in the pulmonary arteries of patients with advanced
irreversible disease (93). Another study reported that patients
with a developed PAH continue to have circulating markers
of vascular injury (167).

Although the causal role of initial vascular wall damage in
PAH is widely accepted, the particular mechanisms respon-
sible for the transformation of apoptosis into the prolifera-
tion of pulmonary vascular cells are still debated. In general,
apoptosis serves as an essential regulator of tissue integrity

and homeostasis that removes damaged or no longer func-
tional cells. It represents a silent type of cellular damage with
no detectable activation of the immune system. However, this
silence is not complete; phagocytic clearance of apoptotic
cells requires the production of chemoattractants that were
described as ‘‘find me,’’ ‘‘eat me,’’ ‘‘listen to me,’’ or ‘‘stay
away’’ signals that are critical for the recognition and the
engulfment of the dying cell by the phagocytes (39, 55). This
signaling along with the later discovered ability of apoptotic
cells to regulate their local environment by releasing regu-
lators of proapoptotic, antiapoptotic, and mitogenic pathways
may explain the ultimate role of ongoing vascular apoptosis
in the following proliferation of surrounding cells.

One of the examples of apoptotic cell communication is
the releasing of long-range death factors. Thus, it was dis-
covered that the induction of apoptosis in one part of the
tissue stimulates an apoptotic death in remote cells through
secretion of TNF-a (125). Other mechanisms inducing
propagation of cell death require functional gap junctions.
Two different research groups described that cell death sig-
naling was propagated via gap junctions using two different
systems. Krutovskikh et al. found that apoptotic cells use gap
junction protein Connexin43 (Cx43) to couple with their
nonapoptotic neighbors and propagate cell death (85). The
formation of clusters of dying cells was inhibited in cells by
expressing a dominant negative mutant of Cx43. Azzam et al.
described that damage signals might be transmitted from
irradiated to nonirradiated ‘‘bystander’’ cells that start ex-
pressing the genetic damage or changes in the expression
of stress-induced genes through the same Cx43-mediated
intercellular communication (8). Since gap junctions can

FIG. 3. Correlation be-
tween RVPSP and lung
weight as a measure of
vascular leakage. Both pa-
rameters were measured at
the early stages (0–14 days)
of MCT (A) and SU/hypoxia
models (B). In SU/hypoxia
rats, PAH was induced by a
single injection of Sugen 5416
(50 mg/kg, subcutaneous) fol-
lowed by exposure to hyp-
oxia (10% O2), as previously
published (145). In the MCT
group, the disease was initi-
ated by MCT injection (60 mg/
kg intraperitoneal.). Lungs
from the MCT model were
stained with carbonic anhy-
drase IX, the marker of hyp-
oxia, that clearly indicates
the presence of hypoxia in
vessels surrounded by peri-
vascular edema (arrows in-
dicate vessel) (C). RVPSP,
right ventricle peak systolic
pressure; SU, Sugen SU5614.
Color images are available
online.
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typically pass molecules of up to 1000–1500 Da, the
spreading of the damage signaling could occur through the
exchange of metabolites: ions such as Ca2+, nucleotides, or
peptides. Besides, these death messengers could be released
from the cell itself. Lipid peroxide products, inosine nucle-
otides, and cytokines such as TNF-a, as well as reactive
oxygen species (ROS), are the proposed candidates for
transmission of damage signals from apoptotic to healthy
cells (132). The same spread of the cell killing signaling
cascade could coordinate apoptotic cell death in the pulmo-
nary vasculature in response to various damaging stimuli
discussed earlier. If confirmed, the propagation of death
signaling could explain simultaneous apoptotic cell death in
the remote parts of the pulmonary vascular tree.

Apoptotic cells are also known to mediate apoptosis-
induced death resistance. The important survival signaling
relevant to PAH is mediated through VEGF. Secreted from
dying ECs (49), it induces apoptosis resistance in surviv-
ing ECs and vascular smooth muscle cells (VSMCs) (155).
Another critical endothelial survival factor, angiopoietin-1
(121), is produced not only by apoptotic cells but also by
monocytes interacting with apoptotic cells (161). In-
flammatory cells are also a source of IL-6, a pleiotropic cy-
tokine that serves to block apoptosis in different vascular
cells exposed to the toxic environment (45). In contrast, ap-
optotic ECs promotes the survival of macrophages in a
sphingosine-1-phosphate dependent manner, thus ensuring
the rapid phagocytosis of dying cells (193). This double-
sided protection represents a functional network between
different types of cells that cooperatively stabilize the vas-
cular wall against damage.

Such a combination of pro- and antiapoptotic stimuli does
not fully explain the process of making the survival-versus-
apoptosis decision for each affected cell. The current opinion
tends to view each population of cells as a mixture of cells
that are more sensitive or more resistant to apoptotic stimuli.
That means that under the conditions of persistent self-
perturbed apoptosis, the situation favors the selection of
apoptosis-resistant cells due to the death of sensitive cells and
the stimulation of apoptosis resistance in survivors. The se-
cretion of prosurvival factors by apoptotic cells additionally
shifts this balance toward survival, growth, and, eventu-
ally, vascular remodeling. Thus, TGF-1b released from the
apoptotic ECs promotes intimal hyperplasia (105), SMC
proliferation and migration (155), endothelial–mesenchymal
transition with EC-derived SMC accumulation (94), and
ECM deposition (64). The conditioned media were collected
from the ECs exposed to hypoxia, a condition known to
promote EC apoptosis (109), and stimulated proliferation of
SMCs through the prostaglandin-mediated mechanism and
the growth of fibroblasts via secretion on basic fibroblast
growth factor (113). It was also reported that fibroblasts ex-
posed to apoptotic media undergo myofibroblast differenti-
ation in a connective tissue growth factor responsive manner
(88). Endothelial injury impairs the secretion of NO, a main
paracrine vasodilator with antimitogenic properties, and then
stimulates the secretion of endothelin-1 (76), a potent vaso-
constrictor and mitogen. Apoptosis is also associated with the
increased production of ROS, which can initiate and control
different aspects of apoptosis-induced proliferation (33).

Even in the context of immune system modulation, apo-
ptotic cell death is now considered not ‘‘silent,’’ but rather

anti-inflammatory (52). Inhibition of inflammation is achieved
through a number of sequential steps. First, it requires a
prompt and efficient engulfment of apoptotic cells by phago-
cytes to prevent an uncontrolled release of intracellular
content. This is normally achieved by producing the ‘‘find
me’’ and ‘‘eat me’’ factors. The examples of such attractants
are lipid lysophosphatidylcholine, chemokine CX3CL1
(fractalkine [FKN]), the nucleotides adenosine triphosphate
and uridine triphosphate, endothelial monocyte-activating
polypeptide II, thrombospondin 1, TGF-b, annexin I, and
oxidized phospholipids of apoptotic cells (55). Some of these
attractants are also recognized as anti-inflammatory media-
tors. For example, apoptotic cell-derived TGF-b and FKN
suppress macrophage proinflammatory responses (118).

Dying cells are typically known to be a source of DAMPs,
which initiate a cascade of inflammatory reactions. For
example, high mobility group box 1 (HMGB1) stimulates
inflammatory cell activation via the activation of PRRs.
However, as opposed to necrosis, apoptotic cells were shown
to produce HMGB1 in considerably lower amounts due to its
ability to stay attached to the apoptotic chromatin (13). This
is especially true for human pulmonary artery endothelial
cells (HPAECs, Fig. 4A, B). ROS produced by apoptotic cells
oxidize intracellular proteins (78) as well as proteins in the
extracellular environment (Fig. 4C); therefore, HMGB1 and
other redox-sensitive DAMPS would be likely secreted in an
already preoxidized inactive form (78) or will be quickly
inactivated by oxidation after secretion. Importantly, an ox-
idized HMGB1 is known to be responsible for the resolution
of the inflammation due to its ability to initiate immune tol-
erance (78). Apoptotic cells are also capable of mediating
innate immunosuppression via a mechanism uncoupled from
paracrine effects or phagocytosis. This process consists of
direct transcriptional inhibition of genes encoding inflam-
matory cytokines (14) and could be activated in macro-
phages, fibroblasts, and potentially all contacting neighbors
of apoptotic cells.

It is also well established that once macrophages engulf the
apoptotic cell, they resemble an alternative mode of activa-
tion and transform into the anti-inflammatory M2 phenotype
macrophages, in contrast to the classical, proinflammatory
M1 phenotype (193). Such M2 macrophages produce a
spectrum of anti-inflammatory mediators including TGF-b,
IL-10, and prostaglandins. Besides, the uptake of apoptotic
cells by already activated M1 macrophages will suppress the
production of pro-inflammatory cytokines such as TNF-a, IL-
6, IL-1b, IL-8, and IL-12 (34, 55, 198). Thus, apoptosis could
not only prevent the development of the inflammatory re-
sponse but also cease any ongoing inflammation. Indeed, it
was noticed that the addition of macrophages that ingest
apoptotic cells into lipopolysaccharide-induced inflamma-
tory cells reduces inflammatory pathways (52). Aside from
anti-inflammatory activity, M2 macrophages also play an
important role in tissue repair by secreting the ECM com-
ponents, as well as angiogenic and chemotactic factors (151),
and, thus, could directly contribute to vascular remodeling.

Despite the anti-inflammatory nature of apoptosis, PAH is
associated with severe inflammatory changes in the pulmo-
nary vascular wall (131, 135). Oddly, this activation of the
innate and adaptive immune system in PAH is known to be
directly connected to pulmonary vascular damage, which
produces an apparent paradox. However, it is important to
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consider that apoptosis is not the only outcome for the
damaged cell. The severe cell damage in PAH could also
trigger necroptosis or necrosis. Surprisingly, the contribution
of these types of cell death in the pathogenesis of PAH is
almost unstudied. Both necroptotic and necrotic cells are the
source of many DAMPs, known activators of the inflamma-
tory response. Indeed, it was reported that the HMGB1 re-
leased into the extracellular space during the early stage of
MCT-induced PAH contributes to PAH development (153,
200). Our group has also confirmed an accumulation of ex-
tranuclear HMGB1 in the pulmonary artery wall of male rats
with PAH induced by SU/hypoxia (137). Apoptotic cells do
not release HMGB1 even after they undergo secondary ne-
crosis because of the hypoacetylation of one or more of the

chromatin components that occurs during apoptosis and re-
tains HMGB1 firmly bound to chromatin (158). Therefore,
since the release of HMGB1 distinguishes the necrotic cells
from apoptotic ones, it could be expected that MCT or SU/
hypoxia induced PAH is associated with necrotic cell death.
This necrosis is capable of initiating inflammatory signaling
in pulmonary arteries through activation of TLR4/IL1b/E-
Selectin axis (137) that activates ECs and increases inflam-
matory cell recruitment.

Activated monocytes and macrophages, in turn, are other
cell types that could produce HMGB1, although not due to
the passive release, but due to active secretion. This process
requires HMGB1 hyperacetylation and, thus, is opposite to
the hypoacetylation and nuclear retention that happens in

FIG. 4. Apoptosis is the primary fate of endothelial cell death resulting in oxidized HMGB1 release and increases
oxidative potential in the media. (A) HPAECs (ScienCell, Carlsbad, CA) were cultured in ECM growth media supple-
mented with 5% FBS and penicillin–streptomycin in a humidified incubator (21% O2, 5% CO2) at 37�C. To induce cell
death, cells were treated with Sugen 5416 (20 lM) in 0.5% FBS for 24 h, as published (101). Apoptosis and necrosis were
quantified by using Apoptosis and Necrosis Quantification Kit (Biotum, Fremont, CA) according to the manufacturer’s
protocol, as published (136). Sugen treatment stimulated apoptosis (Early and Late) but not necrosis in HPAEC. (B) Media
from untreated HPAEC, HPAEC with apoptosis induced as described in (A) and necrosis induced by three to four cycles of
cell freezing and thawing, as published (137) were used for Western blot analysis as previously described (137) to measure
reduced and oxidized forms of HMGB1. Necrotic but not apoptotic cells produced a marked extracellular HMGB1 signal and
showed an accumulation of the reduced form of HMGB1 in cell culture media. The difference in the total protein in the media
related to the difference in FBS amount used in the experiment—negative control (media that were not used for cell culturing)
and apoptotic media contain 0.5% FBS, untreated and necrotic media—5% FBS. The difference in total media proteins does
not correlate with the HMGB1 signal that is absent in the negative control, and the media collected from untreated cells show a
light signal from oxidized HMGB1 in the apoptotic media and a strong but mostly reduced signal in the necrotic media. (C)
Same media samples collected for (B) were used to measure plasma redox homeostasis by analyzing ORP and total antioxidant
capacity (Cap) electrochemically by using RedoxSys� Diagnostic System, as reported (137). Apoptotic media showed a
significant increase in oxidative potential and a decrease in antioxidant capacity, indicating the development of oxidative stress
in apoptotic cells and the release of oxidized cellular content. Necrotic media show a significant reduction in ORP signal,
suggesting that necrosis produces release cellular components in a reduced state. N = 4; *p < 0.05 versus untreated; #p < 0.05
versus apoptosis. FBS, fetal bovine serum; HMGB1, high mobility group box 1; HPAEC, human pulmonary artery endothelial
cell; ORP, oxidation–reduction potential. Color images are available online.
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apoptotic cells. However, the proinflammatory activation
of phagocytes that should precede any cytokine production
could not happen if the surrounding vascular cells died by
apoptosis. In contrast, HMGB1 released from necrotic cells is
an active facilitator of macrophage reprogramming toward
the M1-like phenotype, whereas its neutralization reduces
M1 macrophage infiltration (177). Therefore, necrosis, rather
than apoptosis, appears to be responsible for the initiation of
proinflammatory mechanisms (Fig. 5). By skewing macro-
phage differentiation toward M1-like phenotypes, HMGB1
also diminishes the amount of M2 macrophages and dis-
turbs the normal clearance of apoptotic cells (159). There-
fore, once released into the extracellular milieu, HMGB1
shifts the normally maintained balance between pro- and
anti-inflammatory events toward inflammation, which, in turn,
becomes self-perpetuating (204).

There are many other DAMPs produced by dying cells
that have nucleic, cytosolic, or mitochondrial origin and
could either participate in tissue healing through stimulation
of prosurvival/proliferative pathways or induce inflammation
(19, 30, 47, 100, 111, 120, 133, 147, 205). The particular
contributions of all these factors are yet to be established.
However, some of them have been already reported as
promising biomarkers associated with PAH (74, 111, 137,
145). It, therefore, follows that further validation of such
biomarkers that could be routinely screened, at least in the
PAH patient’s family members or in high-risk patients, could
help to identify this deadly disease at the early, curable stage.

Oxidative/Nitrative Stress

ROS are a family of oxygen-based highly chemically
active species that include the parent oxygen free-radical
superoxide (O2

-�), its direct dismutation product hydro-
gen peroxide (H2O2), hydroxyl radical (OH-�), hypochlo-
rite (OCl-), and hydroperoxyl radical (HO2

�) (3a). Cellular
sources of ROS include the NADPH oxidase (Nox) family of

enzymes, mitochondrial electron transport chain complexes
(mainly I and III), xanthine oxidoreductase (XO), cytochrome
P450, lipid oxygenases including cyclooxygenases and li-
poxygenases, peroxidases, and uncoupled NOSs (3a, 10, 20,
189, 197). Nox proteins are considered the only ‘‘profes-
sional’’ ROS generators in that ROS are their main product
rather than a byproduct of their chemical reactivity (3a).
Nox1, 2, 4, and 5 are expressed in the lung vasculature (3a,
10, 48). To counterbalance the sources of ROS in the cell, a
number of endogenous antioxidant systems exist. These in-
clude superoxide dismutases (SODs), which convert O2

-� to
H2O2, catalase, which converts H2O2 to water, glutathione
peroxidase, heme oxygenase, peroxiredoxins, glutaredoxin,
and thioredoxin (41). Nonenzymatic antioxidant systems also
contribute to the balance and include vitamins C and E, ret-
inol, glutathione, and b-carotene (41). Similar to ROS, re-
active nitrogen species (RNS) are chemical moieties derived
from the free radical NO and include nitrogen dioxide (NO2),
dinitrogen trioxide (N2O3), nitroxyl anion (NO-), and ni-
trosonium cation (NO+) (44, 181). The major enzymatic
source of NO is the NOS enzymes, of which there are three
isoforms: neuronal (nNOS or NOSI), inducible (iNOS or
NOSII), and endothelial (eNOS or NOSIII) (44, 181). NO can
also be produced through the reduction of nitrite by several
nitrite reductases (81). NO can react with protein cysteine
residues, heme iron in iron-containing proteins, and with
lipids. Importantly, NO can also react with O2

-� to produce
the highly reactive peroxynitrite (ONOO-), which can lead to
protein nitration (tyrosine residues modification to nitrotyr-
osine) (181).

ROS, RNS, and their sources (e.g., Nox enzymes for ROS)
have been implicated in PH and associated RV responses in
both in vivo and in vitro studies, and there is mounting evi-
dence that ROS levels are increased in PH patients (16, 38,
40, 42, 44, 57, 181). For example, systemic and pulmonary
vascular EC, VSMCs, and adventitial fibroblasts express
Nox1, 2, and 4 and these enzymes have all been linked to PH

FIG. 5. Apoptosis of vascular
cells stimulates anti-inflammatory
M2 macrophages, which release
proliferative factors for damage
resolution and activate vascular
remodeling. In contrast, necrotic
damage of vascular cells stimulates
M1 macrophages with proin-
flammatory properties, increasing
perivascular inflammation, vascular
permeability, and fibrosis. Color
images are available online.
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in multiple studies (9, 22, 26, 32, 38, 41, 42, 48, 56, 57, 61,
71). ROS scavenging molecules glutathione and vitamin E
were observed to be low in PH patient plasma, whereas lipid
peroxidation products such as malondialdehyde and lipid
hydroperoxide were elevated (148). Levels of nitrotyrosine,
5-oxo-eicosatetraenoic acid, and hydroxyeicosatetraenoic
acid were also elevated (16, 144). A role of NO and XO in PH
has been shown in vivo and in pulmonary VSMCs (211). A
global effect of ROS/RNS is the decrease in NO bioavail-
ability through chemical scavenging, similar to what occurs
when ONOO- is formed. This contributes to increased va-
soconstriction and impaired vasorelaxation, and thereby to
the development of PH (142, 181). NO is a major vasodilator
and regulator of the basal vasomotor tone. Interruptions in
NO signaling or its levels can lead to impaired vasorelaxation
and are associated with PH (44, 81, 82, 181). Moreover,
sources of ROS such as Nox enzymes and XO can interrupt
NO production and signaling, further contributing to the
decreased NO bioavailability (181). Indeed, it was demon-
strated that the use of nitrite as an NO source has been as-
sociated with an attenuation of experimental PH (211). ROS/
RNS have also been associated with increasing levels and
signaling of the potent pulmonary vasoconstrictor endothelin
1, which is the main factor in PH development, further con-
tributing to an overall imbalance in motor tone and PH (181).

ROS and RNS also have well-documented effects on
cellular and molecular changes that promote vascular cell
proliferation, migration, hypertrophy, and apoptosis, all
processes linked to PH development (3a, 9, 10, 44, 57, 141,
144, 181), and have been implicated in promoting endothe-
lial, smooth muscle, and fibroblast proliferation (9, 41, 48,
141). Interruption of Nox1 was associated with attenuation of
pulmonary arterial EC proliferation, and targeting of Nox4
was linked to a reduction in pulmonary artery smooth muscle
and fibroblast proliferation (9) as well as with increased fi-
broblast apoptosis. Both isoforms were upregulated in PH
patient lung tissue (48, 97, 115). The Nox4 effect appears to
be associated with activation of mTOR complex 2, mTORC2,
and AMP-activated protein kinase (50). In models of per-
sistent PH of newborn targeting ROS by the pharmacologic
inhibitors, apocynin and N-acetyl-cysteine, was associated
with improvement in angiogenesis in ECs (186). Generally,
in addition to direct oxidation and free-radical damage of
DNA, proteins, and lipids, ROS such as H2O2 affect key
signaling pathways and transcription factors that drive the
cellular pathophysiologic processes associated with PH and
pulmonary vascular remodeling (141). These include the
MAPKs pathways p38 MAPK and Erk1/2, the c-Jun N-
terminal kinase pathway, the Akt/PKB pathway, the NF-jB
transcription factor, p53, and AP1 (3a, 10, 44, 145, 181).
Also, the cAMP-response element binding transcription
factor, which is selectively activated in the lungs of hypoxic
PAH mice and the hypoxic human lung microvascular EC
(92), was implicated as an ROS-inducible transcription factor
(157, 164, 165). Other examples include a role for Nox1 in
driving pulmonary arterial EC proliferation via upregulation
of sonic hedgehog-mediated expression of the bone mor-
phogenetic protein (BMP)-signaling antagonist Gremlin1
(18, 48, 66, 212). BMP receptor and signaling impairments
are pervasive in hereditary forms of PAH and are also im-
plicated in a subset of idiopathic PAH (68, 152). In addition,
Gremlin1 has been linked to HIF2a and the vascular smooth

muscle proliferation, migration, and angiogenesis (18, 80a,
104, 170), further supporting a role for ROS in these pro-
cesses and PH development. The link between ROS sources
and cellular growth pathways is strengthened by studies that
show a reduction in the hypoxia-induced pulmonary vascular
endothelial and smooth muscle proliferation by Nox inhibi-
tory drugs and a link of this reduction to reduction in TGFb
and rescue of peroxisome proliferator-activated receptor c
(54). Moreover, Nox1-mediated proliferation was linked to
modulations of SOD2, Nrf2, cyclin D1, and cofilin in pul-
monary arterial SMCs (191). Upstream, caveolin-1 (Cav-1)
was associated with the inhibition of Nox enzymes through
the modulation of NF-jB and the reduced expression of Cav-
1 observed in PH models; this was linked to increased Nox
activity and ROS elevation (22). Also upstream, evidence
implicates TGFb, which is a potent mediator of cellular
phenotypes in PH, in upregulation of Nox, specifically Nox4,
via activation of insulin-like growth factor binding protein 3
and Akt/PKB in pulmonary arterial SMCs (69).

ROS have been shown to be involved in both acute and
chronic regulation of hypoxic pulmonary vasoconstriction,
including associated processes such as vascular cell prolif-
eration and medial hypertrophy, in part through modulation
of calcium and potassium channels; however, the precise
mechanisms remain elusive (41, 119, 162, 180, 190). For
example, in pulmonary arterial SMCs from Nox1 null ani-
mals, there was a decrease in the Kv1.5 voltage-dependent
potassium channel, an increase in intracellular potassium
levels, and an associated reduction in apoptotic cells (71). On
the other hand, interruption of ROS and Nox4 was shown to
lift hypoxia-induced decreases in the potassium current via
direct association with Kv1.5 (114). These discrepancies al-
lude to the complexity of these processes but do support a
clear link between ROS and potassium currents in PH. Ge-
netic deletion of Nox2 or administration of SOD also reduced
vasoconstriction in hypoxic mice, supporting the role of ROS
and further supporting a potential interplay with the reduction
in NO bioavailability as discussed earlier (99). Further, the
mechanism by which ROS affects intracellular calcium and
calcium channels, namely the Cav1.2 channel, may involve
downregulation of the glycolytic pyruvate kinase M2 (59)
and involve contributions from PKC signaling (146). One
mechanism by which ROS carry out their second-messenger
effects involves shifting the balance toward activation be-
tween the kinases and phosphatases of these major pathways
by oxidizing and turning off phosphatases. This mostly oc-
curs through oxidation of key cysteine residues of effector
proteins. Also, the RNS ONOO- can induce direct protein
tyrosine nitration, which inhibits and stimulates degradation
of important enzymes involved in vasorelaxation, such as
eNOS and protein kinase G (2, 181). Tyrosine nitration can
also mimic phosphorylation and induce activation of Akt in
ECs (138). Nitration of Akt increases as early as 1 week from
SU/hypoxia model induction (Varghese VM, Niihori M,
Eccles CA, Kurdyukov S, James J, Rafikova O, Rafikov R.).
Nitrite treatment has been shown to effectively increase NO
bioavailability and reduce manifestations of PH both in vivo
and in vitro through a mechanism that involves inhibition of
smooth muscle proliferation and upregulation of the cyclin-
dependent kinase inhibitor p21/cip (211).

It can, therefore, be seen that ROS/RNS plays important
roles in the development and progression of PH and PH-
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driving processes. They pose as viable therapeutic targets for
future development. Indeed, some evidence supports this. For
example, administration of recombinant SOD and SOD mi-
metics, eNOS inhibitor l-NG-nitroarginine methyl ester,
Nox inhibitors, and ROS scavengers have all been shown to
reduce PH in animal models (9, 27, 44, 54, 181). Future
modalities aimed at tissue-specific inhibition of ROS or ROS
sources could prove valuable additional add-on therapies to
existing drugs that could protect from the vascular re-
modeling consequences of the disease.

Early Diagnosis/Biomarkers of PAH

Initial diagnosis of PAH in patients is still problematic as
patients experienced a very broad range of symptoms, and
even at the earliest stage, PAH onset is asymptomatic (89,
90). The earliest symptom of PH, the dyspnea on exercise, is
also a common symptom of asthma, chronic obstructive
pulmonary disease, myocardial infarction, and pneumonia,
among others. However, it is important to improve the early
detection of PAH because functional class (FC) 1 and 2 pa-
tients with PAH have better survival rates than patients di-
agnosed in more severe conditions (67, 188). It can be argued
that there is tremendous benefit in patients with risk factors
such as familial PAH, sickle cell disease, thalassemia,
glucose-6-phosphate dehydrogenase deficiency(87), portal
hypertension, congenital heart disease, HIV infection, acute
pulmonary embolism, and connective tissue disease(79), to
undergo preventive assessment by echocardiography even in
the absence of symptoms of PAH.

However, the accuracy of noninvasive echocardiography
is not perfect, especially in mild conditions, and the gold
standard of PAH diagnosis remains to be right heart cathe-
terization (RHC). Nonetheless, RHC is an invasive procedure
and monitoring even predisposed patients every year may be
difficult and even unrealistic from a clinical perspective.
Therefore, the importance of concerted efforts for the dis-
covery of early biomarker ‘‘fingerprints’’ of PAH develop-
ment at an early, asymptomatic phase becomes glaringly
evident. The closest resemblance of a biomarker for PAH that
exists today is the plasma levels of the probrain natriuretic
peptide (pro-BNP). This is potentially a very useful, mini-
mally invasive approach to assessing PAH that only requires
plasma collection from patients (5). pro-BNP is a peptide that
is released from heart tissue that is stressed by the extra load,
similar to what is experienced by the right heart during PAH
as a result of the rise in pulmonary vascular resistance and
pressure. However, this approach presents important limita-
tions. First, it can be a nonspecific marker of ventricular
stress, be that from the right or left ventricles of the heart.
Second, and more importantly, because an increase in pul-
monary pressure is needed to induce RV stress, this bio-
marker cannot be used to assess early disease development
that precedes pressure elevation.

As discussed earlier, several conditions that initiate disease
development could be used to assess early PAH. For exam-
ple, several reports showed that metabolic changes in the
lungs undergo significant disturbances. The importance of
metabolic biomarkers in PAH is widely discussed. We found
that even before hemodynamic changes occur in the pulmo-
nary vasculature or right heart in the MCT model of PAH,
more than 500 metabolites were significantly altered (140).

Those metabolic changes could be used to generate the
needed ‘‘fingerprint’’ of PAH for metabolic analysis. With
the focus on the changes characteristic to PAH, these ‘‘fin-
gerprints’’ could differentiate between other lung or heart
diseases. PAH is accompanied with the glycolytic switch in
metabolism, and indeed, our data indicate a more than 10-
fold upregulation of glucose associated with the disease
progression. Although a promising approach, the fact that
these changes were assessed directly in lung tissue makes it
infeasible due to the invasive nature of the needed procedures
to collect lung biopsies. Building on these findings by ex-
amination of blood plasma for similar and specific metabolite
changes, however, would be a favorable and feasible ap-
proach. Also, inflammatory markers, such as cytokines and
DAMPs, could be used for early detection of PAH. The un-
derlying hemolysis in PAH patients, which contributes to the
inflammatory response can be assessed in plasma (111, 145).
Therefore, erythroid-derived DAMPs may be promising
targets for early detection. Indeed, signals from the free he-
moglobin in plasma followed PAH progression, as demon-
strated by a significant correlation with mean pulmonary
arterial pressure (mPAP), pulmonary vascular resistance, and
cardiac index. Free hemoglobin may not be an ideal reporter of
hemolysis in PAH as it has a specific haptoglobin-mediated
sequestering system; therefore, at the early phases of disease, it
could be controlled by the detoxification system. Therefore,
other markers of hemolysis may be utilized. Interestingly, an
increase in plasma creatinine levels in PAH patients is com-
mon and correlates with disease progression; this is partially
attributable to the worsening of renal function. Creatinine
could also be found at a high level in RBCs and reticulocytes;
thus, the release of creatinine from damaged RBCs could in-
dicate ongoing hemolysis. Indeed, our data indicate that in
PAH patients (N = 30) creatinine levels are strongly ( p <
0.0001) correlated with free hemoglobin levels (Fig. 6). Two
samples with increased free hemoglobin are probably pro-
ducing the effect on correlation; thus, this required future
studies with an analysis of the large cohort of patients.

It was also found that RBCs size distribution width (RDW)
is an important biomarker of PAH progression and outcome
(3, 168). RDW predicted survival of PAH patients inde-
pendently of the pro-BNP and the 6-minute walk distance.

FIG. 6. Plasma creatinine levels in PAH patients
(N 5 30) correlate significantly (p < 0.0001) with the level
of hemolysis. Free hemoglobin levels were measured as
recently published (144).
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Interestingly, increased RDW is common for iron deficit
anemias and blood loss conditions, again pointing to the role
of hemolysis in PAH. Other plasma biomarkers that we tested
in the study that are related to the inflammatory response are
IL-6 and the growth differentiation factor 15 (150). Both
biomarkers demonstrated a significant correlation with he-
modynamics and survival estimates. Therefore, early diag-
nosis of PAH could be based on circulating biomarkers that
reflect the characteristic ‘‘blueprint’’ of PAH based on oxi-
dative stress(117), inflammatory/DAMPs, hemolysis, and
metabolic reprogramming markers (Fig. 7). Although the
identification and initial validation of the promising biomarkers
have to be done in a preclinical animal model, they could be
further validated in the patients with exercise-induced PAH or
patients with a mild borderline PH (mPAP 20–25 mmHg) that
represent patient groups with early disease(84, 163). Although
still uncommon compared with patients with more advanced
PAH, such early cases are occasionally diagnosed, and their
frequency has been increasing in the recent years.

Conclusion

The recent advances make PH more treatable than it was
earlier. However, the early diagnosis of PH still remains the
biggest challenge. The nonspecific symptoms of PH signifi-
cantly delay its diagnosis. Currently, the time to diagnosis
(TTD) was reported as being close to 4 years (176). On av-
erage, it takes a patient about 12 months after the initial
symptom onset to initiate the first medical contact, five
general practitioner visits, and three specialist visits before
being referred to a PH specialist and before undergoing RV
catheterization. During this period, the disease progresses
from FC II (95%)/FC III (5%) at the time of symptom onset to
FC II (5%)/FC III (90%)/FC IV (5%) at diagnosis (176). At
the same time, a few national registry studies confirmed that

FC I or II patients have significantly better long-term survival
than patients with FC III/IV (67). Therefore, an approach that
would allow decreasing TTD would help to change the dis-
tribution between early and advanced PAH and toward less
progressive and more responsive PAH therapy. A further
shift toward diagnosing PH at an asymptomatic stage could
be expected to significantly improve the survival and prog-
nosis for this deadly disease. The accumulated body of lit-
erature strongly supports the idea that such early diagnosis is
highly possible. PH patients undergo significant changes in
metabolism, redox status, chronic unrecognized hemolysis,
cellular damage, and activation of inflammatory pathways
that precede PH manifestation. All these early pathological
events can be used to establish a combination of biomarkers that
could serve as a blueprint of the early stage of PH and could be
used for the prescreening of PH patients. Therefore, we believe
that the effort of the research community has to be shifted from
an attempt to treat the advanced stages of PH, which is hardly
achievable due to nonreversible changes of a failing heart, to-
ward getting a better understanding about mechanisms involved
in PH initiation and early progression. Such an approach would
not only advance our current knowledge regarding the early
pathogenic events but also significantly advance PH diagnostics,
increase therapy effectiveness, and improve patient survival.
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Abbreviations Used

AA¼ antimycin A
Akt¼RAC-alpha serine/threonine-protein kinase

BMP¼ bone morphogenetic protein
BMPR2¼ bone morphogenetic protein receptor type 2

Cav-1¼ caveolin-1
Cx43¼ connexin43

DAMP¼ damage-associated molecular pattern
DCA¼ dichloroacetate

EC¼ endothelial cell
ECM¼ extracellular matrix

eNOS¼ endothelial nitric oxide synthase
FC¼ functional class

FKN¼ fractalkine
H2O2¼ hydrogen peroxide

HIF¼ hypoxia-inducible factor
HMGB1¼ high mobility group box 1
HPAEC¼ human pulmonary artery endothelial cell

IL¼ interleukin
MAPK¼mitogen-activated protein kinase

MCT¼monocrotaline
mPAP¼mean pulmonary arterial pressure
mTOR¼mammalian target of rapamycin

NEDD9¼ developmentally downregulated protein 9
NO¼ nitric oxide

NOS¼ nitric oxide synthase
Nox¼NADPH oxidase
O2

-�¼ superoxide
ONOO-¼ peroxynitrite

PAH¼ pulmonary arterial hypertension
PAMP¼ pathogen-associated molecular pattern

PDH¼ pyruvate dehydrogenase
PDK¼ pyruvate dehydrogenase kinase

PH¼ pulmonary hypertension
PKC¼ protein kinase C

pro-BNP¼ probrain natriuretic peptide
PRR¼ pattern recognition receptor
RBC¼ red blood cell

RDW¼RBCs size distribution width
RHC¼ right heart catheterization
RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species

RV¼ right ventricle
SMAD3¼mothers against decapentaplegic homolog 3

SMCs¼ smooth muscle cells
SOD¼ superoxide dismutase

SU¼ Sugen SU5614
TCA¼ tricarboxylic acid
TGF¼ transforming growth factor
TNF¼ tumor necrosis factor
TTD¼ time to diagnosis

VEGF¼ vascular endothelial growth factor
VSMCs¼ vascular smooth muscle cells

XO¼ xanthine oxidoreductase
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