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Genome‑wide scan for selection 
signatures reveals novel insights 
into the adaptive capacity in local 
North African cattle
Slim Ben‑Jemaa1*, Salvatore Mastrangelo2, Seung‑Hwan Lee3, Jun Heon Lee3 & 
Mekki Boussaha4

Natural-driven selection is supposed to have left detectable signatures on the genome of North 
African cattle which are often characterized by the fixation of genetic variants associated with traits 
under selection pressure and/or an outstanding genetic differentiation with other populations at 
particular loci. Here, we investigate the population genetic structure and we provide a first outline 
of potential selection signatures in North African cattle using single nucleotide polymorphism 
genotyping data. After comparing our data to African, European and indicine cattle populations, 
we identified 36 genomic regions using three extended haplotype homozygosity statistics and 92 
outlier markers based on Bayescan test. The 13 outlier windows detected by at least two approaches, 
harboured genes (e.g. GH1, ACE, ASIC3, HSPH1, MVD, BCL2, HIGD2A, CBFA2T3) that may be involved 
in physiological adaptations required to cope with environmental stressors that are typical of the 
North African area such as infectious diseases, extended drought periods, scarce food supply, oxygen 
scarcity in the mountainous areas and high-intensity solar radiation. Our data also point to candidate 
genes involved in transcriptional regulation suggesting that regulatory elements had also a prominent 
role in North African cattle response to environmental constraints. Our study yields novel insights 
into the unique adaptive capacity in these endangered populations emphasizing the need for the 
use of whole genome sequence data to gain a better understanding of the underlying molecular 
mechanisms.

Taurine cattle were first introduced to Africa through Egypt from the Fertile Crescent ~ 6500 years BP1 and 
dispersed into North Africa where they have undergone hybridization with local wild aurochs2. The geographic 
proximity of North Africa to Europe makes it a likely contact zone between the two continents. Several genetic 
studies reported an old presence of African cattle ancestry in the genomes of Iberian cattle2,3 and a European 
ancestry in local Maghreb cattle4–6. Nomad pastoralism and tribal migrations prevented the division of North 
African cattle populations into clearly defined breed groups. Present-day indigenous cattle in Morocco, Algeria 
Tunisia and Libya belong to the Brown Atlas cattle. These are small-sized, sturdy, fairly compact animals with 
fine limbs, a short head and a straight to slightly concave profile. In these countries, Brown Atlas cattle popula-
tions, predominantly pasture-fed, are raised in a Mediterranean climate characterized by a winter rainfall and 
a hot dry summer during which live weight losses in adult cows can reach 20%7. In Egypt, indigenous cattle are 
medium sized, long-bodied animals, lean of musculature and lightly boned. They are raised either in desert or 
semi-desert regions characterized by a very arid Mediterranean climate and negligible rainfall. A number of 
ecotypes are recognised based on their geographical distribution. For instance, in Lower Egypt there are two 
local cattle populations, the Damietta is typically found in coastal sites and the Baladi or Baheri is widespread 
inland in the delta8. Overall, North African indigenous cattle are resistant to many of the diseases and parasites 
to which imported European cattle are susceptible7 resulting from a local environment-driven selection that 
occurred over hundreds of years. Adaptation to local conditions is expected to leave distinct signatures in the 
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genome known as a “selective sweeps” owing to a rapid increase in the frequency of the desirable alleles or in 
the frequency of neutral markers in linkage disequilibrium with the favorable alleles9. Studies on signatures of 
selection focusing exclusively on North African cattle have never been reported before.

The emergence of high-throughput single nucleotide polymorphism (SNP) genotyping and whole genome 
sequencing facilities coupled with the development of new genomic methodologies have enabled the screening 
of a large part of the genome to detect signatures of selection in livestock and domestic populations10–14. All 
these studies have used comparison of genomic patterns of SNPs variability between local and exotic breeds to 
identify genomic regions and genes that have undergone selective sweeps.

The main goal of this study was to investigate population structure and candidate positive selection signatures 
in North African cattle using genotype data from the Illumina BovineSNP50 BeadChip with comparisons against 
four European breeds, three African and two indicine populations. We applied four genome scan approaches to 
identify genomic regions putatively under selection: the first three methods are extended haplotype homozygosity 
(EHH)-derived statistics (iHS, Rsb and XP-EHH) and are based on the decay of haplotype homozygosity as a 
function of recombination distance. The fourth approach is a Bayesian method based on the differentiation of 
allele frequencies among populations.

Results
Population structure analysis among all cattle populations.  We used Principal Component Anal-
ysis (PCA) to contextualize the genetic variation of North African cattle populations (Fig.  1). The first two 
principal components accounted for 5.67% (PC1) and 3.74% (PC2) of the total genetic variation. The global 
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Figure 1.   Principle component analysis results of allele frequencies obtained from 38,464 SNPs genotyped in 
468 cattle individuals from 17 populations. Each point represents the eigenvalues of principal components 1 and 
2. Populations are represented by coloured inertia ellipses.
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organization of the genetic diversity of the populations of the study might be described as a triangle with apexes 
corresponding to North European breeds (Angus (ANG) and Holstein (HOL)), African taurines (NDA, ND1 
and ND2) and indicine populations (NEL and GIR). PCA results show that the Tunisian Brune de l’Atlas (TUN-
IND) and the Algerian populations (Guelmoise (GUE) and Cheurfa (CHE)) are closer to each other than to the 
Moroccan (Oulmes Zaer (OUL) and Tidili (TID)) and the Egyptian (Baladi (BAL)) populations. Furthermore, 
these results distinguished Biskra (BIS) and Chelifienne (CHF) from the other North African populations. The 
former was positioned near European breeds with several BIS individuals clustering along with Montbéliarde 
(MON) while CHF individuals showed a higher dispersion around their center of gravity (with several individu-
als positioned near MON) indicating a high genetic heterogeneity.

Breed assignment to clusters using ADMIXTURE provided further insight into the genetic structure of North 
African populations. Figure 2 shows the results obtained for K values 2, 3, 5, 7, 10, 12 and 17. K = 10 showed 
the lowest cross-validation error (Supplementary Fig. S1). At K = 2, European taurine breeds were separated 
from indicine and African cattle. The K = 3 model further separated African populations from indicine cattle. 
All North African populations except BAL carry two main European and African ancestries. In agreement with 
PCA results, BIS shows the largest amount of European ancestry with a minimum of 61.86% and a maximum 
of 88.5% while the Moroccan TID has the largest amount of African ancestry with a minimum of 55.67% and a 
maximum of 70.32%. For its part, BAL possesses a significant amount of indicine ancestry with a minimum of 
16.41% and a maximum of 30.35%. At K = 5, the three European breeds (ANG, HOL and Jersey (JER)), formed 
three different clusters. All North African populations had on average 21.69% (with a minimum of 10.93% in 
BAL and a maximum of 29.42% in BIS) and 19.47% (with a minimum of 10.85% in BAL and a maximum of 
46.37% in BIS) of JER and HOL ancestries, respectively. At K = 7, all North African populations except BIS and 
a few CHF individuals can be seen as distinct from the other breeds with a major “North African” component 
ranging, on average, from 48.8% for BAL and CHF to 79.5% for TID. It is worth noting that BIS displayed a 
substantial level of MON introgression (on average, 32.1%) while no African ancestry was detected within this 
breed (Fig. 2). At K = 10, BAL separated from the other North African populations while this happened for OUL 
when K was set to 17.

Figure 2.   Unsupervised hierarchical clustering of the 468 individuals from the 17 populations of the study. 
Results for K (number of clusters) = 2, 3, 5, 7, 10 (k-value with the lowest cross-validation error), 12 and 17 are 
shown. Individuals are grouped by population. Each individual is represented by a vertical bar. The proportion 
of the bar in each of K colours corresponds to the average posterior likelihood that the individual is assigned to 
the cluster indicated by that colour. Populations are separated by vertical black lines.
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Details of the level of pairwise genetic differentiation are reported in Supplementary Table S1. Most of North 
African populations showed low differentiation levels. The lowest FST values are found between CHE and GUE 
(FST ~ 0), CHE and TUNIND (FST = 0.002) and between GUE and TUNIND (FST = 0.003). Likewise, low genetic 
differentiation is observed between TID on one hand, GUE, CHE and TUNIND, on the other hand (FST TID/
GUE = 0.016, FST TID/CHE = 0.016 and FST TID/TUNIND = 0.015) while a higher FST is observed between these 
three breeds and BAL (0.042, 0.042 and 0.045 for BAL/CHE, BAL/GUE and BAL/TUNIND, respectively).

We used the TreeMix software to model both population splits and gene flow between the 17 cattle popula-
tions. When no migration events were fit (Supplementary Fig. S2, residuals presented in Supplementary Fig. S3), 
the eight North African populations were positioned on different locations on the tree. BAL was the closest to 
indicine populations while BIS was in clade with the European breeds. We then sequentially added migration 
events to the tree until the proportion of the variance in relatedness between populations explained by the model 
began to asymptote. This happened when 14 migration edges were fit (where 99.93% of the variance in ancestry 
between populations was explained by the model (Supplementary Fig. S4)). The phylogenetic network structure 
presented in Fig. 3 highlights the known African taurine introgression into North African populations and 
significant levels of admixture from Holstein (HOL) into the genomes of BIS and CHF.

Candidate genome regions putatively under selection in North African cattle.  In order to per-
form an accurate search for signatures of selection in North African cattle, we selected the breeds that are most 
representative of the ancestral North African populations i.e. those with a major “North African” component. 
This was done based on the population structure results and led to the exclusion of BIS (because of the low 
portion of its North African ancestry) and CHF (because of its high inter-individual genomic heterogeneity) 
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Figure 3.   Maximum likelihood tree constructed with TreeMix when 14 migration events (modeled as arrows) 
were allowed. Migration arrows are coloured according to their weight.
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(Figs. 1, 2, 3). We also removed a total of 1475 SNPs because of uncertainty in the identification of their ancestral 
state (see methods section).

Rsb and Cross-population Extended Haplotype Homozygosity (XP-EHH) statistics were computed at each 
SNP for each of the three comparisons (African (AFT)/North African, European (EUT)/North African, indicine 
(IND)/North African). Haplotypes estimated in each population were pooled, for each autosome, according to 
their group of origin. In total, 108, 334 and 86 haplotypes were considered as representative of African, European, 
and indicine ancestries, respectively.

EHH‑based methods.  Rsb detected 427, 369 and 167 SNPs putatively under selection for AFT/North AFT, 
EUT/North AFT and IND/North AFT comparisons, respectively (Fig.  4a–c, respectively). These markers 
defined 14, 11 and 4 candidate regions for the comparisons between North AFT and AFT, North AFT and 
EUT and North AFT and IND, respectively (Fig. 4, Table 1). XP-EHH yielded fewer outlier SNPs than analy-
ses based on the Rsb approach: 254, 196 and 111 SNPs putatively under selection for AFT/North AFT, EUT/
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Figure 4.   Manhattan plots showing the results of Rsb test for the autosomes in North African cattle. (a) Rsb test 
AFT versus North African cattle. (b) Rsb test EUT versus North African cattle. (c) Rsb test IND versus North 
African cattle. Horizontal dashed lines mark the significance threshold applied to detect the outlier SNPs (–
log10 (p value) = 3).
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North AFT and IND/North AFT comparisons, respectively (Fig. 5a–c, respectively). These outliers defined 8, 
6 and 3 selective sweeps for the comparisons between North AFT and AFT, North AFT and EUT and North 
AFT and IND, respectively (Table 1). Among these, six, three and two regions were also identified with Rsb 
tests for AFT/North AFT, EUT/North AFT and IND/North AFT comparisons, respectively (Table 1). These 
regions are located on chromosomes (BTA) 01 (at position: 17,740,000–19,640,000 bp), BTA04 (at positions: 
76,470,000–78,910,000  bp and 113,060,000–114,940,000  bp), BTA06 (at position: 46,780,000–50,050,000  bp) 
and BTA24 (at positions :18,030,000–20,020,000 bp and 59,750,000–61,740,000 bp) for the AFT/North AFT 
comparison, on BTA07 (at position: 41,060,000–43,620,000 bp), BTA19 (at position: 47,120,000–49,070,000 bp) 
and BTA21 (at position: 14,830,000–16,650,000  bp) for the EUT/North AFT comparison and on BTA12 (at 
position: 28,400,000–30,490,000 bp), BTA18 (at position: 11,580,000–14,350,000 bp) for the IND/North AFT 
comparison. The intra-population iHS analysis revealed a total of 2 significant regions (piHS ≥ 3) distributed on 
BTA 03 (at position: 32,200,000–33,750,000) and 19 (at position: 47,390,000–48,980,000) (Fig. 5d, Table 1). The 
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Figure 5.   Manhattan plots showing the results of XP-EHH and iHS tests for the autosomes in North African 
cattle. (a) XP-EHH test AFT versus North African cattle. (b) XP-EHH test EUT versus North African cattle. (c) 
XP-EHH test IND versus North African cattle. (d) iHS test for North African cattle. Horizontal dashed lines 
mark the significance threshold applied to detect the outlier SNPs (–log10 (p value) = 3).
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Test BTA Start (pb) End (pb) length (Mb) Genes

iHS

3 32,200,000 33,750,000 1.55
DENND2D, CEPT1, DRAM2, LRIF1, U6, CD53, KCNA3, KCNA2, KCNA10, CYM, 
PROK1, LAMTOR5, SLC16A4, RBM15, KCNC4, SLC6A17, bta-mir-2285as-3, UBL4B, 
ALX3, STRIP1, AHCYL1, CSF1, bta-mir-2413, EPS8L3, GSTM3, GSTM1

19 47,390,000 48,980,000 1.59
TANC2, CYB561, ACE, KCNH6, DCAF7, TACO1, MAP3K3, LIMD2, STRADA, 
CCDC47, DDX42, FTSJ3, PSMC5, SMARCD2, bta-mir-10173, TCAM1, GH1, 
CD79B, SCN4A, ERN1, SNORD104, SNORA50C, TEX2, PECAM1, MILR1, POLG2, 
DDX5, bta-mir-3064, CEP95, SMURF2, KPNA2

RsbAFT versus North AFT

1 17,680,000 19,640,000 1.96 U6, 5S_rRNA, 5S_rRNA, TMPRSS15, CHODL, C1H21orf91, U6, BTG3, CXADR, 
7SK

3 59,870,000 61,700,000 1.83 PRKACB, TTLL7, 5S_rRNA

4 76,470,000 78,910,000 2.44
RAMP3, TBRG4, SNORA5C, SNORA5A, CCM2, SNORA9, MYO1G, U6, PURB, 
bta-mir-4657, H2AFV, PPIA, ZMIZ2, OGDH, TMED4, DDX56, NPC1L1, NUDCD3, 
CAMK2B, YKT6, GCK, MYL7, POLD2, AEBP1, POLM, BLVRA, COA1, STK17A, 
HECW1, MRPL32, PSMA2, C4H7orf25, GLI3

4 113,060,000 114,940,000 1.88
GIMAP4, GIMAP7, GIMAP5, TMEM176B, 5S_rRNA, TMEM176A, AOC1, KCNH2, 
NOS3, ATG9B, ABCB8, ASIC3, CDK5, SLC4A2, FASTK, bta-mir-6525, TMUB1, 
AGAP3, ASB10, GBX1, IQCA1L, ABCF2, CHPF2, bta-mir-671, SMARCD3, NUB1, 
WDR86, CRYGN, RHEB, PRKAG2, GALNTL5, GALNT11, KMT2C, CCT8L2

6 46,780,000 50,050,000 3.27 5S_rRNA, SNORA70, Y_RNA, U6, PCDH7

6 86,650,000 88,640,000 1.99 SLC4A4, GC, NPFFR2, ADAMTS3, SNORD42, COX18, ANKRD17, ALB, AFP, AFM, 
RASSF6

7 54,670,000 56,540,000 1.87 YIPF5, KCTD16, U6

8 20,180,000 22,020,000 1.84 ELAVL2, DMRTA1, bta-mir-2285cd

21 29,320,000 31,200,000 1.88
CHRNA7, U6, OTUD7A, ADAMTS7, TBC1D2B, SH2D7, CIB2, IDH3A, ACSBG1, 
DNAJA4, WDR61, CRABP1, IREB2, HYKK, PSMA4, CHRNA5, CHRNA3, CHRNB4, 
UBE2Q2, FBXO22

21 66,740,000 68,120,000 1.38
bta-mir-1247, DIO3, PPP2R5C, U6, DYNC1H1, HSP90AA1, WDR20, MOK, ZNF839, 
CINP, U5, TECPR2, ANKRD9, RCOR1, TRAF3, AMN, CDC42BPB, EXOC3L4, 5S_
rRNA, TNFAIP2, EIF5, SNORA28, MARK3

24 18,030,000 20,020,000 1.99 CELF4

24 59,660,000 61,790,000 2.13 CDH20, RNF152, PIGN, RELCH, SNORD36, TNFRSF11A, ZCCHC2, PHLPP1, 
BCL2, KDSR, U6, VPS4B, SERPINB5

25 5,540,000 7,420,000 1.88 RBFOX1, U2

29 33,910,000 35,070,000 1.16 OPCML, NTM

Rsb EUT versus North AFT

1 51,390,000 52,980,000 1.59 bta-mir-2286, CCDC54, 5S_rRNA, BBX, CD47, IFT57

1 82,820,000 84,650,000 1.83
THPO, POLR2H, CLCN2, FAM131A, EIF4G1, SNORD66, PSMD2, ECE2, CAMK2N2, 
ALG3, VWA5B2, bta-mir-1224, ABCF3, AP2M1, DVL3, EIF2B5, HTR3C, ABCC5, 
PARL, MAP6D1, YEATS2, KLHL24, KLHL6, SNORA63, MCF2L2, B3GNT5, LAMP3, 
MCCC1, DCUN1D1, ATP11B

7 34,800,000 36,670,000 1.87 DTWD2

7 36,720,000 38,670,000 1.95
SEMA6A, 5S_rRNA, COMMD10, ARL10, NOP16, HIGD2A, CLTB, FAF2, RNF44, 
CDHR2, GPRIN1, SNCB, EIF4E1B, TSPAN17, UNC5A, HK3, UIMC1, ZNF346, U6, 
FGFR4, NSD1

7 39,450,000 46,350,000 6.9

CLK4, 7SK, ZNF354A, PROP1, 5S_rRNA, OR2Y1, MGAT1, ZFP62, BTNL9, 
OR2V1, TRIM7, TRIM41, RACK1, SNORD96, TRIM52, IFI47, ZNF496, U6, 
NLRP3, OR2B11, GCSAML, OR2G2, OR2G3, OR6F1, OR11L1, TRIM58, OR2AJ1, 
OR2L13, OR2M4, OR2T6, OR2T1, OR2T27, OR2T11, OR2G6, MGC137030, LYPD8, 
SH3BP5L, ZNF672, ZNF692, PGBD2, PLPP2, MIER2, THEG, C2CD4C, SHC2, 
ODF3L2, MADCAM1, TPGS1, CDC34, GZMM, BSG, HCN2, POLRMT, FGF22, 
RNF126, FSTL3, PRSS57, PALM, MISP, PTBP1, PLPPR3, AZU1, PRTN3, ELANE, 
CFD, MED16, R3HDM4, KISS1R, ARID3A, WDR18, GRIN3B, TMEM259, CNN2, 
ABCA7, ARHGAP45, POLR2E, GPX4, SBNO2, STK11, CBARP, ATP5F1D, MIDN, 
CIRBP, FAM174C, EFNA2, PWWP3A, NDUFS7, GAMT, DAZAP1, RPS15, APC2, 
C7H19orf25, PCSK4, REEP6, ADAMTSL5, MEX3D, MBD3, UQCR11, TCF3, ONE-
CUT3, ATP8B3, REXO1, KLF16, ABHD17A, SCAMP4, CSNK1G2, bta-mir-6120, 
BTBD2, SOWAHA, SHROOM1, GDF9, UQCRQ, LEAP2, AFF4, ZCCHC10, HSPA4, 
FSTL4, C7H5orf15, VDAC1, TCF7, SKP1, PPP2CA, bta-mir-2285di, CDKL3, 
UBE2B, CDKN2AIPNL, JADE2, SAR1B, SEC24A, CAMLG, DDX46, C7H5orf24

8 88,100,000 90,020,000 1.92 5S_rRNA, GADD45G, SEMA4D, SECISBP2, CKS2, SHC3, S1PR3, Vault, 5S_rRNA, 
NXNL2, SPIN1

8 91,150,000 92,450,000 1.3 ALDOB, TMEM246, RNF20, GRIN3A

8 93600000 95530000 1.93 SMC2, OR13C3, OR13C8, NIPSNAP3A, ABCA1, SLC44A1, FSD1L, FKTN, TAL2, 
TMEM38B

14 23,020,000 24,720,000 1.7 TMEM68, TGS1, LYN, RPS20, U1, MOS, PLAG1, CHCHD7, SDR16C5, SDR16C6, 
PENK, U6, IMPAD1, FAM110B, UBXN2B, CYP7A1, U1

19 47,120,000 49,070,000 1.95
MARCHF10, TANC2, CYB561, ACE3, ACE, KCNH6, DCAF7, TACO1, MAP3K3, 
LIMD2, STRADA, CCDC47, DDX42, FTSJ3, PSMC5, SMARCD2, bta-mir-10173, 
TCAM1, GH1, CD79B, SCN4A, ERN1, SNORD104, SNORA50C, TEX2, PECAM1, 
MILR1, POLG2, DDX5, bta-mir-3064, CEP95, SMURF2, KPNA2, C17orf58, BPTF

21 14,830,000 16,650,000 1.82 SLCO3A1, SV2B, U6, AKAP13, KLHL25

Continued
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latter region was also revealed by the EUT/North African comparison (both Rsb and XP-EHH tests). Overall, 
the 11 candidate genomic regions identified by at least two EHH-based methods, overlap with Quantitative Trait 
Loci (QTL) associated with traits for milk and meat composition, fertility and sexual precociousness, disease 
susceptibility (tuberculosis and respiratory diseases), stature and growth (Supplementary Table S2). Also, the 
11 aforementioned genomic regions co-localize with 166 previously described structural variants most of which 
(148 out of 166) are copy number variations (CNV) (Supplementary Table S3). In total, 71 genes are located in 
CNV regions (Supplementary Table S4). 

Test BTA Start (pb) End (pb) length (Mb) Genes

Rsb IND versus North AFT

12 28,400,000 30,490,000 2.09 PDS5B, N4BP2L2, N4BP2L1, BRCA2, ZAR1L, FRY, RXFP2, bta-mir-2299, B3GLCT, 
HSPH1, TEX26, MEDAG, ALOX5AP, USPL1, HMGB1, KATNAL1

18 10,590,000 15,060,000 4.47

ATP2C2, MEAK7, COTL1, KLHL36, USP10, CRISPLD2, ZDHHC7, KIAA0513, 
FAM92B, GSE1, GINS2, EMC8, COX4I1, IRF8, FOXF1, MTHFSD, FOXC2, FOXL1, 
FBXO31, MAP1LC3B, ZCCHC14, JPH3, KLHDC4, SLC7A5, CA5A, BANP, ZNF469, 
ZFPM1, ZC3H18, CYBA, MVD, SNAI3, CTU2, RNF166, PIEZO1, bta-mir-2327, 
CDT1, APRT, GALNS, TRAPPC2L, CBFA2T3, ACSF3, CDH15, SLC22A31, 
ANKRD11, SPG7, RPL13, SNORD68, CPNE7, DPEP1, CHMP1A, CDK10, SPATA2L, 
VPS9D1, ZNF276, FANCA, SPIRE2, TCF25, MC1R, TUBB3, DEF8, DBNDD1, GAS8, 
U1, SHCBP1, VPS35, ORC6, MYLK3

19 44,340,000 45,970,000 1.63
MEIOC, CCDC43, DBF4B, ADAM11, GJC1, HIGD1B, EFTUD2, bta-mir-2343, 
CCDC103, FAM187A, GFAP, KIF18B, C1QL1, DCAKD, NMT1, PLCD3, ACBD4, 
HEXIM1, HEXIM2, FMNL1, MAP3K14, U6, ARHGAP27, PLEKHM1, RDM1, LYZL6, 
RPRML, GOSR2, WNT9B, WNT3, NSF, ARF2, CRHR1, SPPL2C, MAPT

23 16,430,000 18,420,000 1.99

BICRAL, RPL7L1, PTCRA, CNPY3, GNMT, PEX6, PPP2R5D, MEA1, KLHDC3, RRP36, 
CUL7, MRPL2, KLC4, PTK7, SRF, CUL9, DNPH1, TTBK1, SLC22A7, CRIP3, U6, 
ZNF318, ABCC10, DLK2, TJAP1, LRRC73, YIPF3, POLR1C, XPO5, POLH, GTPBP2, 
MAD2L1BP, RSPH9, MRPS18A, VEGFA, U6, TMEM63B, CAPN11, MYMX, SLC29A1, 
HSP90AB1, SLC35B2, NFKBIE, TMEM151B, AARS2, SPATS1, CDC5L, SUPT3H, 
5S_rRNA

XP-EHH AFT versus North AFT

1 17,740,000 19,640,000 1.9 U6, 5S_rRNA, TMPRSS15, CHODL, C1H21orf91, BTG3, CXADR, 7SK

4 76,570,000 78,910,000 2.34
CCM2, SNORA9, MYO1G, U6, PURB, bta-mir-4657, H2AFV, PPIA, ZMIZ2, OGDH, 
TMED4, DDX56, NPC1L1, NUDCD3, CAMK2B, YKT6, GCK, MYL7, POLD2, 
AEBP1, POLM, BLVRA, COA1, STK17A, HECW1, MRPL32, PSMA2, C4H7orf25, 
GLI3

4 113,110,000 114,860,000 1.75
GIMAP4, GIMAP7, GIMAP5, TMEM176B, 5S_rRNA, TMEM176A, AOC1, KCNH2, 
NOS3, ATG9B, ABCB8, ASIC3, CDK5, SLC4A2, FASTK, bta-mir-6525, TMUB1, 
AGAP3, ASB10, GBX1, IQCA1L, H2BE1, ABCF2, CHPF2, bta-mir-671, SMARCD3, 
NUB1, WDR86, CRYGN, RHEB, PRKAG2, GALNTL5, GALNT11, KMT2C

6 2,080,000 4,020,000 1.94 MARCHF1, TMA16, TKTL2, NPY5R, NPY1R, NAF1, U6, BBS7, CCNA2, EXOSC9, 
ANXA5, U3

6 46,780,000 50,050,000 3.27 5S_rRNA, SNORA70, Y_RNA, PCDH7

24 18,030,000 20,020,000 1.99 CELF4

24 59,750,000 61,740,000 1.99 CDH20, RNF152, PIGN, RELCH, SNORD36, TNFRSF11A, ZCCHC2, PHLPP1, 
BCL2, KDSR, U6, VPS4B, SERPINB5

25 39,370,000 41,300,000 1.93
SDK1, bta-mir-2390, CARD11, GNA12, AMZ1, BRAT1, bta-mir-11980, IQCE, TTYH3, 
LFNG, bta-mir-12029, GRIFIN, CHST12, bta-mir-12019, EIF3B, SNX8, NUDT1, 
MRM2, MAD1L1, ELFN1

XP-EHH EUT versus North AFT

7 22,580,000 24,390,000 1.81 FNIP1, U6, bta-mir-12018, 7SK, CDC42SE2, LYRM7, HINT1, CHSY3, MINAR2

7 41,060,000 43,620,000 2.56

OR6F1,OR11L1, TRIM58, OR2W3, 5S_rRNA, OR2AJ1, OR2L13, OR2M4, OR2T6, 
OR2T1, OR2T27, OR2T11, OR2G6, U6, MGC137030, LYPD8, SH3BP5L, ZNF672, 
ZNF692, PGBD2, PLPP2, MIER2, THEG, C2CD4C, SHC2, ODF3L2, MADCAM1, 
TPGS1, CDC34, GZMM, BSG, HCN2, POLRMT, FGF22, RNF126, FSTL3, PRSS57, 
PALM, MISP, PTBP1, PLPPR3, AZU1, PRTN3, ELANE, CFD, MED16, R3HDM4, 
KISS1R, ARID3A, WDR18, GRIN3B, TMEM259, CNN2, ABCA7, ARHGAP45, 
POLR2E, GPX4, SBNO2

15 33,830,000 35,760,000 1.93
GRAMD1B, SCN3B, ZNF202, SAAL1, TPH1, SERGEF, KCNC1, MYOD1, OTOG, 
USH1C, ABCC8, KCNJ11, NCR3LG1, NUCB2, PIK3C2A, RPS13, SNORD14, PLE-
KHA7, U6, C15H11orf58

19 47,120,000 49,140,000 2.02
MARCHF10, TANC2, CYB561, ACE, KCNH6, DCAF7, TACO1, MAP3K3, LIMD2, 
STRADA, CCDC47, DDX42, FTSJ3, PSMC5, SMARCD2, bta-mir-10173, TCAM1, 
GH1, CD79B, SCN4A, ERN1, SNORD104, SNORA50C, TEX2, PECAM1, MILR1, 
POLG2, DDX5, bta-mir-3064, CEP95, SMURF2, KPNA2, C17orf58, BPTF

20 57,910,000 59,770,000 1.86 U6, ANKH, OTULIN, OTULINL, TRIO, DNAH5

21 14,800,000 16,630,000 1.83 SLCO3A1, SV2B, U6, AKAP13, KLHL25

XP-EHH IND versus North AFT

12 28,400,000 30,490,000 2.09 PDS5B, N4BP2L2, N4BP2L1, BRCA2, ZAR1L, FRY, RXFP2, bta-mir-2299, B3GLCT, 
HSPH1, TEX26, MEDAG, ALOX5AP, USPL1, HMGB1, KATNAL1

18 11,580,000 14,350,000 2.77
GSE1, GINS2, EMC8, COX4I1, IRF8, FOXF1, MTHFSD, FOXC2, FOXL1, FBXO31, 
MAP1LC3B, ZCCHC14, JPH3, KLHDC4, SLC7A5, CA5A, BANP, ZNF469, ZFPM1, 
ZC3H18, CYBA, MVD, SNAI3, CTU2, RNF166, PIEZO1, bta-mir-2327, CDT1, 
APRT, GALNS, TRAPPC2L, CBFA2T3, ACSF3, CDH15, SLC22A31, ANKRD11

22 4,920,000 6,550,000 1.63 TGFBR2, GADL1, U6, STT3B, OSBPL10

Table 1.   Genomic regions putatively under selection identified using iHS, Rsb and XP-EHH statistics. Regions 
jointly identified by at least two methods are in bold.
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Bayesian FST method.  We used the BayeScan program to identify putative genomic regions under selection 
in North African cattle. A total of 53 and 39 outlier SNPs were detected for FST AFT/North AFT and FST EUT/
North AFT, respectively (Supplementary Fig. S5, Supplementary Tables S5, S6). Among these 92 SNPs, only five 
markers were located within or close to candidate regions detected by an EHH-based metric (Supplementary 
Tables S5, S6). No significant SNPs were identified with the FST IND/North AFT test.

Identification and functional annotation of the genes within the candidate regions.  Outlier 
windows from iHS, Rsb and XP-EHH tests include 57, 581 and 305 known genes, respectively (Table 1). Genes 
identified with Rsb and XP-EHH are distributed as follows: 151 and121, 264 and 127, 166 and 57 for AFT/
North African, EUT/North African, IND/North African comparisons, respectively (Table 1). Thirty genes were 
common to both iHS and EUT/North African comparison (either Rsb or XP-EHH). Similarly, 109, 143 and 
65 genes were jointly identified by Rsb and XP-EHH for each of the AFT/North African, EUT/North Afri-
can, IND/North African comparisons, respectively of which 74, 97 and 50, respectively, could be mapped by 
DAVID Bioinformatics resources (https​://david​.ncifc​rf.gov/). Gene Ontology (GO) analysis showed that AIG1 
(IPR006703, n = 6, Benjamini-corrected p value = 4.45 × 10−7) and P-loop containing nucleoside triphosphate 
hydrolase (IPR027417, n = 14, Benjamini-corrected p value  = 0.0031) InterPro protein functional groups were 
the two significantly enriched functional classes identified in the AFT/North AFT comparison (Supplementary 
Table S7). Sensory perception of smell (GO:0,007,608, n = 18, Benjamini-corrected p value = 3.23 × 10−14) and 
G-protein coupled receptor signaling pathway (GO:0,007,186, n = 19, Benjamini-corrected p value  = 3.48 × 10−6) 
were the most enriched biological process (BP) terms identified in the EUT/North AFT comparison. Olfactory 
receptor activity (GO:0,004,984, n = 21, Benjamini-corrected p value  = 6.66 × 10−7) and serine-type endopepti-
dase activity (GO:0,004,252, n = 6, Benjamini-corrected p value  = 0.053) were the most enriched terms under 
molecular function (MF) in the same comparison (Supplementary Table S8).

Discussion
The main purpose of the present study is to unravel signatures of positive selection in North African cattle. 
Because we used several breeds with diverse population structure, the main challenge in our study was to 
minimize the rate of false-positive signals that can arise, inter alia, owing to the confounding effects of popula-
tion demographics15. Assuming that populations with similar structure have undergone similar evolutionary 
processes, in our selection signature detection analyses, we retained only North African populations showing a 
high degree of within population genetic homogeneity and a large portion of North African ancestry. In agree-
ment with previous studies6 our genome analyses are consistently and strongly in the direction of a substantial 
and recent contribution of European breeds to the genomes of BIS and CHF (Figs. 1, 2). Furthermore, in the 
admixture models in which K = 7, 10 and 12, the individuals sampled from these two breeds showed a high 
degree of within population genetic heterogeneity. Therefore, BIS and CHF were discarded from the subsequent 
selection signature analyses.

Our results corroborate previous reports16 suggesting that BAL resulted from a three-way admixture between 
breeds representative of European, African and indicine cattle. The presence of an indicine content within 
the genome of BAL is consistent with a wave of indicine introduction during the rinderpest epidemic of the 
nineteenth century1,17. Our results indicate that all North African populations share ancestry with Jersey cattle 
which supports previous whole genome sequencing analyses reporting a common distinct patriline of Jersey 
bulls with African cattle18. Overall, our findings indicate that modern North African cattle can be classified into 
3 subgroups. The first one is the “Brune de l’Atlas” population which possesses two main African and European 
ancestries. This subgroup includes the Moroccan TID, the Algerian GUE and CHE and the Tunisian Brune de 
l’Atlas. The second subgroup consists of the Egyptian local cattle which possesses an additional large portion 
of indicine ancestry (at the expense of European ancestry). The third subgroup, represented by CHF and BIS, 
includes European-derived breeds. The phylogenetic network inferred by TreeMix corroborate these findings in 
that CHF and especially BIS are in clade with the European breeds while CHE, TID, TUNIND and GUE share 
the same branch and are much closer to African populations.

In this paper, we present the first genome-wide scan of putative selective sweeps in North African cattle by 
combining four different statistical methods based either on the decay of haplotype homozygosity as a function 
of recombination distance or on allele frequency differentiation among populations. In total, we highlight the 
presence of 36 different genomic regions putatively under selection using the first type of approaches (iHS, Rsb 
and XP-EHH) and 92 outlier SNPs using Bayescan. Consistently with previous observations19, we observe little 
overlap between results obtained from each of the two types of approaches. Given that Bayescan assumes that 
the gene frequencies under any neutrally structured population model can be approximated by a multinomial 
Dirichlet distribution20 which would not be appropriate in a hierarchical population structure21 (as is the case for 
our North African sample), the 92 identified SNPs should be considered cautiously. Instead, we believe that the 
three EHH-based methods, which inter alia, can detect a wider range of selection scenarios22, are more suitable 
to our study design. These statistics take advantage of the reduction in haplotype diversity in the neighbourhood 
of a beneficial mutation due to a “hitch-hiking” effect. They measure the extended haplotype homozygosity 
which is defined as the probability of identity by descent for two randomly chosen haplotypes carrying a core 
haplotype of interest in an interval around a given locus, given that they have the same allele at the locus23. 
Unlike Rsb and XP-EHH, the iHS test has low power in identifying fixed sweeps because it requires the ancestral 
allele to be still segregating in the population24. Here, we identified a higher number of outlier windows using 
Rsb and XP-EHH compared to the iHS approach which might suggest, at first glance, that most of the candidate 
regions identified here have undergone a positive selection resulting in the (near) fixation of the favoured alleles 
across the populations. However, we believe that the low number of candidate regions identified by the iHS test 
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is actually due to the fact that this approach searches for loci where a given high-frequency haplotype is much 
longer relative to all other haplotypes, yet in a soft sweep several long haplotypes will be present at the adaptive 
locus and thus not one haplotype will typically be much longer than all others25. Our hypothesis assumes that the 
majority of sweeps detected here are soft which is likely to be the case. Soft sweeps were shown to be widespread 
and account for the vast majority of recent environmental adaptation in several species such as Humans24. A 
common constraint of selection signature detection methods is the detection of false positives. One efficient way 
to reduce their number is to retain as outliers, those genomic regions detected by distinct methods26. Among the 
36 genomic regions identified by EHH-based methods, 10 were detected by two tests and one candidate region 
was identified by all three tests. In addition, two other regions (BTA07: 36,720,000–38,670,000 bp and BTA08: 
88,100,000–90,020,000 bp) identified by the Rsb EUT/North AFT comparison included two outlier SNPs detected 
by Bayescan. We particularly focused on genes located within these 13 genomic regions. In agreement with previ-
ous findings27,28, we observed that the three candidate regions jointly identified by the Rsb and XP-EHH tests in 
the EUT/North African comparison were significantly enriched for genes involved in olfactory receptor activity 
(21 genes) which might reflect the fact that selection has been relaxed around these genes in European breeds 
which are often raised in abundant food supply conditions. Two genes (OR2W3 and OR2L13) coincided with 
CNVs previously reported in cattle (Supplementary Table S4). Olfactory receptor genes are duplicated within 
the bovine genome27 and CNVs encompassing these genes were found to be associated with population-specific 
differences in smell in most mammalian species29.

Many of our candidate regions harboured genes implicated in the adaptive immune response against micro-
bial pathogens. For instance, the clearest sweep signal in the EUT/North AFT comparison detected on BTA07 
(between positions: 41.06 and 43.62 Mb) with 13 SNPs (out of 32) exceeding the significance threshold, har-
boured 58 known genes amongst which six (AZU1, ELANE, GZMM, PRSS57, PRTN3, CFD) belong to the 
S1A family of peptidases, a superfamily of proteolytic enzymes with a wide variety of biological functions in 
parasite infection30. Similarly, another relevant selection signature on the BTA19 jointly detected by iHS, Rsb 
and XP-EHH EUT/North African harboured several genes which are involved in immune response: CD79B, 
MILR1, PECAM1, MAP3K3 and TCAM1. The last two genes mediate NF-kappa-B activity which show evidence 
of positive selection in the African N’Dama cattle to alter in functions to effectively regulate the infection of 
cattle trypanosome31. Consistently, we also observed that outlier windows from AFT/North African and IND/
North African comparisons included many genes associated with immune response and host defence such as 
TNFRSF11A, IRF8, MYO1G and several GTPases of immunity-associated protein (GIMAP) genes (GIMAP4, 
GIMAP5 and GIMAP7). Several of these genes (GIMAP4, GIMAP5, GIMAP7, IRF8) coincided with CNVs 
reported in cattle (Supplementary Table S4). A major phenotype of North African cattle populations is their 
resistance to parasitic diseases such as theileriosis, babesiosis and anaplasmosis32 which are highly prevalent in 
North Africa33. We suggest that the aforementioned genes have been under evolutionary pressure in North Afri-
can cattle and that some of them may have experienced enhanced fixation of duplicates resulting from selection 
for increased dosage to effectively regulate the innate and acquired immune response to parasitic diseases. A 
previous study34 conducted on Brazilian Bos indicus cattle, similarly reported that CNVs are important modula-
tors of immune gene expression. Our results have also revealed a series of other genes involved in the regulation 
of blood pressure and heart contraction (ACE, ACE3, COX4I1, NOS3, CXADR), blood vessel development and 
morphogenesis (CCM2, FOXC2, FOXF1, MAP3K3). These genes are expected to be involved in adaptation to 
extreme temperatures prevailing in several Northern African areas and/or to chronic hypoxia in the Atlas moun-
tain ranges where the altitude varies between 900 and 4000 m7. Our hypothesis is consistent with the presence 
of three hypoxia-related genes (BCL2, HIGD2A and CBFA2T3) and three other genes involved in response to 
heat (ASIC3, HSPH1 and MVD) in the relevant candidate regions (Table 1). It is also interesting to note that the 
strong selection signal on BTA19 harboured a well-known gene, GH1, linked to response to nutrient levels (GO: 
0031667), positive regulation of lactation (GO:1903489) and triglyceride biosynthetic process (GO:0010867) and 
was previously reported as being a candidate gene for dairy production traits in Braunvieh cattle15. Importantly, 
it has been suggested that elevated GH1 gene expression may constitute an adaptive response to the effects of 
scarce food supply in a sample of 163 human individuals from Benin35. We therefore suggest that this gene is 
particularly under positive selection across North African cattle populations as a consequence of important 
seasonal fluctuations in food availability characterizing the whole region.

Six out of the 13 relevant candidate regions identified in this study, harboured fewer than 15 known protein 
coding genes (Table 1). Many of these genes have also been reported in cattle and other species. For instance, the 
outlier window on BTA01 (at position: 17,740,000–19,640,000 bp), contained 6 protein coding genes including 
TMPRSS15 and CHODL, two genes that were reported to be under selection in the Iraqi indigenous cattle13. 
Similarly, the candidate region on the BTA24 (at position: 59,660,000–61,790,000 bp), harboured RNF152 gene 
which positively regulates Toll-like receptors (TLRs) which are important pattern recognition receptors that are 
critical for the defence against invading pathogens36. RNF152 gene was reported to be involved in local adapta-
tions in the Ainu, a hunter-gatherer population of northern Japan37. Another relevant candidate region on BTA21 
(at position: 14,830,000–16,650,000 bp) harboured four protein coding genes: SLCO3A1, SV2B, AKAP13 and 
KLHL25. The latter two genes were shown to be under positive selection in Creole cattle breeds38 while SLCO3A1 
is associated with marbling score in the Montana Tropical Composite beef cattle39 and mediates inflammatory 
processes in intestinal epithelial cells through NF-kappa-B transcription activation in humans40. SV2B gene is 
among major genes enriched for the extracellular matrix (ECM) around the hair follicle in Changthangi goats41. 
ECM is considered important for regulating the structure, metabolism and signaling of dermal papilla cells 
which play key roles in hair follicle morphogenesis and regeneration42. Another candidate region on the BTA22 
(at position: 4,790,000–6,620,000 bp) identified by the XP-EHH IND versus North AFT test harboured four 
genes (GADL1, TGFBR2, STT3B and OSBPL10) and among these, GADL1 gene is one of the genes involved in 
adaptive evolution of Anolis carolinensis introduced into the Ogasawara archipelago43. Gadl1−/− mice exhibited 
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decreased anxiety, increased levels of oxidative stress markers, alterations in energy and lipid metabolism, and 
age-related changes44. STT3B is a catalytic subunit of hetero oligomeric oligosaccharyltransferase (OST), which is 
important for asparagine linked glycosylation. In mammals and plants, OSTs exhibit distinct levels of enzymatic 
efficiency or different responses to stressors45. OSBPL10 gene confers African-ancestry protection against dengue 
haemorrhagic fever in admixed Cubans46.

A further result is that the 13 outlier windows identified by at least two approaches included myriad of 
genes involved in transcriptional regulation (AEBP1, ARID3A, BANP, CBFA2T3, DDX5, FTSJ3, GLI3, MIER2, 
POLR2E, POLRMT, FOXC2, FOXF1, FOXL1, SMARCD2, SMARCD3, TNFRSF11A, BPTF, CDK5, …) as well 
as many non-coding RNAs including 9 small nucleolar RNAs (snoRNAs), 12 microRNAs (miRNAs), 10 small 
nuclear RNAs (snRNA) and 13 long noncoding RNAs (lncRNAs). In addition, many of the aforementioned genes 
(BANP, CBFA2T3, GLI3, POLR2E, POLRMT, FOXC2, FOXF1, FOXL1) co-localize with known cattle CNVs. It is 
worth noting that CNVs encompassing a gene encoding a transcription factor has a greater phenotypic impact 
because it can affect both the coding sequence of the gene itself as well as the expression of downstream targets 
of that gene. From a selective standpoint, these findings suggest that natural selection has shaped North African 
cattle genome not only through variation in coding sequence but also through extensive regulation of gene 
expression occurring both at the transcriptional and post-transcriptional level. Lending further support to this 
hypothesis, the relevant candidate region on BTA24 (at position: 59,750,000–61,740,000 bp) harbours a single 
gene, CELF4, coding for an RNA-binding protein mainly expressed in central nervous system that regulates the 
expression of many genes co-transcriptionally or post-transcriptionally via interactions with mRNA47. Celf4-
deficient mice have additional neurological abnormalities including hyperactivity and hyperphagia-associated 
obesity48. Similarly, the most relevant selection signal in the AFT/North AFT comparison (BTA06 at position: 
46,780,000—50,050,000 bp) harboured one protein coding gene (PCDH7) which coincides with a known CNV 
(Supplementary Table S4), one 5S ribosomal RNA (5S rRNA) and three non-coding RNA genes: SNORA70, 
Y_RNA and U6 (Table 1). PCDH7 is one of the key genes involved in oncogenesis and/or differentiation of 
the cancer stem cells through a change in its histone methylation status49. Likewise, 5S rRNA genes are highly 
methylated in Arabidopsis thaliana and their expression is under epigenetic control50,51.

During the process of fixation of adaptive variants, linked neutral markers are dragged along with the selected 
site; thus reducing the levels of genetic diversity in the region, while simultaneously new mutations accumulate 
in the region. The initial frequency of these mutations is low, so that a DNA sequence harbouring a positively 
selected variant will also harbour an excess of rare derived alleles. Bearing this in mind, we expect that many other 
sweeps are not detected by our genome scan owing to ascertainment schemes used to discover the BovineSNP50 
BeadChip. Clearly, shedding light on additional selective sweeps in North African cattle would require the use 
of whole genome sequence data and the inclusion of all variants in genetic analyses.

The present study highlighted, for the first time, the presence of putative selection signatures in six local North 
African cattle populations. Information about the location of these regions can now be used as a starting point to 
identify causal genetic variants that control some environmental adaptation traits in local breeds which can be 
utilized in the genetic improvement of commonly used commercial breeds world-wide. Our results are unique in 
indicating that selection have shaped North African cattle genome through extensive regulation of gene expres-
sion whereby the individuals get adapted to short as well as long-term environmental changes. Understanding 
the functional consequences of such adaptive elements remains a challenge to overcome.

Methods
Data merging and SNP filtering.  We combined Illumina BovineSNP50 BeadChip genotypes of 57 Brune 
de l’Atlas individuals (TUNIND) sampled from our previously published data4,52 with data already available for 
221 animals belonging to seven North African populations (BAL, BIS, CHE, CHF, GUE, TID and OUL) obtained 
from Flori et al.16 and Gautier et al.53. We also included genotyping data belonging to 9 other populations, rep-
resentatives of European taurines (EUT) (four breeds: ANG, HOL, JER and MON), African taurines (AFT) 
(three N’Dama populations: ND1, ND2 and NDA) and indicine (two populations: GIR and NEL) from Matu-
kumalli et al.54. All genotypes were recovered from the web-interfaced genetic Diversity Exploration (WIDDE) 
database55. We performed a relatedness test between individuals within each population using PLINK56. The 
software calculates a variable called PI-HAT reflecting extended haplotypes shared between distantly related 
individuals. For European, indicine and African breeds, we removed closely related individuals if the PI-HAT 
value was greater than 0.25 which is a value roughly corresponding to relationships closer than grandsire-grand-
daughter. For the North African populations, in which natural service is commonly used rather than artificial 
insemination and are thus generally less inbred, we used a more stringent threshold and excluded one indi-
vidual from each pair of individuals with a PI-HAT value > 0.1. In total, after relatedness filtering, 468 individuals 
including 204 North African animals, were available for the different analyses (Supplementary Table S10). We 
also applied a series of quality control procedures to the genotype data. First, we excluded rare SNPs with low 
minor allele frequencies (MAF) < 0.05. Then, the whole genotype dataset was subjected to linkage disequilibrium 
(LD) pruning using the default parameters of PLINK (SNP window size:50, step 5 SNPs, r2: 0.5). In total, 38,464 
SNPs spread over all autosomal chromosomes were finally considered for population structure analyses.

Population structure and genetic relationship analyses.  Population structure was inferred by PCA 
for African, European, indicine and North African populations using the adegenet R package57. Unsupervised 
hierarchical clustering was carried out for all populations using ADMIXTURE 1.23 software58. We ran ADMIX-
TURE with cross-validation for values of K from 2 through 17 (the number of populations) to identify the best 
value of K clusters. DISTRUCT software59 was then used to graphically display ancestry within each individual. 
The pairwise fixation index (FST) between populations was estimated using Genepop 4.6 software60. The patterns 
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of population splits and mixtures were inferred using TreeMix61. First, we built a maximum likelihood tree of 
the 17 populations of the study with no migration events allowed and setting GIR as outgroup. Then, we built 
a phylogenetic tree of these populations and started adding migration events (modeled as edges) sequentially 
to the phylogenetic model. The migration edges were added until 99.93% of the variance in ancestry between 
populations was explained by the model. The residuals from the fit of the model to the data were visualized using 
the R script implemented in TreeMix.

Identification of selection signatures.  To perform selection signature detection, we selected the indi-
viduals that are most representative of the ancestral North African cattle. This was done based on the results of 
model-based clustering results. We used the population differentiation based analysis implemented in BayeS-
can (FST)62 and three extended haplotype homozygosity (EHH)-based tests (iHS, Rsb and XP-EHH) to detect 
signatures of selection within North African cattle. Bayescan, Rsb and XP-EHH analyses were performed for 
each of the three pairwise comparisons: North African cattle versus AFT, North African cattle versus EUT and 
North African cattle versus IND. Bayescan uses a reversible-jump Markov Chain Monte Carlo to separate locus-
specific effects of selection from population-specific effects of demography. Outliers are those loci that require 
the locus-specific component to explain observed genetic diversity. For the Markov chain Monte Carlo (MCMC) 
algorithm we used 20 pilot runs of 5,000 iterations, a burn-in of 50,000 iterations, a thinning interval of 10 (5,000 
iterations were used for the estimation of posterior odds) with a resulting total number of 100,000 iterations. 
To control the number of false positives, significant SNPs were defined by applying a q-value threshold of 0.05.

Haplotype extended patterns were investigated using three metrics implemented in rehh package63: the iHS 
within-population statistic64 and two between-population methods: Rsb65 and XP-EHH66. In iHS computation, 
the information on the ancestral and derived allele state is needed for each SNP because this statistic is based on 
the ratio of the EHH associated to each allele. In our analysis, the ancestral allele was inferred as the most com-
mon allele within 3 out-group species including yak, buffalo and sheep. iHS scores for each SNP were transformed 
into two-sided p values: piHS =  − log10[1–2|Φ(iHS)-0.5|]. As a prerequisite to the Rsb and XP-EHH computation, 
haplotypes were reconstructed from the genotyped SNPs using fastPHASE 1.467. The following options were 
used for each chromosome: -T10 -Ku60 -Kl10 -Ki10. Considering that Rsb and XP-EHH values are normally 
distributed, a Z-test was applied to identify significant SNPs under selection. Two-sided p value s were derived 
as pRsb =  − log10[1–2|Φ(Rsb)-0.5|] and pXP-EHH =  − log10[1–2|Φ(XP-EHH)-0.5|] where Φ (x) represents the 
Gaussian cumulative distribution function. In EHH-based tests, the maximum allowed gap between two SNPs 
was set to 500 Kb. We used 1-Mb sliding windows that partially overlapped 10 kb with adjacent windows to 
perform selection signature detection. A window is classified as putatively under selection when it contains at 
least 3, 4 and 4 markers exceeding the significance threshold of − log10 (p value) = 3 for iHS, Rsb and XP-EHH 
tests, respectively. Finally, we checked the overlap of the candidate genomic regions detected with at least two 
EHH-based approaches with the previously identified bovine Quantitative Trait Loci (QTL) available in the cat-
tle QTL database (https​://www.anima​lgeno​me.org/cgi-bin/QTLdb​/BT/index​). The overlaps were checked using 
QTL coordinates according to the Bos taurus genome assembly ARS-UCD1.2.

Gene identification and functional enrichment analysis.  Candidate genome region intervals 
detected by at least two EHH-based methods (iHS, Rsb, XP-EHH) were interrogated for genes annotated to the 
Bos taurus genome assembly ARS-UCD1.2 using BioMart tool of Ensembl (https​://www.ensem​bl.org/bioma​rt/
martv​iew/c8fe3​a6996​1a408​8a55b​7a249​db7e2​fa). Cattle structural variants which overlapped the genomic coor-
dinates (in bp) of these relevant candidate selective sweep regions were retrieved using the same database. We 
have only considered structural variants of less than 8 Mb which corresponds to the maximum size that can be 
identified, from whole genome sequence data, by the pindel software (https​://gmt.genom​e.wustl​.edu/packa​ges/
pinde​l/user-manua​l.html). We used the online tool, Database for Annotation, Visualization and Integrated Dis-
covery (DAVID) software version 6.8 (https​://david​.ncifc​rf.gov/) for functional enrichment analysis of the genes 
retrieved from BioMart. GO enrichment analysis included two aspects: Biological Process and Molecular Func-
tion. For the GO functional groups and InterPro functional terms returned from DAVID functional analysis, we 
considered an adjusted Benjamini-corrected p value threshold of ≤ 0.05.
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