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ABSTRACT

Direct visualization of DNA and proteins allows
researchers to investigate DNA–protein interactions
with great detail. Much progress has been made in
this area as a result of increasingly sensitive single-
molecule fluorescence techniques. At the same
time, methods that control the conformation of
DNA molecules have been improving constantly.
The combination of both techniques has appealed
to researchers ever since single-molecule mea-
surements have become possible and indeed first
implementations of such combined approaches
have proven useful in the study of several DNA-
binding proteins in real time. Here, we describe the
technical state-of-the-art of various integrated
manipulation-and-visualization methods. We first
discuss methods that allow only little control over
the DNA conformation, such as DNA combing.
We then describe DNA flow-stretching approaches
that allow more control, and end with the full con-
trol on position and extension obtained by manipu-
lating DNA with optical tweezers. The advantages
and limitations of the various techniques are dis-
cussed, as well as several examples of applica-
tions to biophysical or biochemical questions. We
conclude with an outlook describing potential
future technical developments in combining fluores-
cence microscopy with DNA micromanipulation
technology.

INTRODUCTION

The most powerful and convincing approach to decipher
protein–DNA interactions is to directly observe proteins
binding to DNA under well-controlled conditions.

To achieve this, scientists have developed ever more
powerful methods and instrumentation. In most of these
approaches, the DNA is manipulated in some way, while
the DNA and/or proteins binding to it are observed with
fluorescence microscopy. Fluorescence microscopy has
become so sensitive that single fluorophores can be
detected and interrogated routinely. Single-molecule fluor-
escence microscopy on DNA and DNA-binding proteins
has been successfully applied to many biologically relevant
systems (1). In most of these experiments, short DNA
fragments are used, free in solution or attached to a sur-
face. In organisms, however, DNA molecules are in gen-
eral very long, flexible and dynamic. In order to observe
the interaction of a protein with such more natural DNA
substrates, fluorescent observation of the protein (or
DNA) is not enough: the shape and position of the
DNA has to be well-controlled. Over the years, many
methods for manipulating single DNA molecules have
been developed. Approaches such as magnetic and optical
tweezers and flow stretching have led to a remarkable
understanding of the complex mechanical properties of
DNA. Furthermore, these methods have been applied to
study the actions of proteins interacting with the DNA,
indirectly by measuring changes in the physical properties
of the DNA strand (length, stiffness, elasticity) (2). Such
indirect detection has proven to be powerful, but in many
cases the actual location and potential multimerization
state of the proteins on the DNA are crucial to understand
their functioning. Moreover, having mechanical cues
backed up by simultaneous direct (fluorescent) observa-
tion of proteins interacting with DNA strengthens the
quality of the data: both signatures have to match, provid-
ing an intrinsic experimental control: seeing is believing.
These considerations have led researchers to combine
(single-molecule) fluorescence microscopy with DNA
manipulation tools. In this review we will discuss this
development, from relatively simple (but powerful) meth-
ods that allow limited control of the DNA up to sophis-
ticated instruments with high degrees of control of the
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DNA and capabilities of high-resolution detection and
localization of DNA-bound proteins. A summary of the
various techniques, including some of their advantages
and disadvantages, is shown in Table 1.

MOLECULAR COMBING

Technique description

One of the least complicated techniques to manipulate
single DNA molecules for visualization with fluorescence
microscopy is molecular combing. In molecular combing,
DNA molecules are (non-)specifically attached to a solid
surface, extended and aligned by various means. The first
report of molecular combing was by Bensimon et al. (3).
They stretched long pieces of DNA (50 kbp up to 1 Mbp)
on hydrophobic silanized glass surfaces using a receding

air–water interface (Figure 1A). Surface tension extends
the DNA and results in stretched DNA. In this way, DNA
is irreversibly stuck to the surface and rehydration of the
sample does not result in detachment of the DNA. The
non-specific attachment of the DNA to the surface is
probably the result of hydrophobic interaction with
parts of the double-stranded DNA that have frayed and
thus expose hydrophobic single-stranded DNA pieces.
This combing procedure has found powerful uses in map-
ping and analyzing complete genomes with fluorescent in
situ hybridization (FISH)—see for more details review of
Lebofsky and Bensimon (4). Its major drawback is, how-
ever, that it overstretches the DNA (i.e. the DNA is longer
than its contour length) (5) because of the high surface
tension at the air–water interface (�0.5 nN) (6). This
major structural change most probably interferes with
DNA–protein interaction.

Table 1. Summary of pros and cons of the various combined visualization and manipulation techniques described

Technique Pros Cons

Molecular Combing Technically simple
Many DNA molecules can be studied

in parallel
TIRF compatible
Compatible with low protein

concentrations (�10 pM)

Multiple uncontrolled attachment points
No control of force
Slow buffer exchange

Surface-tethered DNA Many DNA molecules can be studied
in parallel

TIRF compatible
Single attachment point to surface
Can be compatible with low protein

concentrations (�10 pM)

Little force control
Slow buffer exchange
Requires continuous smooth fluid flows

DNA fixed to one
optically trapped bead

Fast buffer exchange
Some force control
No background fluorescence from surface

Requires continuous smooth fluid flows
Minimum protein concentration �1 nM
because of microfluidics system (46)

Technically more challenging

DNA tethered between two
optically trapped beads

Fast buffer exchange
High degree of force control
Direct measurement of force on DNA
No background fluorescence from

surface (using water immersion objective)

Technically challenging
Minimum protein concentration �1 nM
because of microfluidics system (46)

Figure 1. Immobilizing DNA on a surface by combing. (A) Cartoon of the combing procedure. DNA can be stretched and immobilized using
hydrophobic silanized glass surfaces and a receding air–water interface. After rehydration of the sample the DNA stays firmly attached to the glass
slide. Combing can also be achieved using fluid flow which results in lower stretching forces. (B) Kim and Larson visualized in real time the motion
of T7 RNAP along combed DNA strands (9). The directional movement of the T7 RNAP elongation complex along a DNA molecule is observed
using the incorporation of fluorescent UTP into RNA strand. Adapted by permission of Oxford University Press from Ref. (9).
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In an elegant solution to this problem, Gueroui et al. (7)
lowered the surface tension by addition of a monolayer
of the fatty alcohol 1-dodecanol at the air–water
interface. This resulted in combed DNA extended to its
contour length. The low solubility of 1-decanol in water
(�1 p.p.m.) results in a negligibly low effect on the proper-
ties of the DNA molecules in solution. Another solution is
to use fluid flow in a flow cell to stretch the DNA.
Although this approach requires more sophisticated
instrumentation, it provides much more control on the
degree of DNA extension (8).

By using a different treatment of the surfaces, the extent
and nature of the interactions of the DNA with the surface
can be altered. On hydrophobic silanized surfaces DNA
is stuck along its full length with a very high density
of attachment points. When the glass is coated with
hydrophobic polymers such as polymethylmetacrylate
(PMMA), polydimethyl-siloxane (PDMS) or polystyrene,
the combed DNA only attaches in a few places to the
surface (7,8). When the pH is lowered to a value of 6
during combing, the tethering can be restricted to only
the extremities of the DNA (8). The use of biotin labels
on the DNA ends in combination with biotin binding glass
(for example coated with streptavidin) provides another
means to ensure that DNA only sticks with its end to
the surface (9). When the DNA is only attached to the
glass at a few positions and not overstretched, combing
is an excellent means to study interactions between the
DNA and DNA-binding proteins.

In molecular combing, DNA is often visualized with
intercalating dyes such as YOYO-1 (3). YOYO-1 length-
ens and stiffens the DNA, which can actually help to
stretch the DNA to full length (10). On the other hand,
structural modification of DNA by YOYO-1 might inter-
fere with DNA-binding proteins and therefore other
means of visualization have been developed, in most
cases involving specific end-labeling of the DNA. Crut
et al., for instance, used quantum dots to discern the
ends of combed DNA (11), while Chan et al. generated
fluorescent end-labels using PCR with Cy3- and Cy5-
labeled primers (10). The latter study demonstrated that
it is possible to use a mixture of Cy5-labeled nucleotides
and unlabeled nucleotides in the PCR to lightly stain an
entire DNA molecule (10), albeit constrained to a DNA
length of �25 kb due to PCR limitations. For fluorescence
imaging of combed DNA wide-field, epi-illuminated fluor-
escence microscopy is often used, using CCD cameras as
detector. Alternatively, with the combed DNA attached to
a glass–water interface, total internal reflection fluores-
cence (TIRF) microscopy can be used (12).

Applications

A good example of the combination of combed DNA and
TIRF microscopy for the study of protein–DNA interac-
tions is the work of Kim and Larson, who visualized in
real time the diffusive motion of immunolabeled T7 RNA
polymerase (RNAP) along DNA (9). They combed
�-phage DNA by flow, thus avoiding overstretching of
the DNA, and attached it to a hydrophobic surface,
resulting in multiple anchor points along the backbone.

They did not observe any hindrance of RNAP’s diffusive
motion by the anchor points. RNAP was localized by fit-
ting the fluorescence intensity profiles with 2D-Gaussians
(13) with an accuracy of 60 nm (standard error).
They determined RNAP’s diffusion coefficient to be
1.2� 1.0� 10�9 cm2/s (3.6� 107 bp2/s) from the mean
square displacement along the contour. They showed
that the large spread in the diffusion constants is not due
to the uncertainty of protein localization but to a surpris-
ing, intrinsic variability of individual RNAPs. This conclu-
sion could only be reached because this approach allows
the observation of individual proteins moving along DNA.
Next, the researchers visualized RNAP binding, initiation
and transcription. In the latter experiment, they used fluor-
escently labeled nucleotides that are incorporated in the
nascent RNA produced during transcription (Figure 1B).
During transcription, however, the moving RNAP halts at
the location where the DNA is anchored to the surface and
transcription stalls. The authors estimated the tension on
the DNA from the rates of transcription they observed.
This indirect way of determining the force requires the
assumption that only force alters the transcription rate
and that surface proximity or non-uniform NTP concen-
trations do not alter the rate. A more direct way of con-
trolling the force on the DNA would be preferable.

SURFACE-TETHERED DNA EXTENDED IN FLOW

Technique description

In order to improve the control over the tension on the
DNA, other approaches than combing have been taken.
A particularly straightforward one is the attachment of a
DNA to a surface with one end and stretching it with
shear flow (Figure 2A). For attachment, DNA (in most
cases the 48 502-bp double-stranded DNA from �-phage,
with a contour length of about 16.5 mm) is biotinylated on
one end by hybridizing one of its single-stranded over-
hangs to a short complementary strand modified with bio-
tins. This biotinylated �-DNA can then be attached to a
surface coated with streptavidin or other biotin-binding
protein. Entropic forces will keep the DNA in a relatively
compact, random coil. However, these forces can be over-
come by applying a shear flow with flow rates of the order
tens of ml/hr (14,15). The drag force working on a DNA
stretched in this way decreases along the length of the
DNA, in the direction of the free end. This force can be
made homogeneous along the DNA by attaching a
micron-sized bead to the free end. The drag force the
bead experiences significantly exceeds the drag on the
DNA and will therefore be the major source of tension
experienced by the DNA (16,17). A shear flow can be cre-
ated by pumping a buffer solution through a flow cell using
a syringe pump. Flow cells can either be commercially pur-
chased (e.g. Integrated Biodiagnostics) or custom made
using (soft) lithography or by gluing two glass plates on
a patterned spacer (like parafilm or adhesive tape) (18).
Recent advances in microfluidics instrumentation for
single-molecule studies have been described in a review
by Brewer and Bianco (19). In such thin flow chambers,
the flow follows a parabolic Poiseuille velocity profile,
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with zero velocity at the surface. This depth-dependent
velocity profile complicates determination of the local
shear the DNA experiences. It has been estimated that a
surface-tethered �-DNA that is extended to 80% of its
contour length using buffer flow (viscosity Z � 1 Pa s) is
on average 0.2 mm away from the surface and experiences a
flow velocity of 100 mm/s (14). As an alternative to the use
of flow to stretch DNA, the use of magnets in combination
with magnetic beads has been reported (20). Wide-field
fluorescence imaging can be readily combined with these
DNA-stretching approaches. A key advantage of the
proximity of the surface is that TIRF microscopy can be
applied to reduce background fluorescence. It should,
however, be realized that the distance from the surface is
not constant in time and along the DNA. This results in
fluctuations in fluorescence intensity since the excitation
intensity in the evanescent wave used in TIRF illumination
decays exponentially with the distance from the interface,
with a decay constant of typically 100–150 nm. The proxi-
mity of the surface, however, can also be problematic
due to undesired interactions with the DNA or DNA-
binding proteins. To reduce these effects, the glass sur-
face can be coated with poly(ethylene)glycol (PEG) (14),
or supported lipid bilayers (21). Like DNA combing, the
surface-tethered DNA stretching approach has one key
advantage over other DNA manipulation methods: it can
be performed using many DNA molecules in parallel,
which can be simultaneously observed in one field of
view, e.g. to produce flow-stretchable ‘DNA curtains’
(Figure 2B) (21).

Applications

This flow-stretching approach has been applied to study
fluorescently labeled proteins diffusing along DNA. Xie
and coworkers have investigated how individual base-
excision DNA-repair proteins (human oxoguanine DNA
glycolase 1, hOgg1) find damaged bases by fast diffusion
along the DNA. They studied the pH, salt and flow depen-
dence of the diffusive interaction and concluded that
hOgg1, at near-physiological pH and salt concentrations,
binds to the DNA for on average 0.025 s while sliding

along it with a diffusion constant of 5� 106 bp2/s, leading
to a mean sliding length of 440 bp. The surface-tethered
DNA flow-stretching approach was also used to study
recombinase RAD51-diffusion along double-stranded
DNA (22). The authors proposed that the diffusing com-
plexes are multimers of RAD51 forming a ring around the
DNA, since the complexes remained bound for many min-
utes while diffusing over substantial distances along
�-DNA. The reported diffusion constants range from
104–106 bp2/s. In their experiment, diffusion also appeared
to take place when the flow was switched off after attach-
ing the DNA with both ends to the surface (i.e. comb-
ing the DNA). In other studies (23,24), the formation
and ATP-hydrolysis-dependent disassembly of RAD51
nucleoprotein filaments, which do not move along the
DNA were visualized. Subsequent incubation with
RAD51 labeled with different dyes yielded ‘harlequin’ fila-
ments, indicating that RAD51-filaments nucleate on mul-
tiple sites on the DNA (23). A related approach was taken
to study the ejection of DNA by bacteriophage T5 (25)
and � (26). In these studies, the phages were non-
specifically attached to the glass surface of a flow cham-
ber. DNA ejection was triggered by addition of the E. coli
outer membrane proteins that serve as receptor for the
phages. Ejected DNA was stretched in a buffer flow and
visualized by addition of the intercalating dye YO-PRO-1.
DNA ejection could thus be followed and quantified in
real time. The T5 DNA was shown to be ejected in a
stepwise manner, pausing at the five specific nicks on
T5’s genome (25). A maximum ejection rate of 75 kbp/s
was observed. In the case of phage � (26), the genome was
ejected in a continuous manner in about 1.5 s, with a max-
imum speed of 60 kbp/s.

DNA FIXED TO AN OPTICALLY TRAPPED BEAD
EXTENDED IN FLOW

Technique description

In order to reduce the complications of the nearby sur-
face (unwanted DNA and protein interactions and the
Poiseuille flow profile), an approach where the DNA is

Figure 2. Stretching of surface-tethered DNA using continuous flow. (A) Schematic of the assay. DNA is attached to the glass surface with one end.
To overcome the entropic forces that keep the DNA compact a continuous solvent flow is applied, extending the DNA. Visualization of DNA or
associated proteins can be realized using fluorescence microscopy. (B) Application of this assay to YOYO-stained �-DNA (21), demonstrating how
DNA stretching and extension depends on the flow rates. It furthermore highlights ability of this approach to allow the simultaneous observation of
many DNA molecules in one field of view. Adapted with permission from Ref. (21). Copyright 2006 American Chemical Society.
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tethered to an optically trapped microsphere and extended
in a flow away from the surface of the flow chamber can
be used (Figure 3A). In this approach, the DNA is
attached with similar chemistry to a polystyrene or silica
sphere with a diameter of typically a micrometer. Such a
sphere can be optically trapped in the focus of an intense
near-infrared laser beam (2,27). The physical origin of
optical trapping is the transfer of momentum from
photons refracted or reflected by the sphere to the
sphere itself. In the geometry of the tight focus of a laser
beam generated by a high numerical aperture objective,
the momenta of many photons add up leading to a
3-dimensional ‘potential well’, keeping the sphere in
place (28). Although the high intensity of this trapping
laser may lead to enhanced photobleaching (29), selective
fluorescence detection of dyes very close to or even in the
laser focus has been proven to be possible (29–32).

Applications

Chu and coworkers have used this assay extensively to
study the mechanical properties of DNA as a prototypical
semi-flexible polymer (33–35). In order to visualize the
DNA they used intercalating dyes and wide-field fluores-
cence imaging. They did not drive the buffer flow required
for extending the DNA with a pump, but rather moved
the whole sample chamber with respect to the optical trap.
This allowed them to overcome two shortcomings of
stretching in buffer flow: in general it is difficult (i) to
get a stable flow and (ii) to quickly change the flow rate.
Movement of the sample, however, can only be performed
over a limited range and thus for a limited time. Using this
approach, they visualized and measured the relaxation of
stretched DNA after abrupt release of the shear force.
They found that the relaxation rate depends on the

length of the DNA and can be described by a distribution
of decay times with sharp peaks, ranging from a tenth of a
second to tens of seconds, in agreement with theoretical
predictions (34). In a subsequent publication (33) they
studied the extension and dynamics of the DNA exposed
to different drag velocities. They found that for DNA
stretched in flow, the interaction of the DNA with the
solvent is not constant along the chain, i.e. the DNA is
not ‘free draining’. This finding illustrates that extending
DNA in a flow without a bead being attached to the free
end results in a complicated profile of forces acting along
the DNA chain and, as a consequence, to non-uniform
extension.
An extensive series of fluorescence experiments using

optically trapped, flow-stretched DNA has been per-
formed by Kowalczykowski and coworkers on RecBCD
(36–39). RecBCD is a highly processive DNA helicase and
nuclease, among others involved in homologous repair.
They have directly visualized DNA unwinding by
RecBCD by making use of the property of intercalating
dyes to bind to double-stranded DNA and not to single-
stranded DNA. They demonstrated that RecBCD
unwinds DNA at a rate of 100–1000 bp/s and does so
over lengths of tens of thousands of bases (36). In a next
study using the same intercalating-dye approach, they
showed that when the helicase encounters a specific
sequence (‘w’) it pauses for several seconds and subse-
quently proceeds unwinding the DNA at a substantially
lower velocity. This observation raised the question how
the two motor subunits of RecBCD, RecB and RecD,
work together. They showed, by attaching a fluorescent
bead to the RecD subunit, that after w-recognition, the
whole complex stays intact and that RecD does not fall
off (37), as was hypothesized before. Later they measured
the activity of RecBCD with a mutation in the RecD
domain abolishing RecD’s helicase activity (38). This
mutant unwound DNA at an equal velocity before and
after w recognition. On the basis of this and their previous
results they could propose a detailed model of how the
two motor domains in RecBCD work together. The
Kowalczykowski group has also used a similar assay to
study the formation of RecA nucleoprotein filaments on
single-stranded DNA (Figure 3B) (40). They directly
visualized the nucleation of fluorescently labeled RecA
recombinases and demonstrated that 4–5 subunits are
necessary for a stable nucleus; after formation of a
stable nucleus the filaments elongate on both ends at a
rate of several nanometers per second.

DNA TETHERED BETWEEN TWO OPTICALLY
TRAPPED BEADS

Technique description

As discussed before, the inhomogeneous force distribution
along flow-stretched DNA may pose problems to a quan-
titative analysis. Moreover, the approach requires the con-
tinuous application of flow: when flow is switched off, the
DNA swiftly relaxes to a globular shape (34) (see also
Figure 2B). This continuous flow precludes the applica-
tion of such techniques to the study of many dynamic

Figure 3. Stretching of DNA held with one side in an optical trap using
continuous flow. (A) Schematic of the assay. DNA is attached to a
bead with one end, the bead is held in an optical trap. To overcome
the entropic forces that keep the DNA compact a continuous solvent
flow is applied extending the DNA. DNA or associated proteins can be
visualized using fluorescence microscopy. (B) Application of this assay
to the formation of RecA filaments (40). �-DNA is incubated with
fluorescent RecA and filament formation is monitored by fluorescence.
Note the increase of the length of the DNA due to RecA binding.
Adapted by permission from Macmillan Publishers Ltd: Nature (40),
copyright 2006.
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DNA–protein interactions, including the direct visualiza-
tion of the diffusional target search of site-specific proteins
along an extended DNA molecule. For the aforemen-
tioned hOgg1 system, this continuous flow apparently
did not impose a preferential direction (14), yet for the
sliding of RAD51 multimers, the diffusion on a one-side
tethered DNA was governed by flow (22). Such drawbacks
in flow-controlled experiments can be overcome by attach-
ing the DNA from both ends, as in the molecular combing
experiments. However, increased control is obtained
because the DNA is manipulated from both ends by opti-
cal tweezers (Figure 4A) (alternatively, the DNA can be
manipulated using an optical trap on one end and a micro-
pipette (41)). In that case, control over the distance
between the traps allows for fine adjustment of the exten-
sion of and the tension in the DNA. Another advantage of
this method is that no special surface treatments of the
microscope slides are required to specifically attach the
DNA and at the same time block the binding of unwanted
species. Most importantly, optical trapping permits accu-
rate measurement of the forces applied to the DNA with a
range of different optical detection methods (see (27) and
references therein). This simultaneous fine control over the
DNA tension and the quantitative detection of this ten-
sion enables one to directly probe the effect of force on
biochemical or biophysical processes, such as the binding,
locomotion or release of DNA binding enzymes, at the
same time visualized using fluorescence.

Applications

In a first application of such dual-beam optical tweezers
featuring DNA visualization, Chu and coworkers
extended their aforementioned flow-stretched DNA

control to observe the conformational dynamics of a
DNA molecule stained with YOYO-1 without flow (42).
This allowed for an expansion of the polymer’s dynamics
in linearly independent normal modes after video analysis.
Doing so, they observed that higher-order fluctuations are
suppressed when the DNA is extended, as expected from
polymer dynamics theory. For these experiments, direct
measurement of forces was not implemented and the
extension of the DNA was used as a control parameter
instead. Arai et al. used a similar system to illustrate the
versatility of simultaneous single-molecule observation
and manipulation, by tying a knot in individual DNA
molecules (43). To suppress Brownian fluctuations, they
performed their tricky single-molecule gymnastics in a
high-viscosity solvent containing sucrose and actin fila-
ments. By simultaneously measuring forces, they used
this approach to investigate the dependence of the knot
diameter on tension. Since the DNA knots were generated
in a dense network of (unlabeled) actin and thus wrapped
around actin filaments, the tension in the knot could not
be increased enough to break the DNA.

The Yanagida group has been able to track individual
E. coli RNA polymerase enzymes interacting with a DNA
molecule suspended between two traps (44). To visualize
the Cy3-labeled RNA polymerase, they used TIRF micro-
scopy. For efficient TIRF excitation, they used cover slips
with pedestals. The beads used to trap the DNA were
held, using the tweezers, in the depressions facing the ped-
estals. In this way, the DNA could be kept at a distance of
about 100 nm from the pedestal quartz surface, allowing
for efficient TIRF excitation. The pedestals were chemi-
cally etched into the cover slip, and had been used in a
similar experiment assaying the mechano-chemistry of
individual myosins on a suspended actin track (45).

Figure 4. Enhanced control using two force-measuring optical traps. (A) Schematic of the dual-trap assay. Two traps can be generated from a single
laser source by splitting into two orthogonal polarizations, which may be independently steered in the sample. After suspending a single DNA
molecule in between two trapped beads, the DNA can be manipulated without the application of force. In addition, optical tweezers can be employed
to quantitatively detect the forces exerted on the DNA. The fluorescence from DNA-staining dyes or fluorescently labeled DNA-binding proteins can
be detected using a CCD camera. (B) The assay from panel a employed in our study of the elasticity of (fluorescently labeled) RAD51 nucleoprotein
filaments formed on double-stranded DNA (50). One DNA molecule is suspended between two optically trapped beads (dark circles); a second
molecule is tethered from the lower bead and freely diffusing once buffer flow is switched off (between 2nd and 4th frame). By increasing the distance
between the traps, tension can be applied to the suspended DNA in a controlled manner. The differentiated extension of the fluorescent, RAD51-
coated segments and the dark, uncoated segments can be directly seen. The increasing suppression of thermally excited diffusion of the DNA is
readily observed.
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Due to the enhanced enzyme affinity for the two asymme-
trically positioned promoter sites along the DNA,
the authors could readily determine the orientation of
the captured DNA based on their knowledge of the pro-
moter positions. Doing so, they showed that association
and dissociation rates of RNA polymerase are different
for GC-rich and for AT-rich regions. Moreover, they
were able to observe polymerases undergoing linear diffu-
sion along the DNA (‘sliding’), which had been antici-
pated for decades but at the time lacked solid and direct
observation. Finally, decreased enzyme affinity for DNA
was reported under higher tensions. Similar effects of ten-
sion on enzymatic activity have been reported for many
different systems, including DNA polymerase and restric-
tion enzymes (46,47). This TIRF approach is complicated
by intensity fluctuations (due to movement of the DNA
with respect to the interface) and the requirement to etch
the cover slips. Wide-field epi-illuminated fluorescence
microscopy would not suffer from these drawbacks.

The lab of Greve has used polarized fluorescence detec-
tion to get an estimate for the orientation of absorption
dipole moments of intercalated YOYO dyes (48). They
immobilized DNA between an optically trapped bead
and one held in a micropipette. Here, the fluorescence
detection was used mostly as a control in a range of
experiments mainly focusing on the physics of YOYO
intercalation and of DNA binding by RecA.
Remarkably, these promising first experiments combining
dual-tweezers and fluorescence microscopy in the late
nineties have, to our knowledge, led to only a limited
number of follow-up reports.

Recently, our group has demonstrated the feasibility of
simultaneously performing controlled force-extension
measurements and sensitive fluorescence detection in
wide-field epi-fluorescence mode. The use of a water-
immersion objective allowed for stable trapping even at
a significant distance of the captured DNA from the
glass surfaces of the sample chamber (41,49), which
reduced background fluorescence without the need for
any surface blocking. We applied this to the study of
RAD51 filament mechanics on double-stranded DNA
(50) (Figure 4B). By carrying out these experiments on
partly RAD51-coated DNA molecules and using fluores-
cently labeled RAD51 mutants, we were able to dissect the
inhomogeneous elasticity of the DNA into uncoated
(dark), partly coated (intermittently fluorescent) and
fully coated (contiguously fluorescent) segments (50).
Figure 4B shows the controlled extension of such a
RAD51-coated DNA molecule suspended between two
trapped beads. A second DNA molecule is tethered on
only one side from the lower bead and thus freely diffusing
once buffer flow is switched off. Integrated analysis of the
fluorescence images and synchronously recorded force-
extension data revealed that on the suspended molecule
only the uncoated or partly coated segments showed the
well-known overstretching transition (5); fully coated seg-
ments, in which the DNA is held in a 150% extended
configuration, could not be stretched further (50). Such
dissection could only be performed using a combination
of manipulation and visualization techniques.

RULES OF DISCIPLINE AND POINTS FOR
ATTENTION

In the preceding paragraphs we have discussed the devel-
opment and successful application of tools to concomi-
tantly manipulate DNA and visualize associated proteins
and/or the DNA itself using fluorescence approaches.
Notwithstanding the great power of these approaches,
we see two important limitations and/or challenges that
need to be taken into consideration. First, in all
approaches discussed, the DNA is extended from a
random coil into a linear chain. This has obvious advan-
tages for visualization and localization, but it should be
taken into account that in the cell DNA is a random coil
(often densely bound by proteins). It is well established
that the mechanism by which many proteins (such as
restriction enzymes or transcription factors) search for a
specific target sequence not only comprises 3-dimensional
diffusion in solution, but also 1-dimensional diffusion
along the DNA chain (sliding) and jumping processes
from one location on the DNA to one further down the
chain, transiently close by due to the flexibility of the
DNA. If the DNA is extended by flow or direct mechan-
ical force, this latter process is strongly suppressed (51). In
addition, certain restriction enzymes and other DNA-
binding proteins require the formation of bends (46) or
even loops in the DNA (52), which is obviously more
difficult when the DNA is being pulled taut at the same
time. The kinetic rates of many DNA enzymes (e.g. DNA
polymerase and RNA polymerase (53,54)) are strongly
dependent on the DNA tension. This, however, need not
be a limitation but can actually be exploited to dissect the
mechanism of complex reactions by varying the forces
applied to the DNA (55).
A second point of concern when applying the described

approaches is the potential effect of DNA or protein label-
ing. In order to visualize DNA or most proteins, fluores-
cent labeling is required. To label DNA, intercalating dyes
such as YOYO-1 are frequently used. It is important to
realize that these dyes may have substantial effects on the
extension and mechanical properties of the DNA
(depending on the labeling density) and might in this
way influence the interaction of proteins with the DNA
(56,57). An often used approach to label a protein of
choice is to chemically attach reactive synthetic dyes
(58). The preferred method is to generate a single-cystein
variant of the protein and to specifically attach a thiol-
reactive dye to that cystein. However, this approach can
be time consuming, and great care has to be taken that
protein activity has not been altered. A variation to this
theme is to use semiconductor quantum dots as label
(often streptavidin-coated quantum dots are linked to
biotin groups attached to the protein) (59). Quantum
dots are substantially brighter and more photostable
than organic dyes. A disadvantage of quantum dots is
their size, on the order of 10 nm, which might alter the
protein’s dynamics and physical properties. Furthermore,
their fluorescence intensity tends to fluctuate under con-
tinuous illumination (‘blinking’). A third fluorescent label-
ing approach is to generate a fusion of the protein
with green fluorescent protein (or one of its variants) (58).
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This is in general less tedious with respect to the molecular
biology and no labeling reaction is required after purifica-
tion of the fusion protein. Limitations are, however, the
generally poorer fluorescence properties and the larger size
of green fluorescent protein compared to synthetic dyes.
Whichever way of labeling is chosen, care has to be taken
to reduce the effect of photobleaching, not only to prolong
measurement times, but also to prevent photodamage to
DNA and proteins. For example, many researchers have
noticed that the prolonged illumination of intercalating
dyes bound to DNA can lead to breakage of the DNA
(60). In general, photodamage can be reduced by working
in oxygen-free conditions, the addition of antioxidants
and by reducing the illumination intensities and duration
(61,62).

OUTLOOK

The methods and applications presented here highlight the
potential of combinations of DNA manipulation techni-
ques with fluorescence imaging. We have summarized
some of the advantages and disadvantages in Table 1.
Over the years, approaches have evolved from relatively
straightforward ones, allowing only limited control over
the DNA with respect to location and tension (such as
combing and flow stretching), to more advanced ones,
allowing full control over these parameters using dual
optical tweezers. It is to be expected that in particular
the combination of dual optical tweezers and fluorescence
microscopy will be further developed, allowing for more
sophisticated DNA manipulation schemes, for instance,
involving force feedback (63), or the simultaneous trap-
ping of two DNA strands (18). At the same time, we and
others are adding more advanced fluorescence methods to
the tweezers, such as super-resolution methods (64),
FRET (30,31), and polarization measurements (48). It is
to be expected that soon combinations of fluorescence
imaging and magnetic tweezers (28,65,66) will be reported,
allowing simultaneously the visualization of and control
over the DNA torsion, i.e. the degree of supercoiling. The
strength of these combined imaging and manipulation
approaches is such that we expect to be only at the begin-
ning of a technical development that will have great
impact on the field of protein–DNA interactions in the
coming years.
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