ﬁ Sensors

Article

An Approximate GEMM Unit for Energy-Efficient
Object Detection

Ratko Pilipovié¢ ¥*({, Vladimir Risojevié

check for

updates
Citation: Pilipovi¢, R.; Risojevi¢, V.;
Bozig, J.; Buli¢, P; Lotri¢, U. An
Approximate GEMM Unit for
Energy-Efficient Object Detection.
Sensors 2021, 21, 4195. https://
doi.org/10.3390/521124195

Academic Editor: Marco Diani

Received: 24 May 2021
Accepted: 15 June 2021
Published: 18 June 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

2 3

, Janko Bozi¢ 3(2, Patricio Buli¢ 1 and Uro$ Lotri¢ !

Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia;
patricio.bulic@fri.uni-lj.si (P.B.); uros.lotric@fri.uni-lj.si (U.L.)

Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
vladimir.risojevic@etf.unibl.org

Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; janko.bozic@bf.uni-lj.si

* Correspondence: ratko.pilipovic@fri.uni-lj.si

Abstract: Edge computing brings artificial intelligence algorithms and graphics processing units
closer to data sources, making autonomy and energy-efficient processing vital for their design.
Approximate computing has emerged as a popular strategy for energy-efficient circuit design, where
the challenge is to achieve the best tradeoff between design efficiency and accuracy. The essential
operation in artificial intelligence algorithms is the general matrix multiplication (GEMM) operation
comprised of matrix multiplication and accumulation. This paper presents an approximate general
matrix multiplication (AGEMM) unit that employs approximate multipliers to perform matrix-matrix
operations on four-by-four matrices given in sixteen-bit signed fixed-point format. The synthesis of
the proposed AGEMM unit to the 45 nm Nangate Open Cell Library revealed that it consumed only
up to 36% of the area and 25% of the energy required by the exact general matrix multiplication unit.
The AGEMM unit is ideally suited to convolutional neural networks, which can adapt to the error
induced in the computation. We evaluated the AGEMM units” usability for honeybee detection with
the YOLOv4-tiny convolutional neural network. The results implied that we can deploy the AGEMM
units in convolutional neural networks without noticeable performance degradation. Moreover,
the AGEMM unit’s employment can lead to more area- and energy-efficient convolutional neural
network processing, which in turn could prolong sensors” and edge nodes” autonomy.

Keywords: approximate general matrix multiplication; GEMM,; tensor core; matrix core; approximate
computing; approximate multipliers; convolutional neural networks; energy-efficient processing;
object detection; YOLOv4-tiny; honeybee detection

1. Introduction

Artificial-intelligence-powered edge computing has brought complex processing de-
vices closer to the data source, compromising their autonomy [1]. As the data processing
on edge devices becomes computationally complex and power demanding, we have to
pursue energy-efficient processing.

Object detection is a challenging computer vision task that is comprised of the local-
ization and classification of objects [2,3] and thus helps to provide a proper understanding
of an image. Traditional object detection models include informative region selection,
the extraction of features, and classification. However, during the last decade, deep-
neural-network-based detection models that merge the above steps and are trained on
large databases of labeled images have evolved as state-of-the-art approaches for object
detection [4-6].

Despite recent advances, the detection of small, fast-moving objects, such as honeybees,
where processing speed plays a critical role, remains a challenging task. In [7-11], several
systems for identifying honeybees and pollen loads, as well as monitoring the health
conditions in a beehive were proposed. Babic et al. [7] proposed a Raspberry Pi-based

Sensors 2021, 21, 4195. https:/ /doi.org/10.3390/s21124195

https:/ /www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4346-5487
https://orcid.org/0000-0001-7064-8986
https://orcid.org/0000-0002-2546-478X
https://orcid.org/0000-0002-0536-3316
https://orcid.org/0000-0002-6977-0834
https://doi.org/10.3390/s21124195
https://doi.org/10.3390/s21124195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124195
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124195?type=check_update&version=1

Sensors 2021, 21, 4195

20f19

system for the detection of pollen-bearing bees. The authors in [8,10] proposed a method
for automatic monitoring of honeybees’ activity outside of the hive using a video captured
by unmanned aerial vehicles. The study [9] presented a portable computer vision system
that could monitor the infestation level of the Varroa destructor mite in a beehive by
recording a video sequence of honeybees. Finally, the most recent study [11] was the first
to use deep neural network object detectors implemented on graphics processing units for
Varroa destructor mite detection on a honeybee. However, all these solutions were based
on offline processing of the recorded images or videos and lacked permanent monitoring
performed near beehives, commonly without a power supply, ensured only by a long-term
autonomy device.

Accelerating deep neural network processing in edge computing using energy-efficient
platforms is an important goal [12-27]. Currently, most object detection and classification
models are carried out in graphics processing units. In edge computing, a platform con-
taining a rather powerful graphics processing unit cannot meet the requirements of being
small, operating in real time, and consuming little power. Therefore, many lightweight ap-
proaches with low-power consumption and low-computational performance have emerged
recently. A few dedicated neural network accelerators have been implemented on FPGA
hardware platforms [12,14,17,21,23], while several authors proposed ASIC-based neural
network accelerators [13,15,16,18,19,22]. Samimi et al. [20] proposed a technique based
on the residue number system to improve the energy efficiency of deep neural network
processing. Si et al. proposed computing-in-memory as a promising approach to reduce
the latency and improve the energy efficiency of deep neural network edge processors [24].
Scalable convolutional blocks were proposed in [25] to easily balance processing speed and
accuracy in consideration of the computing power of various edge computing devices. The
scalable and fast lightweight YOLO detector was designed using these scalable convolu-
tional blocks and tested on various graphics processing units. The paper [26] provided
an overview of the recent hardware and algorithm co-design schemes enabling efficient
processing of deep neural networks. The authors in [27] proposed a novel real-time archi-
tecture and data flow by decomposing multiplications down to the bit level and pruning
identical computations without reducing the accuracy of deep neural networks.

Deep neural network models are strong at generalizing the knowledge gained during
the training. Adequately trained models are more error resilient with a lessened need for the
accuracy of the results and computation, making them perfect candidates for approximate
computing. Approximate computing is a new paradigm where an acceptable error is
induced in the computing to achieve more energy-efficient processing [28-33]. It has been
introduced at different system levels [34-45], and a large number of approximate arithmetic
circuits have been designed to save chip area and energy [35,38,46-51]. Multiplication
is a very common, but expensive operation, with exact multipliers being large circuits
that consume a significant amount of energy. Various approximate multipliers have been
proposed in recent years [52-62]. Many studies reported that approximate multipliers
behave well in neural network processing [56,59-61,63—65].

Deep neural network models with many convolutional and fully connected layers
must perform numerous matrix-matrix operations involving a vast number of arithmetic
operations and external memory accesses. We can efficiently describe the most demanding
matrix multiplications with the general matrix multiplication (GEMM) operation comprised
of matrix multiplication and accumulation. Hence, instead of designing dedicated neural
network accelerators, the trend is to introduce the GEMM operation accelerating hardware
units into graphics processing units. For example, Nvidia introduced a dedicated hardware
unit called the tensor core in 2017 with the Volta architecture [66]. Yan et al. [67] described
how tensor cores work in great detail, including the instructions used and the registers
and data layout required. Each tensor core consumes two four-by-four matrices with
half-precision floating-point operands and computes their multiplication result in one
clock cycle.

Sensors 2021, 21, 4195

30f19

Edge computing devices mainly uses pretrained deep neural networks for inference.
For efficient processing in edge devices, Nvidia has prepared the Jetson Xavier NX module
with only 48 tensor cores, as opposed to the mainstream Tesla V100 graphics processing unit
with 640 tensor cores [68]. Besides being less demanding, deep neural network computing
in the inference step can also be less accurate than in the learning step, anticipating that the
computing units in edge devices can be further simplified.

In pursuit of the long autonomy of the edge devices that perform demanding real-time
processing, we proposed an approximate general matrix multiplication (AGEMM) unit. It
combines the GEMM operation and approximate multipliers into a design that delivers
high throughput and energy efficiency. Contrary to the approaches above, which mainly
followed the exact computation, the AGEMM unit intentionally introduces some error in
the computation to further accelerate the performance of edge devices. Additionally, we
strove not to tailor the design to a specific deep neural network model, but for more general
usage in deep neural networks or other applications. The application of the AGEMM
unit in convolutional neural network processing should significantly provide benefits in
terms of speed, energy, and area consumption at the expense of reduced accuracy in matrix
multiplication. We anticipate that the reduction of the accuracy will not have significant
detrimental effects on the performance of an object detector based on deep neural networks.

In the rest of the paper, we first provide some background on convolutional neural
network processing and provide an overview the most recent approximate multipliers.
Section 3 presents the hardware design of the AGEMM unit and the synthesis result,
including the propagation delay, area, and energy consumption. In Section 4, we consider
a honeybee detection application by assessing the applicability of the AGEMM unit in
terms of speed and object detection accuracy. Finally, we conclude the paper with the
main findings.

2. Background

Our goal was to design an energy-efficient GEMM unit that would enable object
detection in real time. The design heavily relied on the chosen object detection model
and the utilized approximate arithmetic circuits. This section provides the reasoning
behind selecting the YOLOv4-tiny convolutional neural network model and a set of the
approximate multipliers used as building blocks in the design of our unit.

2.1. Convolutional Neural Network YOLOv4-Tiny

State-of-the-art object detectors are mainly of two types: two-stage detectors and
single-stage detectors [2]. The two-stage detectors generate regions of interests in the first
stage and perform bounding box regression and object classification in the second stage.
Some detectors belonging to this group are the region convolutional neural network (R-
CNN) [69], Faster R-CNN [70], and the feature pyramid network (FPN) [71]. The two-stage
detectors include various correlated phases such as region proposal generation, feature
extraction using convolutional neural networks, bounding box regression, and classifica-
tion, which are trained separately. The single-stage detectors address the complexity of
the two-stage detectors and combine all phases into an end-to-end model predicting the
bounding boxes and class probabilities from an image in one pass. Two-stage detectors
possess high accuracy rates, but are slow, while single-stage detectors achieve lower accu-
racy, but work faster [72]. Widely used single-stage detectors are the you look only once
detector (YOLO) [73], the Single-shot multi-box detector (SSD) [74], and RetinaNET [75].
Even though the initial YOLOv1 detector is inferior to the SSD and RetinaNET detectors,
the YOLO family of detectors has been continuously evolving and upgraded with the
models improved in terms of accuracy and speed, resulting in the best balance between
accuracy and execution time among the mentioned single-stage detectors [2].

Sensors 2021, 21, 4195

40f19

The YOLO family of detectors divides an image into multiscale regions and out-
puts bounding box and class probabilities for each region. One of the latest models is
YOLOv4 [76] with a notable increase in object detection performance and less compu-
tational expense compared to other similar solutions. Despite the improvements, the
YOLOv4 model is still computationally too demanding for real-time processing in edge
devices. The YOLOv4-tiny model [77] is a lightweight version of the YOLOv4 model, which
uses a compressed backbone for the two-scale feature extraction and an object-detection
head with an anchor-based object bounding box predictor followed by multiscale object
classification. In the description that follows, we focus on the computationally intensive
backbone only.

The backbone illustrated in Figure 1 consists of a series of convolutional layers, com-
bined with some pooling layers and an upsampling layer. Each layer operates on a series
of two-dimensional feature maps or channels, which form a three-dimensional tensor. An
input tensor is convolved with several multichannel filters and passed through the acti-
vation function to obtain an output tensor. The vast number of multiplications needed to
compute the convolutions makes the backbone computationally demanding. The pooling
layers reduce the size of each channel by taking the maximum of a set of neighboring
elements, while the upsampling layer enlarges each channel by repeating the existing
elements. Neither of them involves multiplication.

features, scale 2

image

D convolutional layer D pooling layer
D output convolutional layer D upsampling layer

features, scale 1

Figure 1. The backbone of the YOLOv4-tiny convolutional neural network [77].

2.2. Approximate Multipliers

The approximate multiplier design focuses mainly on fixed-point operands, as floating-
point operands with exponent handling add additional complexity to the multiplier cir-
cuitry. Although the range of values we can represent in the fixed-point format is smaller
than in the floating-point format with the same operand width, it is sufficient for many
applications. Wider operands could bring additional accuracy, but also an additional bur-
den when transferring them from memory. For example, Nvidia uses 16-bit half-precision
floating-point operands in its Volta tensor cores [66]. The majority of the state-of-the-art
approximate multiplier designs focus on 16-bit operands. Hence, we opted for sixteen-bit
designs, which are more accurate and address a broader range of applications than eight-bit
approximate multipliers.

In the approximate multiplier design, we balanced accuracy and energy efficiency
to suit the application’s needs. Various approximate multipliers have been proposed in
recent years [54-62]. Approximate multipliers follow one of three design strategies: the
approximate logarithmic design, the approximate nonlogarithmic design, and the hybrid
design. Approximate logarithmic multipliers deliver a more straightforward design, but
exhibit significantly higher computational error, while approximate nonlogarithmic multi-
pliers have a lower computational error with the price of higher design complexity [54,61].
The hybrid multipliers combine both design strategies to balance accuracy and design
complexity.

Sensors 2021, 21, 4195

50f19

Approximate logarithmic multipliers rely on the addition of the approximate operands’
logarithms. Liu et al. [54] proposed the unsigned logarithmic ALM-SOA multiplier, which
uses a truncated binary logarithm converter and a set-one-adder for the addition of loga-
rithms to compensate the negative errors. Kim et al. [56] proposed the signed logarithmic
multiplier Mitchell-trunc8-C1, which keeps only eight upper bits of the mantissa in the
logarithmic representation of the input operands. The unsigned logarithmic ILM-AA
multiplier with an approximate adder, proposed by Ansari et al. [59], further improves the
error characteristics of the previously proposed designs. The dynamic range approximate
logarithmic multiplier DR-ALMS5 proposed by Yin et al. [57] dynamically truncates the
input operands and thus uses smaller bit-width logarithmic and antilogarithmic converters
and adders to generate the product. Pilipovi¢ et al. [61] proposed an approximate log-
arithmic multiplier with two-stage operand trimming (TL16-8/4), which trims the least
significant parts of the input operands in the first stage and the mantissas of the obtained
operands’ approximations in the second stage.

Approximate nonlogarithmic multipliers use the Booth algorithm to simplify the
partial product generation stage and addition. In the RAD1024 multiplier [55], the input
operand is divided into the upper part encoded using the radix-4 encoding, and the lower
part of log, 1024 bits, approximately encoded with the radix-1024 encoding. The HLR-BM2
multiplier [58] uses radix-8 encoding and approximates the £3 multiplicands to their
nearest power of two, such that the errors complement each other.

The hybrid multipliers LOBO12-12/8 [60] and HRALM3 [62] combine radix-4 Booth
encoding and logarithmic product approximation to achieve a good tradeoff between
accuracy and design efficiency.

The scatter plot in Figure 2, generated from the data obtained in [62], summarizes
some of the state-of-the-art approximate multipliers in terms of standard comparison
measures: power delay product (PDP) and normalized mean error distance (NMED) [61].
We can observe that more accurate nonlogarithmic multipliers consume more energy than
logarithmic multipliers. However, the latter bring a more energy-efficient design at the
price of lower accuracy. The hybrid multipliers sit in between both groups.

120 |- @ Exact radix-4 & Exact radix-4
@ Logarithmic
HLR-BM2 [Non-logarithmic
100 | A Hybrid ||
—~ 80 N
2
oM
=) LOBO12-12/8
60| mrablos® .
RAD1024 ALM-SOA11
HRALMS3 I\/Iitchell—‘runc&(}l
DR—%LM5
40 - ILM-AA N
TL16-8/4
(]
20 |- B
\ \ \ \ \ \ \
0 2 4 6 8 10 12
NMED (-1073)

Figure 2. Comparison of approximate multipliers in terms of the power delay product (PDP) and
normalized mean error distance (NMED).

Sensors 2021, 21, 4195

6 of 19

This paper used the existing state-of-the-art approximate multipliers DR-ALMS5, TL16-
8/4, RAD1024, and HRALM3 to implement and evaluate the approximate GEMM unit.
With this selection of multipliers, we aimed to cover all design strategies and a broad
spectrum of accuracy and energy efficiency.

3. An Approximate General Matrix Multiply Unit

General matrix multiply (GEMM) is a standard operation in linear algebra, machine
learning, statistics, and many other domains and serves as a core building block for deep
learning computations [78-80]. The GEMM operation [67], illustrated in Figure 3,

C+~C+AxB , €))

adds the product of the p-by-g matrix A and the g-by-r matrix B to the p-by-r matrix C
involving pgr multiplications and pqr additions.

B1g
B2
B
By
z C
k/’ > Cay

—_— A3z4Bas
A3z3B3a
A32B24
A3z1B14

C«<C+AxB

.
H Cyé— G+ 2 Ay By
k=1

Figure 3. The general matrix multiply (GEMM) operation.

3.1. The Hardware Implementation

A dedicated GEMM hardware unit executes the GEMM operation. Although the sizes
of the matrices were arbitrary, we strove to use the GEMM unit efficiently and therefore
kept the values low by setting p = g =r = 4.

The basic building block of the GEMM unit is a multiply-accumulate (MAC) unit,
which updates the scalar operand ¢ with the product of the scalar operands a and b,

c<c+ab . 2)

Sensors 2021, 21, 4195 7 of 19

By connecting four MAC units, we obtained the MAC4 unit depicted in Figure 4,
which updates the scalar c with the dot-product of vectors a and b of size four,

c<c+a-b . 3)
a a b b
—
a; —| a
b, MAC——(:) b
a- o ©
by —————IMAC MAC
a] J‘
by MAC
a— H J‘
b, —MAC
¢ MAC4

Figure 4. The MAC4 unit (a) composed of four MAC units (b). Operands are color coded as in
Figure 3.

By employing 16 MAC units, we implemented the GEMM unit presented in Figure 5,
which performs the GEMM operation over four-by-four matrices.

B — b, b, b, b,
11 I I I
MAC4 HC)) MAC4 HC)) MAC4 HC)) MAC4 HC)
Cll_ CIZ_ Cl3_ Cl4_
11 I I I
A — MAC4 HGy) MAC4 HCy) MAC4 HCy) MAC4 HCy)
CZ] . C22 - C23 - C24_
T I I I °
MAC4 HGy) MAC4 HCy) MAC4 HCy) MAC4 HCy)
C31_ C32_ C33_ C34_
11 I I I
MAC4 MAC4 MAC4 MAC4
C — G Ci Cis Cis
GEMM

Figure 5. The GEMM unit composed of 16 MAC4 units. Matrix A is decomposed into four row
vectors aj, ...,a; and matrix B into four column vectors by, ..., bs. Matrix C and its update are
presented elementwise. Operands are color coded as in Figure 3.

The GEMM unit is a complex circuit that employs 64 multipliers and adders to perform
the GEMM operation in one clock cycle. Note that we had to provide four-by-four matrices
A and B, which equals thirty-two scalars, to compute the sixteen dot-products of matrix
C. Thus, we needed to transfer only two scalars per one dot-product from the memory on
each update, which is far more efficient compared eight scalars per dot-product in the case
of one MAC4 unit.

For efficient implementation in hardware, we used a 16-bit signed fixed-point represen-
tation of the operands. To further improve the design’s area, speed, and energy efficiency,
we approximated the arithmetic operations at the expense of introducing some error to the

Sensors 2021, 21, 4195

8 of 19

computation. The approximation of multipliers is much more beneficial, as they are much
more expensive circuits than adders. Besides, the recent results for approximate computing
suggest keeping adders exact, thus ensuring proper convergence of the accumulations [81].
Hence, the proposed approximate general matrix multiplication (AGEMM) unit utilizes
approximate multipliers and exact adders.

3.2. Synthesis Results

We analyzed and compared the hardware performance of the 16-bit signed fixed-
point GEMM and AGEMM units in terms of the power, area, delay, and power delay
product (PDP). We compared the GEMM unit using the exact radix-4 multipliers to the
AGEMM units employing the logarithmic multipliers DR-ALMS5 [57] and TL16-8/4 [61],
the nonlogarithmic multiplier RAD1024 [55], and the hybrid HRALM3 multiplier [62].

Following the schemes in Figures 4 and 5, we implemented the units for the GEMM
operation in the Verilog hardware description language. The design was modular and
supported integrating any 16-bit signed fixed-point multiplier given in Verilog; let it be the
exact radix-4 multiplier or a state-of-the-art approximate multiplier, as shown in Figure 6.
Even though the unit’s core design was equal for all multipliers, we differentiated between
the GEMM unit with the exact multiplier and the AGEMM unit with an approximate
multiplier for clarity. To evaluate the design, we drove the unit’s Verilog code to the
OpenROAD digital design flow [82], an open-source end-to-end Verilog, to the GDS
compiler using the 45 nm Nangate Open Cell Library. We used timing with a 10 MHz
virtual clock, a 5% signal toggle rate, and an output load capacitance of 10 {F to evaluate
the power. The design flow resulted in a unit’s circuit layout and the following metrics:
estimated power, delay, and area.

multiplier GEMM unit
design in Verilog design in Verilog

multiplier AGEMM unit
designs in Verilog design in Verilog

DR-ALMS _
TL16-8/4 '
-
C1E
HRALM3 MACH

multiplier selector 4]

Figure 6. GEMM and AGEMM unit design workflow.

digital design flow

Oipzil{OAID power, delay, area

digital design flow
OpenROAD
power, delay, area

Table 1 shows the hardware metrics of the synthesized units. The study [62] showed
that a single exact radix-4 multiplier has a delay of 1.74 ns, a power delay product (PDP) of
0.12 pJ, and an area of 1.58 x 10° um?. GEMM units are much more expensive circuits; the
delay of the exact GEMM unit was 2.7-times longer, and it took 70-times more area and
consumes 200-times more energy than the exact multiplier. The AGEMM units using the
DR-ALMS and the TL16-8/4 multipliers delivered lower energy consumption (PDP) than
those using the RAD1024 and HRALM3 multipliers. Besides, the AGEMM unit with the
DR-ALMS5 multipliers possessed the shortest delay.

Sensors 2021, 21, 4195 9 of 19
Table 1. The synthesis results of 16-bit unsigned fixed-point GEMM and AGEMM units.
Unit Multiplier Delay (ns) Power (mW) Area (-103um?) PDP (pJ])
GEMM exact radix-4 4.70 5.32 107.3 25.0
DR-ALMS5 [57] 3.58 1.58 43.2 5.6
TL16-8/4 [61] 4.16 1.48 39.0 6.2
AGEMM RAD1024 [55] 3.78 2.83 61.9 10.7
HRALMS3 [62] 4.46 1.80 45.7 8.0

4. Honeybee Detection

Honeybees are crucial for terrestrial ecosystems due to their ability to pollinate plants
and crops. Therefore, it is essential to continuously monitor their condition in beehives and
provide the needed treatments. To lower the effort required for a beekeeper to determine
the honeybees’ condition and to minimize the possible damage to the colony, it is vital to
use an autonomous surveillance system able to detect and count honeybees in real time.
This section evaluates the usability of the proposed AGEMM units in honeybee detection
with the YOLOv4-tiny convolutional neural network. Firstly, we estimated the required
configuration of the AGEMM units that would make real-time honeybee detection feasible.
Secondly, we present the honeybee dataset, the experimental setup, and the proposed
system’s detection results and conclude with the discussion.

4.1. YOLOv4-Tiny Inference with the GEMM Unit

The YOLOv4-tiny convolutional neural network, briefly described in Section 2.1,
consists of 21 multiplication intensive convolutional layers and four layers without multi-
plications. We assumed that activation functions of the convolutional layers were given in
terms of lookup tables and did not involve multiplications. To profit most from the GEMM
and AGEMM units, we had to utilize them efficiently in the convolutional layers.

4.1.1. A Convolutional Layer

A convolutional layer takes an input tensor and a set of multichannel filters to compute
an output tensor. By convolving the input tensor consisting of C channels of I-by-I elements
with a C-channel filter of F-by-F elements, we obtained one O-by-O channel of the output
tensor. The number of channels in the output tensor equals the number of filters K. With
the filter stride S, we adjusted the granularity of the convolution, which could result in a
modified size of the output channels.

As illustrated in Figure 7a, we computed a dot-product of a multichannel filter and a
patch of the input tensor elements of size CF? to obtain one element of the output tensor.
To obtain all elements of the output tensor, we computed KO? dot-products, performing
CF?KO? multiplications altogether.

4.1.2. Computation with the AGEMM Unit

To use the GEMM unit in the convolution, we first laid out the filters and the input
tensor to matrices and then performed the convolution through matrix multiplication. We
put each filter to one line of the filter matrix and each patch of the input tensor to one
column of the input matrix. The matrix multiplication of the K-by-CF? filter matrix and the
CF2-by-0O? input matrix resulted in the K-by-O? output matrix, from which we could easily
construct the output tensor. Further on, we partitioned the matrices into nonoverlapping
four-by-four tiles; when necessary, we zero-padded the matrices to conform to the tile size.
We computed each tile of the output matrix by successively applying the GEMM unit on
the corresponding tiles of the filter matrix and the input matrix, as illustrated in Figure 7b.
The output matrix consisted of [K/4]-[0?/4] tiles. To compute one tile, we employed the
GEMM unit [CF?/4] times.

Sensors 2021, 21, 4195 10 of 19
a. tensor convolution
1
H K
i im \
I 4{
in 0
—
1
a set of K filters input tensor output tensor
b. matrix representation and 0*
tiled multiplication using the GEMM unit
1
2
CF? 3
R
K p—
X,
1 2 3 4 5 6 7 1.7
5 B
6 L]
LB
— zero-padding
filter matrix input matrix output matrix

Figure 7. Tensor convolution (a) and its matrix equivalent with tiled matrix multiplication using the
GEMM unit (b). The filter matrix and the input matrix are zero-padded to conform to the tile size.

Table 2 lists the parameters of the YOLOv4-tiny model layers and the number of
GEMM operations needed to compute the output. For one inference pass through the
YOLOV4-tiny backbone, we needed 58.85 x 10° invocations of the GEMM unit. Considering
delay through the GEMM unit in Table 1, we could theoretically make one inference pass
of the YOLOv4-tiny backbone in 277 ms by using one unit only. With the concurrent use
of eight units in a setup similar to the graphics processing units [66,83], we could reduce
the processing times to 35 ms, leading to a theoretical 29 images per second, which should
suffice for real-time object detection.

Table 2. Configuration of the YOLOv4-tiny model backbone layers with the number of GEMM
operations per layer. Additional configuration details are available in the file /cfg/yolov4-tiny.cfg in
the repository [77].

Layer Type Input Filters Output Operations
Size Number Size Stride Number Size
I Cc F S K (0]
1 c 416 3 3 2 32 208 605,696
2 c 208 32 3 2 64 104 3,115,008
3 c 104 64 3 1 64 104 6,230,016
4 c 104 64 3 1 32 104 3,115,008
5 c 104 32 3 1 32 104 1,557,504
6 c 104 64 1 1 64 104 692,224
7 p 104 128 2 2 128 52 -
8 c 52 128 3 1 128 52 6,230,016
9 c 52 128 3 1 64 52 3,115,008

Sensors 2021, 21, 4195

11 0f 19

Table 2. Cont.

Layer Type Input Filters Output Operations
Size Number Size Stride Number Size
I Cc F S K (0]

10 c 52 64 3 1 64 52 1,557,504
11 c 52 128 1 1 128 52 692,224
12) 52 256 2 2 256 26 -
13 c 26 256 3 1 256 26 6,230,016
14 c 26 256 3 1 128 26 3,115,008
15 c 26 128 3 1 128 26 1,557,504
16 c 26 256 1 1 256 26 692,224
17) 26 512 2 2 512 13 -
18 c 13 512 3 1 512 13 6,340,608
19 c 13 512 1 1 256 13 352,256
20 c 13 256 3 1 512 13 3,170,304
21 c 13 512 1 1 255 13 352,256
22 c 13 256 1 1 128 13 88,064
23 u 13 128 2 0.5 128 26 -
24 c 26 384 3 1 256 26 9,345,024
25 c 26 256 1 1 255 26 692,224
Legend: ¢, convolutional; p, pooling; u, upsampling. 58,845.696

4.2. Honeybee Dataset

The images containing honeybees [84] were extracted from the video recorded at the
Botanic Garden of the University of Ljubljana, where a beehive with a colony of Carniolan
grey bees (Apis mellifera carnica), the native Slovenian breed, was placed. We set the camera
above the beehive entrance and recorded the honeybees entering and exiting the hive using
the shelf in front of the beehive entrance. With such a setup, we ensured a noninvasive
recording of the honeybees in their natural environment. The dataset contained 65 images
of size 2688-by-1504 pixels. There was a total of 1040 ground truth bounding boxes
containing Carniolan grey honeybees. Figure 8 shows a sample image from the dataset
with Carniolan grey honeybees and the ground truth bounding boxes.

Figure 8. A sample image from the dataset with Carniolan grey honeybees and ground truth
bounding boxes.

Sensors 2021, 21, 4195

12 of 19

4.3. Experimental Setup

Figure 9 illustrates the honeybee detection workflow. We used the YOLOv4-tiny
model implementation from [85], which utilizes Keras [86], a deep learning framework
for Python running on top of the TensorFlow [87] machine learning platform. We added
the support for the approximate multipliers by replacing the floating-point multipliers in
TensorFlow with the approximate fixed-point ones implemented in CUDA C. To attain
basic image recognition features and alleviate data scarcity, we initialized the YOLOv4-tiny
model with the weights [77], pretrained on the COCO dataset [88].

manual labeling

. IoU, P.R, mAP,
€omparison — precision-recall

YOLOV4-tiny model
curve

&
input image % %
Keras
framework

inference step:
bounding boxes,
class labels,

i

|

YOLOv4-tiny model i
|

|

(XX confidence levels i
|

|

|

|

|

parameters

multipliers in CUDA C

Loxactradivd |
[DRALM5 | TensorFlow
(riess] platform
DT — N PR
] learning step:
— '|f model update

Figure 9. Object detection workflow with GEMM/AGEMM unit simulation.

multiplier selector

We randomly split the honeybee dataset into five sets of 13 images to perform the
five-fold cross-validation using four sets for training and one for testing. We trained the
neural network for 80 epochs with one image per batch [85] using the RMSprop optimizer
with an initial learning rate of 0.01 and cosine annealing. We rescaled each original image
to 416-by-416 pixels to suit the size of the input layer of the YOLOv4-tiny model (Table 2).
To gear up the model for the approximate arithmetic and assure its convergence, we used
the approximate fixed-point multiplication in the inference step and the floating-point
multiplication in the learning step. We quantified the floating-point weights and inputs
to the signed fixed-point representation with f fractional bits as |v - 2/ | /2f, where v is a
floating-point value. We set f = 12, which gave the lowest accuracy degradation for the
exact radix-4 multiplier.

For each detection, the YOLOv4-tiny model predicted the bounding box and the
class label, along with the confidence level. Only predictions with confidence levels
greater than some predefined threshold, in our case 0.5, were returned. The quality of
the object detection model depended on its ability to localize an object by determining its
bounding box and classifying the contents to a predefined class label. The prediction was
considered as a true positive if the predicted label was equal to the ground truth label and
the intersection-over-union measure,

area(BN G)

loU(B,G) = area(BUG) ’

4)
where B is the predicted and G is the ground truth bounding box, equal to or greater than
some threshold .

The performance of an object detection model can be assessed in terms of precision
and recall [89],

TP TP

P=7p7Fp * R=TPrEN

©)

Sensors 2021, 21, 4195

13 of 19

where TP, FP, and FN are the numbers of true positive, false positive, and false negative
detections. Intuitively, precision P measures the accuracy of assigning the correct class
label, while recall R measures the accuracy of finding ground truth objects.

By sorting the detections by the descending confidence level and incrementally calcu-
lating the precision and recall, we obtained a precision-recall curve. A good object detector
should exhibit high precision and recall, with precision remaining high with increasing
recall. One can roughly assess the performance of an object detector by computing the
area under the precision—recall curve. To estimate the area under the curve, the average
precision uses N-point interpolation [89],

Pinterp (R;) = max P(R)
R>R;

1 N
AP = — Zpinterp(Ri) ’ (6)
N i=1

The mean average precision metric, mAP, used in this paper, is the average of the
101-point interpolated AP metric over a set of thresholds f. The higher the value of the
mAP € [0,1] metric, the better the detector is. In the further analysis, we used the mAP[0.5]
metric at the threshold t = 0.5 and the mAP[0.5:0.95] metric averaged over ten equidistant
thresholds ¢ € [0.5,0.95]. Using mAP-based metrics in combination with cross-validation is
a standard approach for performance evaluation and model comparison in object detection
benchmarks [2,89-91].

4.4. Object Detection Results

Figure 10 shows the precision-recall curves of the YOLOv4-tiny detector empowered
with the GEMM and the AGEMM units for each of the five folds, and Table 3 reports the
values of the mAP[0.5] and mAP[0.5:0.95] metrics averaged over five folds. A large area
under the precision—recall curves indicates high precision and high recall. Precision drops
on the far right side of the plot, where the confidence levels are low. Besides, high values
of the mAP[0.5] metric indicate that the object detector performs well, while lower values
of the mAP[0.5:0.95] metric suggest that the detector is not very good at localization.

Comparing the fixed-point and floating-point GEMM units revealed that the m AP[0.5]
values of the detector with the fixed-point and floating-point units were equal. In contrast,
the mAP[0.5:0.95] metric showed slightly worse localization of the fixed-point detectors.

LO e 1.0 = 1.0 —— —
‘1_"*\. ;
0.9 0.9 ﬂvj 0.9
o [
- L.)
g 0.8 =08 208 |
Z S 15
5] a
L o 3}
2.0.7 207 207
1 & &
1
0.6 0.6 0.6
fold 1 fold 2 | fold 3
0.5 0.5 L 0.5
05 06 07 08 09 1.0 05 06 07 08 09 1.0 05 06 07 08 09 1.0
recall, R recall, R recall, R
1.0 1.0},
e —"‘l" L
0.9 0.9
& 08 %08
o 5
.2 .S
-8 g —— GEMM, exact floating-point
207 207 GEMM, exact radix—4
—— AGEMM, DR-ALMS
0.6 0.6 AGEMM, TL16-8/4
AGEMM, RAD1024
fold 4 fold 5 AGEMM, HRALM3
0.5 0.5
05 06 07 08 09 1.0 05 06 07 08 09 1.0
recall, R recall, R

Figure 10. The precision—recall curve of the YOLOv4-tiny detector empowered with the selected GEMM and AGEMM units.
Each plot presents curves obtained from the object detection for one of the cross-validation folds.

Sensors 2021, 21, 4195

14 of 19

Object detectors with AGEMM units performed similarly well as the object detectors
with the fixed-point GEMM unit. Slightly worse results of the AGEMM unit using the
HRALMS3 multiplier could be attributed to the poorer performance in the first fold.

Table 3. Honeybee detection using the GEMM unit with the exact floating-point and fixed-point
multipliers and the AGEMM unit with the selected approximate multipliers. The reported values of
the m AP measures are the means and standard deviations averaged over five folds. The estimated
execution time is given for eight parallel GEMM or AGEMM units.

Unit Multiplier mAP[0.5] mAP[0.5:0.95] Execution Speedup
Time [ms]

GEMM exact float 0.94 £ 0.02 0.46 £ 0.01 - -
exact radix-4 0.94 £ 0.02 0.43 £ 0.02 34.6 1.00
DR-ALMS5 [57] 0.93 + 0.02 0.43 £+ 0.01 26.3 1.31

AGEMM TL16-8/4 [61] 0.93 £+ 0.03 0.42 £+ 0.03 30.6 1.13
RAD1024 [55] 0.93 £+ 0.02 0.42 +0.03 27.8 1.24
HRALMS3 [62] 0.91 £ 0.04 0.40 £ 0.04 32.8 1.05

The estimated propagation delays of the GEMM and AGEMM units from Table 1 and
the number of the GEMM unit invocations from Table 2 define the theoretical lower bound
of the YOLOv4-tiny backbone execution time. Table 3 reports the backbone execution time
of eight parallel GEMM or AGEMM units and the speedup, obtained as the ratio of the
GEMM and AGEMM execution times.

4.5. Discussion

We evaluated four AGEMM units employing different state-of-the-art approximate
multipliers. The comparison of the synthesis results in terms of the PDP for the approxi-
mate multipliers in Figure 2 and the AGEMM units in Table 1 revealed that the hardware
characteristics of approximate multipliers dictated the hardware performance of the cor-
responding AGEMM units. The hardware characteristics favored the AGEMM units
employing small approximate logarithmic multipliers.

The precision—recall curves in Figure 10 and the values in Table 3 showed that in
honeybee detection, the majority of AGEMM units stood in line with the exact GEMM
unit. The results revealed that the YOLOv4-tiny object detector did not favor one AGEMM
unit over another, as all AGEMM units offered almost similar detection results, allowing
replacing the exact GEMM unit. Thus, AGEMM units with considerable gains in hardware
metrics are preferable. For real-time object detection, the execution time is an important
metric, where AGEMM units with small approximate logarithmic multipliers excelled. The
AGEMM unit using the DR-ALMS5 multiplier could process up to 30% more images in the
same time interval as the exact GEMM unit. Thus, only eight parallel AGEMM units using
the DR-ALM5 multiplier sufficed to perform the YOLOv4-tiny backbone inference step up
to 38-times per second, more than enough for real-time honeybee detection.

However, it is essential to note that the choice of the AGEMM unit is application-
specific. In the presented honeybee detection problem, one should choose between the
AGEMM unit using the TL16-8/4 multiplier, which is the best choice when optimizing
the system for die-area, and the AGEMM unit employing the DR-ALMS5 multiplier, which
possesses the shortest propagation delay and lowest energy consumption.

The synthesis and detection results proved our hypothesis that the AGEMM units
can efficiently replace the exact ones. For the good performance of object detectors, it is
essential to use the AGEMM units in the inference step during the training, thus helping
the deep neural network model adapt the weights in such a way to compensate for error
introduced in the computation. Hence, the employment of more accurate, but, at the
same time, more complex approximate multipliers in the AGEMM unit did not necessarily
provide any significant improvement in object detection.

Sensors 2021, 21, 4195

15 0of 19

When an application can compensate inaccuracies in the computation, the AGEMM
units could bring considerable gains of up to a 25% shorter execution time, 60% smaller chip
area, 70% lower power usage, and 75% reduction in energy consumption. Furthermore, the
results in object detection suggested that we could probably empower the AGEMM unit
with even simpler approximate multipliers, obtained either by decreasing the bit-width
or accuracy.

5. Conclusions

Currently, the trend in edge computing is to empower sensors near data sources with
artificial intelligence features. Commonly, we execute the inference in the pretrained artifi-
cial intelligence models on the edge device’s graphics processing units. Recent graphics
processing units contain special arithmetic units capable of performing intensive matrix—
matrix multiply operations needed for the models. Convolutional neural network-based
object detection applications need to work locally on an edge device for a fast response.
The real-time inference in convolutional neural network models involves a vast number
of matrix-matrix multiply operations, requiring additional processing power, which can
compromise the edge device’s autonomy.

We proposed and designed the approximate general matrix multiply (AGEMM) unit
for object detection. The AGEMM unit utilized approximate computing, a popular strategy
for decreasing energy consumption and the overall complexity of arithmetic circuits. In
particular, it performed a four-by-four matrix multiplication using approximate fixed-point
multipliers and accurate fixed-point adders. We anticipate that applying the proposed
AGEMM unit to convolutional neural network models could provide a significant benefit
in terms of speed, area, and energy consumption at the expense of reduced accuracy, which
we can compensate during the network’s training.

We implemented in Verilog four variants of AGEMM units using state-of-the-art
approximate multipliers. To assess the hardware characteristics of the AGEMM units, we
synthesized them with the 45 nm Nangate Open Cell Library. The best AGEMM unit using
the DR-ALMS5 multiplier reduced the propagation delay by 25%, the area by 60%, and the
energy consumption by more than 75% compared to an accurate fixed-point GEMM unit.

We evaluated the usability of the proposed AGEMM unit by deploying it in the
YOLOv4-tiny object detector specifically trained for honeybee detection. We used the
detector implemented in the Keras/TensorFlow framework, where we replaced the exact
floating-point multipliers with the approximate fixed-point multipliers. The accuracy of
the detectors with the fixed-point multipliers was only slightly lower than the detector’s
accuracy with the floating-point multiplier. Among the detectors employing the AGEMM
units, we obtained the best results for the detector utilizing the approximate DR-ALM5
multiplier. The results also revealed that the use of more accurate and more expensive
nonlogarithmic and hybrid multipliers cannot be justified in AGEMM units employed in
convolutional neural network object detectors.

The high throughput of the proposed AGEMM unit suggested that YOLOv4-tiny could
perform the inference in real time on a video with more than 30 frames per second using
eight concurrent AGEMM units in a setup similar to that in recent graphics processing units.
Moreover, the AGEMM unit’s exceptional energy efficiency promises that its employment
in graphics processing units could lead to a prolonged autonomy of edge devices used in
object detection.

We proved our hypothesis that the proposed AGEMM unit performed well in object
detectors and brought significant savings in hardware and energy. The neural network
could successfully compensate the approximation in the multiplications. Moreover, the
obtained results indicated that we could probably use even shorter bit-width multipliers.
Hence, we plan to employ eight-bit approximate multipliers and assess their usability
in object detection, resulting in even faster processing and more savings in energy. We
employed AGEMM units only in the inference step for detection and classification. As the
efficiency of a network training process is as important as its inference, we plan to address

Sensors 2021, 21, 4195 16 of 19

the challenges of applying AGEMM units in training. We expect that AGEMM units would
contribute to more efficient training and allow the pretrained deep neural network to adapt
its weights at runtime.

Author Contributions: Conceptualization, R.P., VR., P.B. and U.L.; methodology, R.P., VR., P.B.
and U.L,; software, R.P; validation, R.P.,, VR., PB. and U.L.; formal analysis, R.P., VR, P.B. and
U.L,; investigation, R.P; data curation, R.P. and J.B.; writing—original draft preparation, R.P., P.B.
and U.L.; writing—review and editing, R.P., V.R., P.B. and U.L.; supervision, P.B. and U.L.; project
administration, P.B. and U.L.; funding acquisition, P.B. and U.L. All authors read and agreed to the
published version of the manuscript.

Funding: This research was supported by Slovenian Research Agency under Grants P2-0359 (Na-
tional research program Pervasive computing) and P2-0241 (Synergy of the technological systems and
processes) and by Slovenian Research Agency and Ministry of Civil Affairs, Bosnia and Herzegovina,
under Grant BI-BA /19-20-047 (Bilateral Collaboration Project).

Data Availability Statement: The data presented in this study are openly available in “Carnolian
Grey Honeybees Dataset”, IEEE Dataport, doi: https://doi.org/10.21227 /b6cx-ak33 (accessed on 20
May 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
nor in the decision to publish the results.

References

1. Yang, L.; Chen, X,; Perlaza, S.M.; Zhang, J. Special Issue on Artificial-Intelligence-Powered Edge Computing for Internet of
Things. IEEE Internet Things]. 2020, 7, 9224-9226. [CrossRef]

2. Aziz, L.; Haji Salam, M.S.B.; Sheikh, U.U.; Ayub, S. Exploring Deep Learning-Based Architecture, Strategies, Applications and
Current Trends in Generic Object Detection: A Comprehensive Review. IEEE Access 2020, 8, 170461-170495. [CrossRef]

3. Szeliski, R. Computer Vision: Algorithms and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010.

4. Kim, Y,; Kim, H; Yadav, N.; Li, S.; Choi, K.K. Low-Power RTL Code Generation for Advanced CNN Algorithms toward Object
Detection in Autonomous Vehicles. Electronics 2020, 9, 478. [CrossRef]

5. Nguyen, K.; Huynh, N.T.; Nguyen, P.C.; Nguyen, K.D.; Vo, N.D.; Nguyen, T.V. Detecting Objects from Space: An Evaluation of
Deep-Learning Modern Approaches. Electronics 2020, 9, 583. [CrossRef]

6. Alom, M.Z; Taha, TM.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.S.; Asari, V.K.
A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292. [CrossRef]

7. Babic, Z.; Pilipovic, R.; Risojevic, V.; Mirjanic, G. Pollen Bearing Honey Bee Detection in Hive Entrance Video Recorded by
Remote Embedded System for Pollination Monitoring. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, III-7, 51-57.
[CrossRef]

8. Avramovié, A.; Jovanovié, V,; Pilipovi¢, R.; Stojnié, V.; Risojevié, V.; Gaji¢, S.; Simi¢, M.; Sevo, I.; Mustra, M.; Babi¢, Z.; Filipi, J.
Automatic monitoring of honeybees’ activity outside of the hive from UHD video. In Proceedings of the 2018 14th Symposium
on Neural Networks and Applications (NEUREL), Belgrade, Serbia, 20-21 November 2018; pp. 1-4. [CrossRef]

9. Bjerge, K,; Frigaard, C.E.; Mikkelsen, P.H.; Nielsen, T.H.; Misbih, M.; Kryger, P. A computer vision system to monitor the
infestation level of Varroa destructor in a honeybee colony. Comput. Electron. Agric. 2019, 164, 104898. [CrossRef]

10. Stojni¢, V.; Risojevi¢, V.; Mustra, M.; Jovanovi¢, V.; Filipi, J.; Kezi¢, N.; Babi¢, Z. A Method for Detection of Small Moving Objects
in UAV Videos. Remote Sens. 2021, 13, 653. [CrossRef]

11. Bilik, S.; Kratochvila, L.; Ligocki, A.; Bostik, O.; Zemcik, T.; Hybl, M.; Horak, K.; Zalud, L. Visual Diagnosis of the Varroa
Destructor Parasitic Mite in Honeybees Using Object Detector Techniques. Sensors 2021, 21, 2764. [CrossRef]

12. Liu, B,; Zou, D.; Feng, L.; Feng, S.; Fu, P,; Li,]. An FPGA-Based CNN Accelerator Integrating Depthwise Separable Convolution.
Electronics 2019, 8, 281. [CrossRef]

13. Kim, M.; Mohanty, A.; Kadetotad, D.; Wei, L.; He, X.; Cao, Y.; Seo, J.S. A Real-Time 17-Scale Object Detection Accelerator with
Adaptive 2000-Stage Classification in 65 nm CMOS. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 3843-3853. [CrossRef]

14. Ge, F; Wu, N.; Xiao, H.; Zhang, Y.; Zhou, F. Compact Convolutional Neural Network Accelerator for IoT Endpoint SoC. Electronics
2019, 8, 497. [CrossRef]

15. Park, S.S.; Chung, K.S. CENNA: Cost-Effective Neural Network Accelerator. Electronics 2020, 9, 134. [CrossRef]

16. Onizawa, N.; Smithson, S.C.; Meyer, B.H.; Gross, WJ.; Hanyu, T. In-Hardware Training Chip Based on CMOS Invertible Logic for
Machine Learning. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1541-1550. [CrossRef]

17. Wu, N,; Jiang, T.; Zhang, L.; Zhou, F;; Ge, E. A Reconfigurable Convolutional Neural Network-Accelerated Coprocessor Based on

RISC-V Instruction Set. Electronics 2020, 9, 1005. [CrossRef]

https://doi.org/10.21227/b6cx-ak33
http://dx.doi.org/10.1109/JIOT.2020.3019948
http://dx.doi.org/10.1109/ACCESS.2020.3021508
http://dx.doi.org/10.3390/electronics9030478
http://dx.doi.org/10.3390/electronics9040583
http://dx.doi.org/10.3390/electronics8030292
http://dx.doi.org/10.5194/isprs-annals-III-7-51-2016
http://dx.doi.org/10.1109/NEUREL.2018.8587026
http://dx.doi.org/10.1016/j.compag.2019.104898
http://dx.doi.org/10.3390/rs13040653
http://dx.doi.org/10.3390/s21082764
http://dx.doi.org/10.3390/electronics8030281
http://dx.doi.org/10.1109/TCSI.2019.2921714
http://dx.doi.org/10.3390/electronics8050497
http://dx.doi.org/10.3390/electronics9010134
http://dx.doi.org/10.1109/TCSI.2019.2960383
http://dx.doi.org/10.3390/electronics9061005

Sensors 2021, 21, 4195 17 of 19

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

Lee, K.J.; Lee, J.; Choi, S.; Yoo, H.]. The Development of Silicon for Al: Different Design Approaches. IEEE Trans. Circuits Syst. I
Regul. Pap. 2020, 67, 4719-4732. [CrossRef]

Lau, WW.Y.; Ho, H.W.; Siek, L. Deep Neural Network (DNN) Optimized Design of 2.45 GHz CMOS Rectifier with 73.6% Peak
Efficiency for RF Energy Harvesting. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4322-4333. [CrossRef]

Samimi, N.; Kamal, M.; Afzali-Kusha, A.; Pedram, M. Res-DNN: A Residue Number System-Based DNN Accelerator Unit. IEEE
Trans. Circuits Syst. I Regul. Pap. 2020, 67, 658-671. [CrossRef]

Hong, J.; Arslan, S.; Lee, T.; Kim, H. Design of Power-Efficient Training Accelerator for Convolution Neural Networks. Electronics
2021, 10, 787. [CrossRef]

Kim, S.; Jo, J.; Park, I.C. Hybrid Convolution Architecture for Energy-Efficient Deep Neural Network Processing. IEEE Trans.
Circuits Syst. I Regul. Pap. 2021, 68, 2017-2029. [CrossRef]

Yuan, T,; Liu, W.; Han, J.; Lombardi, F. High Performance CNN Accelerators Based on Hardware and Algorithm Co-Optimization.
IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 250-263. [CrossRef]

Si, X.; Khwa, W.S.; Chen, J.J.; Li, .E; Sun, X,; Liu, R;; Yu, S.; Yamauchi, H.; Li, Q.; Chang, M.F. A Dual-Split 6T SRAM-Based
Computing-in-Memory Unit-Macro with Fully Parallel Product-Sum Operation for Binarized DNN Edge Processors. IEEE Trans.
Circuits Syst. I Regul. Pap. 2019, 66, 4172-4185. [CrossRef]

Han, B.G; Lee,].G.; Lim, K.T.; Choi, D.H. Design of a Scalable and Fast YOLO for Edge-Computing Devices. Sensors 2020, 20,
6779. [CrossRef] [PubMed]

Lee, J.; Kang, S.; Lee, J.; Shin, D.; Han, D.; Yoo, H.J. The Hardware and Algorithm Co-Design for Energy-Efficient DNN Processor
on Edge/Mobile Devices. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 3458-3470. [CrossRef]

Asadikouhanjani, M.; Zhang, H.; Gopalakrishnan, L.; Lee, H.].; Ko, S.B. A Real-Time Architecture for Pruning the Effectual
Computations in Deep Neural Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 2030-2041. [CrossRef]

Agrawal, A.; Choi,].; Gopalakrishnan, K.; Gupta, S.; Nair, R.; Oh, J.; Prener, D.A.; Shukla, S.; Srinivasan, V.; Sura, Z. Approximate
computing: Challenges and opportunities. In Proceedings of the 2016 IEEE International Conference on Rebooting Computing
(ICRC), San Diego, CA, USA, 17-19 October 2016; pp. 1-8. [CrossRef]

Mittal, S. A survey of techniques for approximate computing. ACM Comput. Surv. 2016, 48, 62. [CrossRef]

Jerger, N.E.; Miguel,].5. Approximate Computing. IEEE Micro 2018, 38, 8-10. [CrossRef]

Eeckhout, L. Approximate Computing, Intelligent Computing. IEEE Micro 2018, 38, 6-7. [CrossRef]

Rodrigues, G.; Lima Kastensmidt, F; Bosio, A. Survey on Approximate Computing and Its Intrinsic Fault Tolerance. Electronics
2020, 9, 557. [CrossRef]

Tasoulas, Z.G.; Zervakis, G.; Anagnostopoulos, I.; Amrouch, H.; Henkel,]. Weight-Oriented Approximation for Energy-Efficient
Neural Network Inference Accelerators. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4670-4683. [CrossRef]

Liu, W,; Liao, Q.; Qiao, F; Xia, W.; Wang, C.; Lombardi, F. Approximate Designs for Fast Fourier Transform (FFT) with Application
to Speech Recognition. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 4727-4739. [CrossRef]

Huang, J.; Nandha Kumar, T.; Almurib, H.A.F,; Lombardi, F. A Deterministic Low-Complexity Approximate (Multiplier-Less)
Technique for DCT Computation. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 3001-3014. [CrossRef]

Sun, H.; Cheng, Z.; Gharehbaghi, A.M.; Kimura, S.; Fujita, M. Approximate DCT Design for Video Encoding Based on Novel
Truncation Scheme. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 1517-1530. [CrossRef]

Aponte-Moreno, A.; Restrepo-Calle, F.; Pedraza, C. Using Approximate Computing and Selective Hardening for the Reduction of
Overheads in the Design of Radiation-Induced Fault-Tolerant Systems. Electronics 2019, 8, 1539. [CrossRef]

Jiang, H.; Liu, L.; Jonker, PP; Elliott, D.G.; Lombardi, F.; Han, J. A High-Performance and Energy-Efficient FIR Adaptive Filter
Using Approximate Distributed Arithmetic Circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 313-326. [CrossRef]
Hassan, S.; Attia, S.; Salama, K.N.; Mostafa, H. EANN: Energy Adaptive Neural Networks. Electronics 2020, 9, 746. [CrossRef]
Chen, Z.; Chen, Z; Lin, J.; Liu, S.; Li, W. Deep Neural Network Acceleration Based on Low-Rank Approximated Channel Pruning.
IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1232-1244. [CrossRef]

Tastan, I.; Karaca, M.; Yurdakul, A. Approximate CPU Design for IoT End-Devices with Learning Capabilities. Electronics 2020, 9,
125. [CrossRef]

Nguyen, D.T.; Hung, N.H.; Kim, H.; Lee, H. An Approximate Memory Architecture for Energy Saving in Deep Learning
Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1588-1601. [CrossRef]

Jo, J.; Kung, J.; Lee, Y. Approximate LSTM Computing for Energy-Efficient Speech Recognition. Electronics 2020, 9, 2004.
[CrossRef]

Younes, H.; Ibrahim, A.; Rizk, M.; Valle, M. Algorithmic-Level Approximate Tensorial SVM Using High-Level Synthesis on
FPGA. Electronics 2021, 10, 205. [CrossRef]

Seidel, H.B.; Macedo Azevedo da Rosa, M.; Paim, G.; Antonio César da Costa, E.; Almeida, S.J.M.; Bampi, S. Approximate Pruned
and Truncated Haar Discrete Wavelet Transform VLSI Hardware for Energy-Efficient ECG Signal Processing. IEEE Trans. Circuits
Syst. I Regul. Pap. 2021, 1-13. [CrossRef]

Soares, L.B.; da Rosa, M.M.A_; Diniz, C.M.; da Costa, E.A.C.; Bampi, S. Design Methodology to Explore Hybrid Approximate
Adders for Energy-Efficient Image and Video Processing Accelerators. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 2137-2150.
[CrossRef]

http://dx.doi.org/10.1109/TCSI.2020.2996625
http://dx.doi.org/10.1109/TCSI.2020.3022280
http://dx.doi.org/10.1109/TCSI.2019.2951083
http://dx.doi.org/10.3390/electronics10070787
http://dx.doi.org/10.1109/TCSI.2021.3059882
http://dx.doi.org/10.1109/TCSI.2020.3030663
http://dx.doi.org/10.1109/TCSI.2019.2928043
http://dx.doi.org/10.3390/s20236779
http://www.ncbi.nlm.nih.gov/pubmed/33260957
http://dx.doi.org/10.1109/TCSI.2020.3021397
http://dx.doi.org/10.1109/TCSI.2021.3060945
http://dx.doi.org/10.1109/ICRC.2016.7738674
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/10.1109/MM.2018.043191120
http://dx.doi.org/10.1109/MM.2018.043191119
http://dx.doi.org/10.3390/electronics9040557
http://dx.doi.org/10.1109/TCSI.2020.3019460
http://dx.doi.org/10.1109/TCSI.2019.2933321
http://dx.doi.org/10.1109/TCSI.2019.2902415
http://dx.doi.org/10.1109/TCSI.2018.2882474
http://dx.doi.org/10.3390/electronics8121539
http://dx.doi.org/10.1109/TCSI.2018.2856513
http://dx.doi.org/10.3390/electronics9050746
http://dx.doi.org/10.1109/TCSI.2019.2958937
http://dx.doi.org/10.3390/electronics9010125
http://dx.doi.org/10.1109/TCSI.2019.2962516
http://dx.doi.org/10.3390/electronics9122004
http://dx.doi.org/10.3390/electronics10020205
http://dx.doi.org/10.1109/TCSI.2021.3057584
http://dx.doi.org/10.1109/TCSI.2019.2892588

Sensors 2021, 21, 4195 18 of 19

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Balasubramanian, P.; Maskell, D.L. Hardware Optimized and Error Reduced Approximate Adder. Electronics 2019, 8, 1212.
[CrossRef]

Seo, H.; Yang, Y.S.; Kim, Y. Design and Analysis of an Approximate Adder with Hybrid Error Reduction. Electronics 2020, 9, 471.
[CrossRef]

Perri, S.; Spagnolo, F.; Frustaci, F.; Corsonello, P. Efficient Approximate Adders for FPGA-Based Data-Paths. Electronics 2020, 9,
1529. [CrossRef]

Pashaeifar, M.; Kamal, M.; Afzali-Kusha, A.; Pedram, M. A Theoretical Framework for Quality Estimation and Optimization of
DSP Applications Using Low-Power Approximate Adders. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 327-340. [CrossRef]
Chen, K,; Liu, W.; Han, J.; Lombardji, F. Profile-Based Output Error Compensation for Approximate Arithmetic Circuits. IEEE
Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4707-4718. [CrossRef]

Liu, W,; Qian, L.; Wang, C.; Jiang, H.; Han, J.; Lombardi, F. Design of Approximate Radix-4 Booth Multipliers for Error-Tolerant
Computing. IEEE Trans. Comput. 2017, 66, 1435-1441. [CrossRef]

Zendegani, R.; Kamal, M.; Bahadori, M.; Afzali-Kusha, A.; Pedram, M. RoBA Multiplier: A Rounding-Based Approximate
Multiplier for High-Speed yet Energy-Efficient Digital Signal Processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017,
25,393-401. [CrossRef]

Liu, W,; Xu, J.; Wang, D.; Wang, C.; Montuschi, P.; Lombardi, F. Design and Evaluation of Approximate Logarithmic Multipliers
for Low Power Error-Tolerant Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 2856-2868. [CrossRef]

Leon, V.; Zervakis, G.; Soudris, D.; Pekmestzi, K. Approximate Hybrid High Radix Encoding for Energy-Efficient Inexact
Multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 421-430. [CrossRef]

Kim, M.S,; Barrio, A.A.D.; Oliveira, L.T.; Hermida, R.; Bagherzadeh, N. Efficient Mitchell’s Approximate Log Multipliers for
Convolutional Neural Networks. IEEE Trans. Comput. 2019, 68, 660—-675. [CrossRef]

Yin, P.; Wang, C.; Waris, H.; Liu, W.; Han, Y.; Lombardi, F. Design and Analysis of Energy-Efficient Dynamic Range Approximate
Logarithmic Multipliers for Machine Learning. IEEE Trans. Sustain. Comput. 2020, 1. [CrossRef]

Waris, H.; Wang, C.; Liu, W. Hybrid Low Radix Encoding-Based Approximate Booth Multipliers. IEEE Trans. Circuits Syst. II
Express Briefs 2020, 67, 3367-3371. [CrossRef]

Ansari, M.S.; Cockburn, B.F,; Han,]. An Improved Logarithmic Multiplier for Energy-Efficient Neural Computing. IEEE Trans.
Comput. 2021, 70, 614-625. [CrossRef]

Pilipovi¢, R.; Buli¢, P. On the Design of Logarithmic Multiplier Using Radix-4 Booth Encoding. IEEE Access 2020, 8, 64578-64590.
[CrossRef]

Pilipovi¢, R.; Buli¢, P; Lotri¢, U. A Two-Stage Operand Trimming Approximate Logarithmic Multiplier. IEEE Trans. Circuits Syst.
I Regul. Pap. 2021, 1-11. [CrossRef]

Lotri¢, U,; Pilipovi¢, R.; Buli¢, P. A Hybrid Radix-4 and Approximate Logarithmic Multiplier for Energy Efficient Image Processing.
Electronics 2021, 10, 1175. [CrossRef]

Lotri¢, U.; Buli¢, P. Applicability of approximate multipliers in hardware neural networks. Neurocomputing 2012, 96, 57-65.
[CrossRef]

Ansari, M.S.; Mrazek, V.; Cockburn, B.F,; Sekanina, L.; Vasicek, Z.; Han, J. Improving the Accuracy and Hardware Efficiency of
Neural Networks Using Approximate Multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 317-328. [CrossRef]
Wu, R.; Guo, X.; Du, J.; Li, J. Accelerating Neural Network Inference on FPGA-Based Platforms—A Survey. Electronics 2021, 10,
1025. [CrossRef]

Choquette, J.; Giroux, O.; Foley, D. Volta: Performance and Programmability. IEEE Micro 2018, 38, 42-52. [CrossRef]

Yan, D.; Wang, W.; Chu, X. Demystifying Tensor Cores to Optimize Half-Precision Matrix Multiply. In Proceedings of the
2020 IEEE International Parallel and Distributed Processing, Symposium (IPDPS), New Orleans, LA, USA, 18-22 May 2020;
pp. 634-643. [CrossRef]

Markidis, S.; Chien, S.W.D.; Laure, E.; Peng, I.B.; Vetter,].5. NVIDIA Tensor Core Programmability, Performance Precision. In
Proceedings of the 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Vancouver,
BC, Canada, 21-25 May 2018; pp. 522-531. [CrossRef]

Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
arXiv 2014, arXiv:cs.CV /1311.2524.

Ren, S; He, K,; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv
2016, arXiv:cs.CV/1506.01497.

Lin, TY.; Dollar, P; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017.
Carranza-Garcia, M.; Torres-Mateo, J.; Lara-Benitez, P.; Garcia-Gutiérrez, J. On the Performance of One-Stage and Two-Stage
Object Detectors in Autonomous Vehicles Using Camera Data. Remote Sens. 2021, 13, 89. [CrossRef]

Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016; pp. 779-788.
[CrossRef]

http://dx.doi.org/10.3390/electronics8111212
http://dx.doi.org/10.3390/electronics9030471
http://dx.doi.org/10.3390/electronics9091529
http://dx.doi.org/10.1109/TCSI.2018.2856757
http://dx.doi.org/10.1109/TCSI.2020.2996567
http://dx.doi.org/10.1109/TC.2017.2672976
http://dx.doi.org/10.1109/TVLSI.2016.2587696
http://dx.doi.org/10.1109/TCSI.2018.2792902
http://dx.doi.org/10.1109/TVLSI.2017.2767858
http://dx.doi.org/10.1109/TC.2018.2880742
http://dx.doi.org/10.1109/TSUSC.2020.3004980
http://dx.doi.org/10.1109/TCSII.2020.2975094
http://dx.doi.org/10.1109/TC.2020.2992113
http://dx.doi.org/10.1109/ACCESS.2020.2985345
http://dx.doi.org/10.1109/TCSI.2021.3069168
http://dx.doi.org/10.3390/electronics10101175
http://dx.doi.org/10.1016/j.neucom.2011.09.039
http://dx.doi.org/10.1109/TVLSI.2019.2940943
http://dx.doi.org/10.3390/electronics10091025
http://dx.doi.org/10.1109/MM.2018.022071134
http://dx.doi.org/10.1109/IPDPS47924.2020.00071
http://dx.doi.org/10.1109/IPDPSW.2018.00091.
http://dx.doi.org/10.3390/rs13010089
http://dx.doi.org/10.1109/CVPR.2016.91

Sensors 2021, 21, 4195 19 of 19

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.
87.

88.

89.

90.

91.

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer
Vision-ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016;
pp- 21-37.

Lin, T,; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020,
42,318-327. [CrossRef]

Bochkovskiy, A.; Wang, C.Y,; Liao, HYM. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arxiv:2004.10934.

Bochkovskiy, A. Darknet: Open Source Neural Networks in Python. 2020. Available online: https://github.com/AlexeyAB/
darknet/ (accessed on 14 May 2021)

Kurzak, J.; Tomov, S.; Dongarra, J. Autotuning GEMM Kernels for the Fermi GPU. IEEE Trans. Parallel Distrib. Syst. 2012,
23, 2045-2057. [CrossRef]

Liu, Z.; Whatmough, P.N.; Mattina, M. Systolic Tensor Array: An Efficient Structured-Sparse GEMM Accelerator for Mobile CNN
Inference. IEEE Comput. Archit. Lett. 2020, 19, 34-37. [CrossRef]

Wu, D; Li, J; Yin, R.; Hsiao, H.; Kim, Y.; San Miguel, J. uGEMM: Unary Computing for GEMM Applications. IEEE Micro 2021, 1.
[CrossRef]

Kim, M.S.; Del Barrio Garcia, A.A.; Kim, H.; Bagherzadeh, N. The Effects of Approximate Multiplication on Convolutional
Neural Networks. IEEE Trans. Emerg. Top. Comput. 2021, 1. [CrossRef]

Reda, S. Overview of the OpenROAD Digital Design Flow from RTL to GDS. In Proceedings of the 2020 International Symposium
on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 10-13 August 2020; p. 1. [CrossRef]

Choquette, J.; Gandhi, W.; Giroux, O.; Stam, N.; Krashinsky, R. NVIDIA A100 Tensor Core GPU: Performance and Innovation.
IEEE Micro 2021, 42. [CrossRef]

Pilipovi¢, R.; Zlate¢an, L. Carniolan Grey Honeybees Dataset. IEEE Dataport 2021. [CrossRef]

More than YOLO. 2016-2021. Available online: https://github.com/yuto30/yolox/ (accessed on 14 May 2021).

Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 15 May 2021) .

Abadi, M.; Bartham, P.; Chen, J.; Chen, Z; Davis, A.; Dean,].; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A
system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), SAVANNAH, GA, USA, 2—4 November 2016; pp. 265-283.

Lin, T.Y.; Maire, M.; Belongie, S.; Hays,].; Perona, P.; Ramanan, D.; Dollar, P; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Computer Vision—-ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing;:
Cham, Switzerland, 2014; pp. 740-755.

Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a
Companion Open-Source Toolkit. Electronics 2021, 10, 279. [CrossRef]

Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int.].
Comput. Vis. 2010, 88, 303-338. [CrossRef]

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int.]. Comput. Vis. 2015, 115, 211-252. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2018.2858826
https://github.com/AlexeyAB/darknet/
https://github.com/AlexeyAB/darknet/
http://dx.doi.org/10.1109/TPDS.2011.311
http://dx.doi.org/10.1109/LCA.2020.2979965
http://dx.doi.org/10.1109/MM.2021.3065369
http://dx.doi.org/10.1109/TETC.2021.3050989
http://dx.doi.org/10.1109/VLSI-DAT49148.2020.9196319
http://dx.doi.org/10.1109/MM.2021.3061394
http://dx.doi.org/10.21227/x8fr-b747
https://github.com/yuto3o/yolox/
https://github.com/fchollet/keras
http://dx.doi.org/10.3390/electronics10030279
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1007/s11263-015-0816-y

	Introduction
	Background
	Convolutional Neural Network YOLOv4-Tiny
	Approximate Multipliers

	An Approximate General Matrix Multiply Unit
	The Hardware Implementation
	Synthesis Results

	Honeybee Detection
	YOLOv4-Tiny Inference with the GEMM Unit
	A Convolutional Layer
	Computation with the AGEMM Unit

	Honeybee Dataset
	Experimental Setup
	Object Detection Results
	Discussion

	Conclusions
	References

