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Abstract

Background: Terminology integration at the scale of the UMLS Metathesaurus (i.e., over 

200 source vocabularies) remains challenging despite recent advances in ontology alignment 

techniques based on neural networks.

Objectives: To improve the performance of the neural network architecture we developed for 

predicting synonymy between terms in the UMLS Metathesaurus, specifically through the addition 

of an attention layer.

Methods: We modify our original Siamese neural network architecture with Long-Short Term 

Memory (LSTM) and create two variants by (1) adding an attention layer on top of the existing 

LSTM, and (2) replacing the existing LSTM layer by an attention layer.

Results: Adding an attention layer to the LSTM layer resulted in increasing precision to 92.38% 

(+3.63%) and F1 score to 91,74% (+1.13%), with limited impact on recall at 91.12% (−1.42%).

Conclusions: Although limited, this increase in precision substantially reduces the false positive 

rate and minimizes the need for manual curation.
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Introduction

The first version of the Unified Medical language System (UMLS) Metathesaurus was 

released 30 years ago [3]. Over the past 30 years, the size and complexity of the UMLS has 

grown tremendously, from integrating seven source vocabularies (grouping 208,000 terms 

into 64,000 Metathesaurus concepts) to a very large graph (13.7M terms from 218 sources 

grouped into 4.4 million concepts). Over the past three decades, this large-scale terminology 

integration resource has become ubiquitous in biomedical research projects and applications, 
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where it supports not only crosswalks among standard terminologies, but also other tasks, 

such as natural language processing.

In contrast, the UMLS Metathesaurus development process has essentially remained 

unchanged over these three decades. Central to the Metathesaurus is the grouping of 

synonymous terms into a concept. Terms from source vocabularies are normalized [6] and 

lexically-similar terms become candidates for integration into the same concept. Lexically-

suggested grouping of terms are then be reviewed by human Metathesaurus editors. 

Additional curation support includes source synonymy (i.e., synonymy asserted between 

terms in a source vocabulary tends to be conserved in the Metathesaurus) and source 

semantics (terms that do not share a common semantics are prevented from being grouped 

into the same concept even if they are lexically similar). Despite this algorithmic support, the 

curation of the Metathesaurus remains challenging and extremely labor-intensive.

We recently developed a synonymy prediction model for the UMLS Metathesaurus based 

on neural networks and showed that it largely outperformed the algorithms currently used 

for supporting Metathesaurus curation [7]. More specifically, we achieved the following 

performance: precision = 0.8875, recall = 0.9254 and F1 score = 0.9061. At the scale of the 

Metathesaurus, the number of false positive synonymy predictions for this system remains 

very high and improving the performance of our model remains a priority.

In recent years, the use of attention mechanisms has improved the performance of neural 

network models in a variety of tasks, from natural language processing to computer vision 

[10].

The objective of this work is to improve the performance of the neural network architecture 

we developed for predicting synonymy between terms in the UMLS Metathesaurus. More 

specifically, we explore whether the addition of an attention layer to our original Siamese 

neural network architecture with BioWordVec embeddings and Long-Short Term Memory 

(LSTM) yields additional performance. More specifically, we assess which of the two 

following variants performs better: (1) adding an attention layer on top of the existing 

LSTM, or (2) replacing the existing LSTM layer by an attention layer.

The specific contributions of this work include (1) a simple modification to our existing 

neural network architecture with an additional attention layer on top of the LSTM layer 

that yields +3.63% in precision and +1.13% in F1 score, and (2) confirmation that attention 

improves performance for predicting synonymy between UMLS Metathesaurus terms.

Background

Related work

Previous work on synonymy prediction in the UMLS Metathesaurus—We 

recently formalized synonymy prediction in the Metathesaurus as a vocabulary alignment 

problem (UVA). We developed a neural network model for predicting synonymy between 

terms in the UMLS Metathesaurus [2]. This simple model solely leverages the lexical 

features of terms. Our neural network architecture consists of BioWordVec embeddings fed 

Nguyen and Bodenreider Page 2

Stud Health Technol Inform. Author manuscript; available in PMC 2022 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to Long Short-Term Memory (LSTM) neural network. Because our goal is to compare two 

terms, we adopted a Siamese architecture, in which the two terms are processed in parallel 

and the output vectors compared using a Manhattan distance metric.

Furthermore, we created different datasets with different degrees of lexical similarity among 

negative examples for training the neural networks and testing their generalization. Our 

experiments showed that the model trained with negative examples from different degrees 

of lexical similarity yielded the best performance for the UVA task. (See Datasets section 

below for details). The performance of this model was: accuracy = 0.9938, precision = 

0.8875, recall = 0.9254 and F1 score = 0.9061.

Attention mechanisms in neural network models

Attention mechanisms were first used in neuroscience [8] and have gained popularity in 

other fields, especially in natural language processing. Self-attention mechanisms relating 

different word positions of an input to compute its context representation have succeeded 

in a variety of tasks including reading comprehension, abstractive summarization, textual 

entailment and learning task-independent sentence representations [1; 2; 4; 5; 9; 10]. BERT 

[2] is a great example among many successful projects that use a self-attention mechanism 

with multi-heads in both pretraining and fine-tuning tasks. Although BioBERT [4], further 

pretraining of BERT on PubMed abstracts, has shown performance improvements on several 

biomedical NLP tasks, the pretraining cost is substantial – it required 16x Tesla V100 

GPUs running continuously for 23 days. Our preliminary work suggested that fine-tuning 

BERT or BioBERT for our UVA task will also be computational expensive in both the 

training and testing phases. Therefore, we are interested in evaluating a simpler attention 

mechanism that can be scalable for the UVA task. Compared to BERT and BERT-variants 

using self-attention mechanism with multi-heads, the dot-product attention mechanism is 

much faster and more space-efficient [1; 10]. As a result, we chose to implement and 

evaluate the dot-product attention mechanism for the UVA task in this paper.

Datasets

In our original work, we created multiple datasets with increasing levels of lexical 

similarity among negative pairs, because we hypothesized that it would be difficult to 

predict the absence of synonymy between lexically-similar terms. We showed that the 

best performing model was trained on the large dataset including the three variants in 

terms of lexical similarity (“ALL”). While the objective is to improve the performance 

with the proposed attention-based models, we also want to assess the generalization of 

our attention-based models on the three degrees of lexical similarity among negative 

examples (TOPN_SIM – high-level of lexical similarity, RAN_SIM – low level of lexical 

similarity and RAN_NOSIM – no lexical similarity). For training, we used the ALL dataset 

with 170,075,628 negative examples, and 22,324,834 positive examples. For testing the 

generalization of the models, we used the ALL dataset and the dataset variants, for which 

the numbers of positive and negative examples are shown in Table 1.
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Methods

Architecture

We implemented a simple attention layer [1] where the context vector is created by (1) 

taking the dot product of inputs and weights followed by the addition of bias, (2) applying a 

tanh function followed by a softmax layer, and (3) taking the dot product of softmax outputs 

and the hidden states. This attention layer is used to create two model architecture variants, 

V1 and V2, depicted in Figure 1, along with the original model, V0.

Using LSTM alone (V0)—This is the original model used in [7], which we use as a 

baseline in this investigation. In this model, the original LSTM layer that only outputs the 

last hidden state.

Using attention in addition to LSTM (V1)—In this architecture, we add an attention 

layer with the same number of hidden states as in the original LSTM layer in V0. Unlike the 

V0 variant, however, the LSTM layer in this variant outputs all the hidden states. The output 

from this LSTM layer is fed to the attention layer described above.

Using attention in replacement of LSTM (V2)—In this model variant, we replace 

the LSTM layer by the attention layer with the same number of hidden states. The context 

vector output is passed to the remaining layers of the architecture.

Experimental Setup

We conduct the following experiments for each model variant: (1) we train the models 

(V1 and V2) using the ALL dataset, (2) we test these trained models using the ALL 

generalization test dataset, and (3) we test these trained models using the TOPN_SIM, 

RAN_SIM, and RAN_NOSIM generalization tests.

All the experiments are deployed to the Biowulf High-Performance Cluster at the National 

Institute of Health. We use Tesla V100x GPU with 32 GB of GPU RAM and 220 GB of 

system RAM for each experiment.

Training parameters

We use 50 hidden states for both LSTM and attention layers. The remaining 

hyperparameters are the same as in our original model. (For details, see [7].) We train 

the models with 100 epochs with a batch size 8192 and report the results in Table 2. Each 

epoch takes 27 minutes for training.

Quantitative evaluation

We compute the usual metrics (accuracy, precision, recall and F1 score) for the two 

models we developed (i.e., using attention in addition to LSTM [V1] and using attention 

in replacement of LSTM [V2]) and compare these results to those obtained with our initial 

model that does not leverage attention (V0). Additionally, we assess the effect of the best 

performing model on the three generalization test datasets with various degrees of lexical 

similarity.
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Qualitative evaluation

In addition to comparing the performance of the models, we also assess their impact on the 

false positive rate (FPR). The false positive rate is important here given the predominance of 

negative cases in our main test dataset (ALL).

Results

Quantitative evaluation

The performance metrics for the two models (V1 - LSTM + Attenti on, and V2 - Attention 

alone) using the ALL generalization test dataset are shown in Table 2, along with the metrics 

for the baseline from prior work (V0 - LSTM alone).

Compared to the original architecture with LSTM alone (V0), the architecture with an 

additional attention layer on top of the LSTM layer (V1) yields better performance. It 

improves accuracy (+0.09%), precision (+3.63%), and F1 (+1.13%) while slightly reducing 

recall (−1.42%).

In contrast, the architecture with the LSTM layer replaced by the attention layer (V2) 

performs poorly on all the metrics.

Performance improvement is more markedly observed on the test dataset with the highest 

level of lexical similarity (TOP_SIM).

Qualitative evaluation

The false positive rate of the baseline model (V0) is 0.39% (654,699 / 167,454,653) vs. 

0.25% (419,487 / 167,454,653) with the best performing model (V1).

Discussion

Findings

In this experiment, we showed that adding an attention layer to the original LSTM neural 

network was beneficial in terms of precision (+3.63%) and overall performance (+1.13%), 

with minimal cost in terms of recall (−1.42%). This is interesting and encouraging, because 

this gain in performance can be attributed to the attention layer. This means that adding 

features to the model (e.g., adding contextual information for disambiguating homonyms) 

will likely increase performance beyond the gains attributable to the attention layer.

However, our experiments also show that using an attention mechanism instead of the LSTM 

neural network resulted in poor performance. Therefore, while the attention mechanism is 

an important component of a neural network architecture, where the attention mechanism is 

used matters a great deal. In our model, the addition of an attention layer was on top of the 

LSTM layer was most beneficial.

Significance

Cost-effectiveness of the solution.—While the addition of an attention layer only 

yielded modest gains in performance, these gains came at a very limited cost. Adding an 
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attention layer to our original neural network architecture required minimal changes to the 

architecture. Moreover, adding an attention layer did not significantly increase processing 

time for training and testing. Finally, we were able to reuse the same datasets we created for 

the original work, both for training and testing.

Practical significance of decreasing the false positive rate.—The UMLS 

Metathesaurus integrates some 10M English terms, which are amenable to synonymy 

prediction with our models. At this very large scale, a 1% gain in precision and the 

corresponding drop in false positive rate largely reduces the burden of manual curation. 

For example, in our test dataset with 173M pairs of terms with 5,581,209 positive pairs, 

increasing precision from 0.8875 to 0.9238 reduces the number of false positives from 

654,699 to 419,487 – a 36% reduction. Even if each false positive only required ten seconds 

for a human Metathesaurus editor to adjudicate, this would represent a saving of 653 hours 

(at the limited scale of our test sample).

Limitations and future work

One limitation of this work is the small impact on recall (−1.42%) observed with the model 

after the addition of the attention layer. In the future we hope to compensate for this by 

adding features susceptible to increase recall, e.g., source synonymy. Another limitation 

is that this model remains a purely lexical model (i.e., only the terms themselves are fed 

to the model). Our future plans include adding contextual information to the model (e.g., 

hierarchical relations) to support the disambiguation of homonyms.

Conclusions

Adding an attention layer to our initial neural network architecture is a simple way of getting 

a moderate performance improvement, particularly for precision. Although limited, this 

increase in precision will reduce the false positive rate and minimize the need for manual 

curation.
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Figure 1: 
The proposed neural network architectures with three variants: V0 as the original 

architecture with LSTM alone, V1 with an attention layer on top of the LSTM layer, and V2 

with the LSTM layer replaced by an attention layer.
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Table 1 –

Training and generalization test datasets (number of pairs of terms)

Training Negative Positive Total

ALL (training) 147,750,794 22,324,834 170,075,628

Testing Negative Positive Total

TOPN_SIM 54,752,228 5,581,209 60,333,437

RAN_SIM 54,445,899 5,581,209 60,027,108

RAN_NOSIM 58,256,526 5,581,209 63,837,735

ALL (testing) 167,454,653 5,581,209 173,035,862
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Table 2 –

Performance of the three models for testing using the ALL generalization test dataset

Variant Accuracy Precision Recall F1

V0 0.9938 0.8875 0.9254 0.9061

V1 0.9947 0.9238 0.9112 0.9174

V2 0.9928 0.8876 0.8908 0.8892
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