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Automatic classification of spinal osteosarcoma and giant cell tumor of 
bone using optimized DenseNet 
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H I G H L I G H T S  

• Development of a powerful Deep Learning model (DenseNet) for automatically classifying spinal osteosarcoma and giant cell tumors in medical images. 
• Integration of a self-attention mechanism and multi-scale feature map extraction to enhance feature extraction capabilities. 
• Use of Grad-CAM for improved visualization of tumor regions during predictions. 
• Significant support for orthopedic physicians in accurate diagnostic classification, aiding in treatment and care plan development. 
• Acknowledges the need for a larger dataset to improve model performance and its applicability in diverse clinical settings.  
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A B S T R A C T   

Objective: This study aims to explore an optimized deep-learning model for automatically classifying spinal os-
teosarcoma and giant cell tumors. In particular, it aims to provide a reliable method for distinguishing between 
these challenging diagnoses in medical imaging. 
Methods: This research employs an optimized DenseNet model with a self-attention mechanism to enhance 
feature extraction capabilities and reduce misclassification in differentiating spinal osteosarcoma and giant cell 
tumors. The model utilizes multi-scale feature map extraction for improved classification accuracy. The paper 
delves into the practical use of Gradient-weighted Class Activation Mapping (Grad-CAM) for enhancing medical 
image classification, specifically focusing on its application in diagnosing spinal osteosarcoma and giant cell 
tumors. The results demonstrate that the implementation of Grad-CAM visualization techniques has improved 
the performance of the deep learning model, resulting in an overall accuracy of 85.61%. Visualizations of images 
for these medical conditions using Grad-CAM, with corresponding class activation maps that indicate the tumor 
regions where the model focuses during predictions. 
Results: The model achieves an overall accuracy of 80% or higher, with sensitivity exceeding 80% and specificity 
surpassing 80%. The average area under the curve AUC for spinal osteosarcoma and giant cell tumors is 0.814 
and 0.882, respectively. The model significantly supports orthopedics physicians in developing treatment and 
care plans. 
Conclusion: The DenseNet-based automatic classification model accurately distinguishes spinal osteosarcoma 
from giant cell tumors. This study contributes to medical image analysis, providing a valuable tool for clinicians 
in accurate diagnostic classification. Future efforts will focus on expanding the dataset and refining the algorithm 
to enhance the model’s applicability in diverse clinical settings.   

1. Introduction 

Both spinal tumors and giant cell tumors can occur in the vertebral 
column, presenting similar clinical symptoms and imaging features such 
as lytic bone destruction, heterogeneous signal densities within the 

lesions, and the presence of cystic areas. If there are typical imaging 
characteristics, differentiation between the two can be relatively 
straightforward based on factors like age, lesion location, and charac-
teristic imaging findings [1]. However, when the presentation is atyp-
ical, especially in the cervical and sacral vertebrae, particularly in the 
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skull base and sacrum, these cases often lack the typical imaging fea-
tures, making the differential diagnosis more challenging [2]. Research 
has shown a high misdiagnosis rate for spinal giant cell tumors, with 
common misdiagnoses as spinal tumors. In this study, an optimized 
DenseNet model is employed to classify spinal osteosarcoma and giant 
cell tumor images, with the primary goal of assessing its potential value 
in differentiating between these two conditions. The goal is to provide a 
reliable method for distinguishing spinal and giant cell tumors that are 
difficult to differentiate with conventional imaging techniques. 

In recent years, radiology has witnessed a profound transformation 
driven by deep neural networks’ emergence and rapid development. 
These networks have revolutionized the field by significantly enhancing 
feature extraction capabilities from medical images. Deep neural net-
works excel in detecting and interpreting intricate patterns and subtle 
details within images, making them invaluable tools for accurate diag-
nosis and treatment planning. The importance of feature extraction in 
medical image analysis cannot be overstated, as it forms the foundation 
for identifying abnormalities, diseases, and other medical conditions. 
The use of deep neural networks in radiology has ushered in a new era of 
precision and efficiency, enabling radiologists to provide more accurate 
assessments and better patient care. Convolutional Neural Networks 
(CNN) have garnered significant attention in histopathology image 
analysis due to their exceptional performance and stability in large-scale 
image processing tasks. CNNs are specifically designed for image anal-
ysis and have a natural ability to learn hierarchical features from images. 
In histopathology, where examining cellular structures and tissue ab-
normalities is crucial, CNNs shine by automatically extracting relevant 
features and patterns. Their adaptability to various scales and com-
plexities of histopathological images and robust performance make 
them a preferred choice for accurate image analysis. Their application in 
histopathology has contributed to improved disease diagnosis, prog-
nosis, and treatment planning. Song et al. [3] used the pre-trained VGG- 
VD model on ImageNet to extract local features from images and rep-
resented these features using Fisher Vector (FV) encoding. Murthy et al. 
[4] injected pre-extracted VGG features into the intermediate layers of a 
semi-supervised CNN to focus the CNN on the central region of images. 
Li et al. [5] used an improved CNN to segment tumors, replacing con-
ventional radiological methods for calculating image feature segmen-
tation, resulting in high-quality MRI features encoded as FV vectors. Lao 
et al. [6] first segmented medical images and then, using transfer 
learning, employed pre-trained CNNs to extract geometric, intensity, 
texture, and other deep features from the images. 

The “vanishing gradients” problem is a critical challenge that 
emerges as deep neural networks increase in depth during training. This 
problem occurs when the gradients used for training deep networks 
diminish significantly as they propagate backward through the net-
work’s layers. As networks deepen, the gradients that signal how much 
each neuron’s weight should be adjusted in response to training data 
tend to become very small. This leads to slow or stalled training, making 
it challenging to optimize deep networks effectively. The “vanishing 
gradients” issue can hinder the training of deep neural networks and 
affect their performance. Techniques like skip connections, batch 
normalization, and proper weight initialization have been introduced to 
address this challenge, allowing deep networks to be trained more 
efficiently and effectively. ResNet, a groundbreaking architecture, 
effectively mitigates this issue by introducing skip connections. These 
connections enable signals to bypass specific layers, ensuring that gra-
dients do not vanish during training. This innovation has been instru-
mental in enabling the training of intense networks, which has further 
improved their performance. Nevertheless, ResNet has many parame-
ters, as each layer has its weights, and research indicates that the 
contribution of many layers is minimal [7,8]. 

To enhance feature extraction capabilities and reduce the likelihood 
of misclassifying tumors, the model designed in this paper is based on 
DenseNet, as proposed by Huang et al. [9]. DenseNet connects all layers 
directly, with each layer receiving additional input from the preceding 

layers, allowing direct access to gradients from the loss function and the 
original input signal, thereby mitigating gradient vanishing and 
strengthening feature propagation. Furthermore, DenseNet’s approach 
maintains constant feature maps in its layers. Notably, while narrow 
DenseNet layers only contribute a fraction of the network’s overall 
knowledge, most feature maps still need to be made public, thus pro-
moting feature reusability and minimizing network parameters. 

2. Material and methods 

2.1. DenseNet 

A Dense Convolutional Network is composed of multiple dense 
blocks, and each dense block contains multiple convolutional layers. The 
input to each convolutional layer is formed by concatenating the outputs 
of all previous convolutional layers with the original input, as follows: 

xl = Hl([x0, x1,⋯, xi− 1] ) (1) 

Each dense block has a structure, as shown in Fig. 1. Each layer is 
composed of BN-ReLU-Conv (1 × 1) and BN-ReLU-Conv (3 × 3), where a 
combination of batch normalization [10] and rectified linear units [11] 
precedes each convolutional layer. The 1 × 1 convolutional layer is a 
bottleneck layer to reduce the number of input feature maps, improving 
computational efficiency. Within the architecture of deep neural net-
works, the 3 × 3 convolutional layer plays a vital role in maintaining the 
size of feature maps within a dense block. It employs one-pixel zero- 

Fig. 1. Dense block structure. This structure comprises every layer consisting of 
BN-ReLU-Conv (1 × 1) and BN-ReLU-Conv (3 × 3), with batch normalization 
and rectified linear units applied before each convolutional layer. 
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padding to ensure that the feature map size remains constant as infor-
mation passes through the network’s layers. 

Additionally, each dense block consistently produces a fixed number 
of k feature maps. This design not only aids in preserving critical spatial 
information but also provides a mechanism for controlling the 
complexity of the network, making it more manageable and interpret-
able. The DenseNet’s dense connections are similar to ResNet’s residual 
connections, but with a difference: the input to the current layer is not 
simply added to the input of the previous layer; instead, feature maps are 
concatenated to facilitate the flow of information between layers and 
promote feature reuse. 

2.2. Multi-Scale feature map extraction 

The concept of extracting multi-scale feature maps in this paper is 
inspired by the idea of scale space, initially proposed by Iijima [10] in 
1962. The approach described involves designing multiple continuously 
varying scale parameters to generate a sequence of information repre-
sentations at different scales. This process is fundamental in image 
analysis, where images can have varying levels of detail and resolution. 
By adapting to these changes in scale, the model can effectively capture 
features and details at different levels of granularity. Using continuously 
varying scale parameters ensures that the model is not limited to specific 
fixed scales but can adapt to a wide range of image resolutions. Subse-
quently, the primary outlines extracted from this sequence serve as a 
feature vector for various image-processing tasks, such as feature 
extraction and edge detection. The primary outlines represent a 
condensed yet informative summary of the image’s essential features, 
regardless of its resolution. This feature vector effectively encapsulates 
the salient information necessary for these tasks, enabling the model to 
consistently perform tasks like edge detection or feature extraction 
across images with varying resolutions. This approach is precious in 
scenarios where images can have different levels of detail or are ac-
quired using various devices with varying resolutions. The model can 
maintain its effectiveness in image analysis tasks by adapting to the scale 
variations and using the primary outlines as a feature vector. It is a 
versatile and robust technique for real-world computer vision and image 
processing applications. 

In literature, a multi-scale convolutional network (MCNN) was 
introduced [11], which alternately stacked layers to capture nodule 
heterogeneity and designed to extract discriminative features. It used 
multi-scale nodule patches to quantify nodule features thoroughly. In 
another study [12], the Double-Tree Complex Wavelet Transform 
(DTCWT) was employed to extract information at different spatial scales 
from structural MRI data, enabling the differentiation of whether cases 
had multiple sclerosis based on multi-scale information. In neuro-
imaging for the diagnosis of neurological diseases, multi-scale feature 
extraction has gained substantial traction in recent research. Re-
searchers have found that leveraging features at various scales within 
the brain’s neural network can lead to more comprehensive and accu-
rate disease diagnosis. This approach has been adopted widely because it 
allows for detecting subtle and complex patterns across different spatial 
scales in neuroimaging data. In SMSDNet, multi-scale feature extraction 
is applied. This paper employs down-sampling by adding average 
pooling layers between the four dense blocks to transform the scale of 
feature maps. The feature maps output by the first two dense blocks in 
the network have a larger size and a smaller receptive field, containing 
coarse-grained image information. After multiple pooling operations, 
the feature maps produced by the latter two dense blocks contain rich, 
detailed information. The paper under discussion presents a novel 
approach to feature fusion, specifically for deep learning applications. 
To achieve this, it performs cross-layer fusion of feature maps. This 
technique involves applying convolution operations to feature maps 
with larger scales in the upper layers. The purpose is to adjust their size 
to match the scale of the feature maps in the lower layers. Subsequently, 
these adjusted feature maps are added together. This approach improves 

the network’s ability to capture multi-scale information, enhancing its 
performance in image classification and disease diagnosis tasks. The 
utilization of cross-layer feature fusion has demonstrated significant 
improvements in the effectiveness of deep learning models in handling 
complex medical data. Combining feature maps at different scales 
effectively enhances feature extraction and classification accuracy. 

In SMSDNet, multi-scale feature extraction is implemented. The 
paper employs down-sampling as a critical technique to effectively 
manage the scale of feature maps. It incorporates average pooling layers 
between the four dense blocks. The role of these average pooling layers 
is to reduce the spatial dimensions of the feature maps. This down- 
sampling operation serves several purposes. First, it helps control the 
computational complexity of the network by reducing the number of 
parameters and computations in subsequent layers. Second, it enhances 
the network’s ability to capture higher-level abstract features by 
aggregating information from more extensive regions of the input data. 
Third, it allows the network to recognize and focus on essential features 
while discarding less relevant or redundant information. This strategic 
feature map scaling through down-sampling is crucial for optimizing 
deep learning models for image analysis and classification tasks. The 
feature maps produced by the first two dense blocks in the network have 
a larger size and a smaller receptive field, containing coarse-grained 
image information. On the other hand, the feature maps generated by 
the latter two dense blocks contain rich, detailed information after un-
dergoing multiple pooling operations. 

The paper introduces a novel technique of cross-layer fusion of 
feature maps, which is instrumental in enhancing feature extraction and 
improving classification accuracy. This process involves applying 
convolution operations to feature maps with larger scales located in the 
upper layers of the network. These operations adjust the feature maps’ 
size to match the feature maps’ scale in the lower layers. Once the 
feature maps are suitably aligned in scale, they are added together. This 
technique allows the network to effectively capture information across 
different scales and resolutions, promoting the integration of fine- 
grained details with high-level context. The fusion of feature maps 
from various layers enhances the model’s ability to recognize intricate 
patterns and make more accurate classifications by combining infor-
mation from different levels of the network, providing a multi-scale view 
of the input data. This multi-scale approach enables the model to cap-
ture intricate patterns and details at various levels of abstraction, 
improving its performance in tasks that require recognizing complex 
patterns and making more accurate classifications. This cross-layer 
feature fusion is especially advantageous in tasks that require the 
extraction of multi-scale information, such as image classification and 
medical diagnosis. 

2.3. Self-attention 

The self-attention mechanism has been widely employed in RNN and 
long short-term memory (LSTM) models to handle decision tasks with 
sequential or causal relationships [13–15]. Building on this foundation, 
studies [16] and [17] introduced attention mechanisms into the trans-
former framework (encoder-decoder) to learn text representations by 
considering the relationships between the current word and its context. 
Transformers, in comparison to RNNs, offer distinct advantages in 
capturing long-term dependencies. The primary advantage of trans-
formers over RNNs in handling long-term dependencies is their ability to 
consider and weigh different parts of the input sequence when making 
predictions. Unlike RNNs, which process data sequentially and may 
struggle with capturing long-range dependencies, transformers employ 
self-attention mechanisms that simultaneously analyze and assign rele-
vance to various segments of the input sequence. This parallel process-
ing capability enhances their efficiency and makes them more effective 
in various natural language processing and sequence-to-sequence tasks. 
Unlike RNNs, which sequentially process data and may struggle with 
long-range dependencies, transformers are highly parallelizable and can 
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efficiently capture dependencies between distant tokens in the input 
sequence. This parallel processing capability makes them more effective 
in various natural language processing and sequence-to-sequence tasks. 

Additionally, top-down attention mechanisms are crucial in Deep 
Boltzmann Machines (DBM) and image classification. Top-down atten-
tion mechanisms are crucial in Deep Boltzmann Machines and image 
classification. Deep Boltzmann Machines integrates these mechanisms 
into the training phase to guide the reconstruction process. By focusing 
on the high-level features and gradually refining the generated samples, 
Deep Boltzmann Machines can better capture the underlying structure of 
the data and learn more informative representations. Similarly, in image 
classification tasks, top-down attention mechanisms are widely used to 
direct the network’s processing towards the most relevant parts of an 
image. This selective attention allows deep learning models to enhance 
their performance by prioritizing important features and disregarding 
noise or distractions, ultimately leading to more accurate and efficient 
image classification. This selective attention allows deep learning 
models to enhance their performance by prioritizing important features 
and disregarding noise or distractions, ultimately leading to more ac-
curate and efficient image classification. 

Similar to the approach in this paper, Wang et al. [18] designed a soft 
attention structure that incorporates both bottom-up and top-down 
feedforward structures as part of the attention module and adds soft 
weights to the features. Yuan et al. [19] proposed a self-attention deep 
learning framework called HybridAtt, which combines channel-aware 
perception attention (wise attention) and time attention. The channel- 
aware perception attention layer is used to infer the importance of 
Polysomnography (PSG) channels, while the time attention layer cap-
tures dynamic correlations between different timestamps. 

In order to accommodate the nature of DenseNet’s dense connec-
tions, SMSDNet has some differences in its self-attention mechanism: 

(1) SMSDNet introduces a distinct approach to the self-attention 
mechanism compared to traditional DenseNet models. In SMSDNet, 
each dense block independently incorporates the self-attention mecha-
nism to enhance the feature extraction process within the block itself. 
This self-attention mechanism enables the network to focus on relevant 
features and relationships between different parts of the input data, 
promoting more efficient and context-aware feature extraction. This is 
particularly beneficial in dense blocks, as it helps capture long-range 
dependencies and complex patterns within the feature maps. SMSDNet 
does not introduce a temporal attention mechanism, as it operates 
sequentially within each block, without temporal correlations between 
blocks. This design decision ensures efficiency and avoids introducing 
unnecessary complexity. Self-attention mechanisms allow the network 
to focus on relevant features and relationships between different parts of 
the input data, promoting more efficient and context-aware feature 
extraction. This is particularly beneficial in dense blocks, as it helps 
capture long-range dependencies and complex patterns within the 
feature maps. However, a temporal attention mechanism, which would 
capture dependencies between dense blocks across time, is not intro-
duced because DenseNet’s feature extraction operates sequentially 
within each block. Each block is designed to process and refine the 
features independently, and there are no temporal correlations between 
the blocks. Therefore, introducing a temporal attention mechanism 
would be unnecessary and could introduce complexity without signifi-
cant benefits. 

(2) For each layer, pixel matrices W and index matrices Q are 
computed, and contribution weights are assigned to each output 
through convolution, matrix multiplication, and global pooling. 

(3) previous research [20,21] set weight thresholds to reduce 
computational complexity and model complexity, and layers with 
weights below the threshold were not used as inputs to later layers. 
However, in this work, every input is concatenated based on weight 
coefficients to maintain a fixed convolutional structure within the dense 
block. All previous feature maps are retained and combined with the 
current input to ensure no information is omitted. The weight 

coefficients determine the contribution of each feature map to the 
concatenated input, allowing the network to balance the importance of 
various features. This approach is crucial for preserving the network’s 
ability to effectively capture multi-scale information and handle diverse 
features. Omitting layers or excluding inputs could lead to information 
loss and hinder the model’s capacity to recognize intricate patterns. 

2.4. A multi-scale DenseNet classification model with a self-attention 
mechanism 

The SMSD-Net, a multi-scale DenseNet classification model, is 
enhanced with a self-attention mechanism. SMSD-Net effectively le-
verages multi-scale feature maps by incorporating a self-attention 
mechanism. This mechanism facilitates the capture of long-range de-
pendencies and contextual information across the multi-scale feature 
maps. In the context of fusion images, it plays a critical role in enhancing 
the recovery of low-level features such as color and shape. By attending 
to relevant parts of the feature maps at different scales and considering 
their interactions, the self-attention mechanism assists the model in 
identifying and recovering fine-grained details and subtle characteristics 
in the fusion images. This comprehensive approach ensures that even 
low-level features are appropriately considered, ultimately improving 
classification task accuracy. In the context of fusion images, it plays a 
critical role in enhancing the recovery of low-level features such as color 
and shape. By attending to relevant parts of the feature maps at different 
scales and considering their interactions, the self-attention mechanism 
helps the model identify and recover fine-grained details and subtle 
characteristics in the fusion images. This, in turn, leads to improved 
accuracy in classification tasks by ensuring that even low-level features 
are appropriately considered. The SMSD-Net is employed for feature 
extraction and classification of spinal osteosarcoma and giant cell tu-
mors of bone in medical images. The specific architecture of this model 
is illustrated in Fig. 2. 

The model is divided into four modules: (1) Color space conversion 
module. RGB color model is suitable for display and other luminous 
body displays; three primary colors of different brightness mix all color 
information. The HSV is a color model used to measure users’ percep-
tions. H channel represents color, S represents depth, and V represents 
light and shade. The HSV model plays a more significant role in image 
segmentation than the RGB model. In the RGB model, the image dis-
played through the three channels is brighter than the actual image, 
while in the HSV, the brightness can be represented by only one light 
and dark component, V. In addition, HSV can directly represent the 
difference in tone and color depth between images. Convert RGB to HSV 
by the following formula: 

Rʹ =
R

255  

Gʹ =
G

255  

Bʹ =
B

255  

Cmax = max(Rʹ,Gʹ,Bʹ)

Cmin = min(Rʹ,Gʹ,Bʹ)

Δ = Cmax − Cmax (2) 

When Δ = 0, H = 0. 
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⎧
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Δ
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(4)  

V = Cmax (5) 

(2) Dense convolutional network module with self-attention mech-
anism: Taking into account the nature of DenseNet’s dense connections, 
where the input to each layer is the concatenation of all the previous 
layer’s inputs, and with five dense layers designed as feature extractors 
within each dense block, a self-attention mechanism is applied to allo-
cate weights to the various components of each layer’s input, deter-
mining their respective contributions. This allows for the determination 
of the contribution ratio of each component. 

(3) Multi-Scale Feature Map Information Fusion Module: The initial 
input image size is 256 × 256 × 3; after each dense network block, the 
image dimensions remain unchanged. Research in [22] and [23] sug-
gests leveraging multi-scale information can enhance feature extraction. 
Following each dense network block, a transformation layer is intro-
duced, consisting of a 1 × 1 Conv layer and a max-pooling layer. The 
max-pooling layer reduces the width and height of the dense block’s 
output images to half their original size while keeping the number of 
channels the same. In SMSDNet, four dense network blocks correspond 
to four different feature maps with varying widths, heights, and 16 
channels: Fl1, Fl2, Fl3, and Fl4. The feature maps Fl1 and Fl2, output by the 
first two dense blocks, have larger dimensions and a wider receptive 
field containing coarse-grained image information. Fl3 and Fl4, output by 
the latter two blocks after multiple max-pooling layers, have image di-
mensions of 32 × 32 and 16 × 16, and due to multiple feature extraction 
layers, they contain more detailed information. Given these facts, this 
paper first performs cross-layer fusion on the four output feature maps 
and then combines the results to obtain feature maps that include multi- 
scale information. 

(4) Post-Processing Module: The fusion image undergoes four max- 
pooling layers, causing the loss of a significant amount of image 
detail. To recover low-level features of the fusion image, such as color 
and shape features, the post-processing module takes the multi-scale 
information feature maps and the feature map output by the final 

dense block as input. It uses upsampling and the same convolution op-
erations to restore some of the lost details. Finally, the output feature 
map is passed through two neurons in a fully connected layer and a 
softmax classifier to obtain the probability of the image belonging to a 
tumor. 

2.5. Dense block with self-attention mechanism 

In SMSDNet, each dense block comprises five dense layers, and the 
inputs to each dense layer consist of the concatenation of all previous 
inputs. A self-attention mechanism is introduced to account for the re-
lationships between these concatenated connections. This self-attention 
mechanism enables the network to dynamically weigh and prioritize 
different parts of the concatenated input feature maps. It considers the 
dependencies and interactions between the features at each layer, 
allowing the model to focus on the most relevant information. This, in 
turn, enhances the network’s ability to capture multi-scale and contex-
tually rich information, which is crucial for tasks like image classifica-
tion, where features at different levels of abstraction are essential for 
accurate predictions. The core of this mechanism is to allocate weights 
to each output of the previous layer before concatenation. The dense 
block with the self-attention mechanism is depicted in Fig. 3. 

The self-attention mechanism is divided into the following three 
steps: 

(1) For each input corresponding to a feature map Fl (l = 0,1, ...,4) 
with a size n× n, two matrices are calculated for each layer: the 
fundamental matrix Wl and the query matrix Ql. Initially, Fl = Wl = Ql. 
When calculating the input for the l-dense layer, the query matrix Ql of 
the l − 1 layer is subjected to matrix multiplication with the vital matrix 
Wl of all previous layers (including itself), resulting in a weight matrix 
Kl. 

(2) Since the size of each weight matrix Kl is n× n, a global pooling 
layer is applied to Kl for further refinement of the weight coefficients. 
Each Kl shares a pooling matrix pn×n, which computes the weighted sum 
of each pixel in Kl. After the global pooling operation, each layer obtains 
a numerical representation reflecting the weight. Subsequently, softmax 
is used to constrain these values within the range [0, 1], resulting in 
weight coefficients Wl. 

(3) Research in [24] and [25], as well as the current study, involves 
calculating weight proportions and setting weight thresholds. When the 
weight is below this threshold, it is not considered part of the input to 
reduce the number of parameters. However, the methods mentioned 
above have drawbacks. Each layer’s input comprises partial outputs 
from the previous layer, not all outputs, making the model non-fixed. As 
a result, the number of convolutional kernel channels used in each 

Fig. 2. SMSDNet module architecture. A multi-scale DenseNet classification model with a self-attention mechanism is utilized for feature extraction and classification 
of spinal osteosarcoma and giant cell tumors in medical images. 
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layer’s dense convolution can vary significantly. Additionally, the fea-
tures the lower weight layers contribute will be minimal even after 
weight allocation. Hence, the lower weight outputs from previous layers 
are not removed. The formula for calculating the input to the l dense 
layer is as follows: 

Il =
∑l− 1

i=0
wi*Wi (6) 

Here, the original input is considered as the 0-th layer. 

2.6. General information 

A retrospective study was conducted at Anxi County Traditional 
Chinese Medicine Hospital in Quanzhou City, Fujian Province. The study 
included 300 patients diagnosed with spinal osteosarcoma and giant cell 
tumors between January 2019 and December 2020. Among them were 
252 male and 48 female patients, with ages ranging from 41 to 90 years 
and an average age of 61 ± 19 years. After excluding 51 patients with 
poor CT image quality, 249 patients were included in the study. 

The patients were diagnosed and classified by a senior attending 
physician with extensive experience based on the patient’s clinical in-
formation. The TCM classifications for the patients were as follows: 168 
cases with spinal osteosarcoma and 81 cases with giant cell tumors. 

Out of the 249 patients, they were randomly divided into training 
and testing groups in a 7:3 ratio. 

2.7. Instruments 

A 64-slice Philips CT scanner was used for helical volume scanning. 
The scan parameters were as follows: 120 kV, automatic mA, 1 mm slice 
thickness, 1.0 pitch, collimation width of 64 × 0.625 mm, and a 1 mm 
slice interval. Patients were positioned supine with both arms raised 
above their heads. The scanning range extended from the thoracic inlet 
to the diaphragmatic surface at the lower border of the lungs. 

3. Results 

Due to the clear visibility of the images, as shown in Fig. 4, radiol-
ogists can use color visualization with Grad-CAM to pinpoint key diag-
nostic regions within medical images, aiding their decision-making. This 
method enhances interpretability, reduces oversight, and facilitates 
communication among medical professionals, making diagnoses more 
efficient and confident. By implementing the Grad-CAM technique, the 

Fig. 3. Self-attention dense block. This mechanism’s heart is the distribution of 
weights to each output from the preceding layer before concatenation. 

Fig. 4. Visualization of spinal osteosarcoma and giant cell tumor images using Grad-CAM on the trained model. (a) Original image showing spinal osteosarcoma, (b) 
Original image showing spinal osteosarcoma, (c) Algorithm activation map showing giant cell tumor, (d) Class activation map showing giant cell tumor, (e) Showing 
Raw image of spinal osteosarcoma, (f) algorithm activation map showing giant cell tumor. [Note: High-intensity visuals (blue and green) reflect the regions of interest 
that our model focuses on when making predictions]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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proposed model, based on the classification of the spinal osteosarcoma 
image group, shows an accuracy of 0.821. As for the giant cell tumor 
image group classification model, the model shows an accuracy of 
0.810. These results provide a better understanding of the predictions 
made by the deep learning model. 

The ROC curves for the classification models of the two medical 
diagnostic image groups are shown in Fig. 5. The performance of the 
image group classification models in the test group is presented in 
Table 1. For the spinal osteosarcoma image group classification model, 
the ROC curve shows an AUC of 0.814. As for the giant cell tumor image 
group classification model, the ROC curve indicates an AUC of 0.882. 

4. Analysis and discussion 

Spinal osteosarcoma is a rare bone tumor that originates from re-
sidual embryonic remnants of the spinal cord. It accounts for 16.7 % of 
primary spinal tumors. Advances in diagnostics, research, and the 
accumulation of diverse case data have shifted the understanding of 
spinal osteosarcoma. While it was previously thought to occur primarily 
in vertebral ends, increasing reports now acknowledge its presence in 
mobile spinal segments, broadening our knowledge of the condition. In a 
study by Boriani et al. in 2006 [26], among 52 cases of mobile spine 
osteosarcomas, 29 % were in the cervical spine, 13 % in the thoracic 
spine, and 58 % in the lumbar spine. 

Giant cell tumors of the spine are relatively rare and account for 2.5 
% to 5.6 % of all giant cell tumors. They are less common than giant cell 
tumors in long bones. Diagnosing giant cell tumors in the vertebral 
column can be challenging because these tumors often lack the typical 
radiological features seen in giant cell tumors in long bones. In long 
bones, giant cell tumors often present with more distinctive radiological 
characteristics, such as well-defined borders and a characteristic “soap- 
bubble” appearance. In contrast, when they occur in the vertebral col-
umn, these tumors may not exhibit these classic features, making their 
identification and differentiation from other spinal conditions more 
difficult. This diagnostic challenge underscores the importance of 

relying on clinical symptoms and advanced imaging techniques to di-
agnose and distinguish these tumors in the vertebral column accurately. 
This complicates the radiological diagnosis, leading to potential misdi-
agnosis or missed diagnoses [2]. 

In terms of clinical presentation, as the tumor grows, it can lead to 
various symptoms, including pain, sensory disturbances, limb weakness, 
and even paralysis, resulting from compression of nerve roots or the 
spinal cord. Clinical symptoms of spinal osteosarcoma and giant cell 
tumors may not significantly differ. Both conditions can manifest with 
symptoms such as localized pain, neurological deficits, and structural 
changes in the spine. This similarity in clinical presentation can create 
challenges in differentiating between the two conditions based solely on 
symptoms. Accurate diagnosis often necessitates advanced imaging 
techniques, including MRI and CT, to assess the nature and location of 
the lesions. Moreover, due to their overlapping clinical symptoms, a 
histological examination of tissue samples is frequently required for 
definitive differentiation, highlighting the importance of comprehensive 
diagnostic approaches. Accurate preoperative imaging diagnosis is 
crucial for selecting appropriate clinical treatment methods and 
assessing prognosis [27]. 

This study employed an optimized DenseNet-based automatic clas-
sification algorithm. The results demonstrate that this classification 
model performs well in distinguishing between spinal osteosarcoma and 
giant cell tumors of bone. The model achieved an accuracy of over 80 %, 
sensitivity more significant than 80 %, specificity exceeding 80 %, and 
an average AUC of 0.914 and 0.882, respectively. This indicates that the 
model performs excellently and can provide a quantitative reference for 
physicians in developing treatment and care plans. Additionally, it re-
duces physicians’ workload and enhances diagnostic classification 
accuracy. 

The study acknowledges several vital limitations. One of the primary 
limitations stems from the relatively small sample size used in the 
research. This limited sample size impacted the breadth of the model’s 
classifications and may have led to overfitting, making it challenging for 
the model to generalize to broader scenarios. To address this limitation, 
the manuscript suggests the need for future research efforts to expand 
the dataset significantly. By collecting a more diverse and extensive 
dataset, the model’s performance will likely improve in accuracy and 
generalizability. 

Additionally, the study recognizes the importance of refining the 
algorithm to cover a broader range of classification scenarios, enhancing 
the model’s applicability in natural clinical settings where a more 
prominent and representative dataset is essential for robust and reliable 
diagnostic support. The small sample size restricts the model’s gener-
alization ability and may lead to overfitting. The study suggests 
expanding the sample size in future research efforts to address this 
limitation. By collecting a more diverse and extensive dataset, the 
model’s performance will likely improve in accuracy and generaliz-
ability. Additionally, the study acknowledges the need for algorithm 
updates, ensuring that the model can cover a broader range of classifi-
cation scenarios. This, in turn, will enhance the model’s applicability in 
natural clinical settings, where a more prominent and more represen-
tative dataset is essential for robust and reliable diagnostic support. 

Fig. 5. ROC Curves of Image Group Classification Models for Spinal Osteo-
sarcoma and Giant Cell Tumor. Note: (a) represents the ROC curve for the 
spinal osteosarcoma training group, (b) for the spinal osteosarcoma testing 
group, (c) for the giant cell tumor training group, and (d) for the giant cell 
tumor testing group. 

Table 1 
Performance of automatic classification models for two easily confused medical 
conditions.  

Type of tumors 
being classified 
by model 

AUC 95 %CI Accuracy Sensitivity Specificity 

Spinal 
osteosarcoma  

0.814 0.842 
~ 
0.903  

0.821  0.870  0.824 

Giant cell tumor of 
bone  

0.882 0.863 
~ 
0.916  

0.810  0.869  0.837  
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The Grad-CAM visualization at the patch level demonstrates that the 
deep learning model can effectively overcome the interference caused 
by morphological heterogeneity within the same category of bone tu-
mors. It accurately distinguishes bone tumors of different malignancies 
based on diagnostic morphological features. We hypothesize that the 
model accomplishes this by extracting and learning abstract patholog-
ical morphological features of undifferentiated or unclassified nature 
within benign and malignant bone tumor tissues, enabling correct bi-
nary classification at the patch level. However, more experiments are 
required to verify this hypothesis, which can be implemented in the 
future. 

5. Conclusion 

In conclusion, this study has presented a robust automatic classifi-
cation model based on an optimized DenseNet algorithm for the dif-
ferentiation of spinal osteosarcoma and giant cell tumors of the bone. 
The results indicate that the model achieved remarkable performance 
with an accuracy of over 80 %, sensitivity exceeding 80 %, and speci-
ficity surpassing 80 %. Moreover, it attained an average AUC of 0.814 
for spinal osteosarcoma and 0.882 for giant cell tumors, demonstrating 
its effectiveness in distinguishing these challenging diagnoses. By uti-
lizing this model, physicians can gain quantitative reference information 
to support their clinical decision-making, ultimately enhancing the ac-
curacy of diagnostic classification. 

While the study’s findings are promising, it is essential to acknowl-
edge that the limited sample size impacted the breadth of the model’s 
classifications. Future efforts will focus on expanding the dataset and 
refining the algorithm to address this limitation. These steps will 
enhance the model’s overall performance and ensure its applicability in 
diverse clinical settings. 

This research contributes to medical image analysis, providing a 
valuable tool for clinicians in accurately differentiating spinal osteo-
sarcoma and giant cell tumors of the bone. 
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