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Abstract: Non-electrical contact and non-carrier injection (NEC&NCI) mode is an emerging driving
mode for nanoscale light-emitting diodes (LEDs), aiming for applications in nano-pixel light-emitting
displays (NLEDs). However, the working mechanism of nano-LED operating in NEC&NCI mode is
not clear yet. In particular, the questions comes down to how the inherent holes and electrons in the
LED can support sufficient radiation recombination, which lacks a direct physical picture. In this
work, a finite element simulation was used to study the working process of the nano-LED operating
in the NEC&NCI mode to explore the working mechanisms. The energy band variation, carrier
concentration redistribution, emission rate, emission spectrum, and current-voltage characteristics
are studied. Moreover, the effect of the thickness of insulating layer that plays a key role on device
performance is demonstrated. We believe this work can provide simulation guidance for a follow-up
study of NEC&NCI-LED.

Keywords: nano-LED; non-carrier injection; working mechanism; alternating current; simulation

1. Introduction

Closing the gap between the real world and display images to obtain a more realistic
visual experience is the overall goal of display technology [1–6]. For this goal, nano-
pixel light-emitting display (NLED) is an emerging display technology with ultrahigh
pixel density higher than 10,000 pixel per inch [7]. Further reductions in pixel size to
the nanoscale can enhance the sense of reality of display images and reduce the size of
the display device. The key characteristic of NLED is that each pixel of NLED consists
of multiple or even a single nanoscale light source. Thus, NLED is considered as the
ultimate light source for light field displays, eye computer interface, and implantable
displays (Figure 1) [7]. It is no doubt that the core component of NLED is the nanoscale
light emitting device (nano-LED). Applying gallium nitride (GaN)-based LED technology
to NLED is effective [8]. However, once the size of LED reduces to nanoscales, pixel-level
driving is difficult, because the efficient electrical connection between the electrode array
and the nano-LED array is challenging [9].

Recently, an operation mode for micro-LEDs/nano-LEDs, namely, non-electrical con-
tact and non-carrier injection (NEC&NCI) mode, has been demonstrated [10–13]. It is
believed that, by using NEC&NCI technology, the manufacturing difficulty of NLED can
be effectively reduced. For LEDs operating in the NEC&NCI mode, the self-supporting
LED chips composed of n-GaN/multi-quantum wells (MQWs)/p-GaN are sandwiched
between insulting layers, and an alternating current (AC) electric field along the direction
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perpendicular to MQWs is applied. Obviously, no electrical contact exists between external
electrodes and the LED chip. Therefore, the nano-LED operating in the NEC&NCI mode
has an ultrasimple structure. For example, conventional GaN-LED requires a transparent
contact layer, an upper p-electrode, a bottom n-electrode, and postprocessing for good
contact between functional layers. Additional, poor ohmic contact and current crowding
can lead to a decrease in device efficiency [14–20]. However, the transparent contact layer,
p-electrode, and n-electrode are eliminated in the NEC&NCI operation mode, and the
elaborate design of the energy band alignment of electron/hole injection layers, transport
layers, and emissive layers can be eliminated. Thus, the device structure of nano-LEDs
applied to NLED can be simplified, and manufacturing difficulty can be effectively reduced.
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Figure 1. Potential applications of NLED.

Due to the existence of insulating layers between the electrodes and the LED chip,
external carriers cannot be injected into the LED chip, and only the inherent holes and
electrons contribute to radiative recombination. Therefore, NEC&NCI-LEDs can only
work under an AC electric field to obtain periodic electroluminescence (EL), which is
different from conventional LEDs. For conventional LEDs, whether in direct current
(DC) mode or in AC mode, holes are injected from p-GaN and the electrons are injected
from n-GaN to achieve continuous EL [21–30]. Therefore, the working mechanisms and
photoelectric characteristics of NEC&NCI-LED are different from the conventional injection
mode. In our previous work, we have proposed a reasonable working mechanism mode
for NEC&NCI-LEDs [10–12]. It is proposed that the forward field causes a diffusion of
majority carriers and subsequent radiative recombination in MQWs. The reverse field
drifts the carriers to their original state in preparation for the next EL process. However,
the working mechanism of nano-LED in NEC&NCI mode is not clear yet. A direct physical
picture of how the inherent holes and electrons provide sufficient radiative recombination
under an AC electric field is lacking.

In this work, the finite model of a nano-LED operating in NEC&NCI mode is estab-
lished, and the working mechanism is studied. The energy band variation and carrier
concentration redistribution under AC field are quantitatively demonstrated, which can
provide a clear physical image for the working mechanism of NEC&NCI-LED. The pho-
toelectric characteristics, including emission rate, emission spectra, and current-voltage
relationship, are presented. Moreover, the effect of insulating layer thickness that plays
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a key role on device performance is demonstrated. We believe this work can provide
simulation guidance for a follow-up study of NEC&NCI-LED.

2. Model Details

Schematic structure of the nano-LED operating in NEC&NCI model is demonstrated in
Figure 2a, where the nano-LED is sandwiched between two insulting layers. The external
electric field generates an electric potential drop in the nano-LED, which would drive
the inherent carriers to recombine at MQW [31]. Obviously, the device is equivalent to
a resistor-capacitance (RC) parallel circuits [11,12]. As shown in Figure 2b, RLED is the
internal resistance of the nano-LED, and CLED is the capacitor related to PN junction. Cx1
and Cx2 are equivalent external capacitors, which are related to the insulating layers on
both sides.
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of the device. (c) Finite model for simulation. (d) Structural parameters of the model.

The finite model of the nano-LED operating in the NEC&NCI mode is established,
as shown in Figure 2c. In this model, Al2O3 layers are used as the insulator to sepa-
rate the self-supporting nano-LED from external electrodes. The sinusoidal voltage is
applied to external electrodes. It should be noted that the insulator is a key component
affecting device performance, and many dielectric materials may be good choices for
NEC&NCI-LEDs. In our previous work, the Al2O3 layer was used as the insulator. Thus,
we choose Al2O3 as the insulating material in this mode to study the working mechanism
of NEC&NCI-LEDs. The nanorod LED has a diameter of 500 nm with commercial LED
epitaxial structure. The detailed LED epitaxial structure is demonstrated in Figure 2d
and Table 1. The device structure from top to bottom includes the Al2O3 insulating layer
(100 nm), p-GaN (200 nm), Al0.15Ga0.85N electron blocking layer (20 nm), GaN (12 nm),
MQWs, n-GaN (2000 nm), and Al2O3 insulating layer (100 nm), respectively. The MQWs’
structure from top to bottom include In0.15Ga0.85N (3 nm)/GaN (12 nm) (Loop 2) and
In0.15Ga0.85N (3 nm)/InxGa1-XN (12 nm) (X = 0.01~0.05) (Loop 5), where Loop 2 means
the same structure is repeated twice and Loop 5 means the same structure is repeated
five times.
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Table 1. Nano-LED epitaxial structure parameters.

Materials Band Gap
/V

Electron
Affinity

/V

Electron
Mobility/

(cm2/(V × s))

Hole Mobility/
(cm2/(V × s))

Doping
Concentration/

(1/cm3)

p-GaN 3.4 4.1 1000 350 7 × 1017

n-GaN 3.4 4.1 1000 350 5 × 1018

In0.01Ga0.99N 3.35884 4.12881 1000 350 /
In0.02Ga0.98N 3.31797 4.15742 1000 350 /
In0.03Ga0.97N 3.27739 4.18583 1000 350 /
In0.04Ga0.96N 3.23709 4.21404 1000 350 /
In0.05Ga0.95N 3.19708 4.24205 1000 350 /
In0.15Ga0.85N 2.81268 4.51113 1000 350 /
Al0.15Ga0.85N 3.693 3.575 1000 350 7 × 1017

3. Results and Discussion
3.1. Typical Electrical and Optical Properties

Figure 3a shows the waveforms of the applied voltage, measured current, and emission
rate in one cycle when a sinusoidal voltage with an amplitude of 50 V is applied. It can be
found that the current is ahead of the voltage due to the capacitive characteristics of the
device, which is consistent with experimental results [11]. A narrow EL pulse only occurs
in the positive half cycle of the voltage, and the EL peak can be obtained when the voltage
reaches its maximum value, which is also consistent with experimental results [11]. As
well known, the redistribution of charge carriers in nano-LEDs will generate an induced
field that is opposite to the direction of the external electric field. As a result, the induced
electric field will shield the applied field and prevent the recombination of electrons and
holes. Therefore, only a narrow EL pulse can be observed.
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Figure 3. Electrical and optical properties of the nano-LED operating in the NEC&NCI mode.
(a) Waveform of the applied sinusoidal voltage, measured current, and emission rate of the device in
one AC voltage cycle. (b) Relationship between the peak current and frequency at different voltage
amplitudes. (c) Derivative of the peak current. (d) Peak current-peak voltage curves at different
frequencies. Inset: experimental i-v curves. (e) EL spectra at different frequencies. (f) Relationship
between FWHM and the frequency.

The relationships between the peak current and frequency (i-f ) at different voltage
amplitudes are presented in Figure 3b. In particular, the detailed current-voltage relation-
ship at low frequencies is shown in the inset of Figure 3b. Consistent with experimental
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results, the current increases exponentially with the increase in frequency [11]. According
to differential calculation results, the detailed change of the peak current can be observed
more visually, as shown in Figure 3c. In the low frequency range (<1 MHz), the current
remains basically unchanged. At frequencies above 1 MHz, the current increases obviously,
and maximum increasing rates can be obtained at ~500 MHz (30 V), ~800 MHz (50 V), and
~1 GHz (70 V), respectively. These numerical calculation details can help explain important
device characteristics, such as the optimal frequency point for the emission rate and power
efficiency, which will be analyzed in the following section.

The peak current-peak voltage (i-v) curves of the device at different frequencies and
the relevant fit curves are presented in Figure 3d. It is interesting that the peak current is
almost linear to the applied voltage within an allowable range of linear fitting error, which
is consistent with the experimental results (inset of Figure 3d). Moreover, the peak current
is sensitive to the driving frequency. The current increases with the increase in frequency
at the same voltage. This possible reason is that NEC&NCI-LED can be equivalent with
a series circuit of an LED and two capacitors, and the capacitive reactance of the device
increases with the frequency of the applied voltage.

The EL spectra at different frequencies are calculated, as shown in Figure 3e. When
the frequency increased from 5 MHz to 500 MHz, there is a blue-shift in the EL spectrum,
which is consistent with experimental results. The blue-shift phenomenon is caused by
the quantum-confined Stark effect [32,33]. It is well known that the polarized electric field
formed by the polarized charges tilts the energy band of the MQWs; thus, when the number
of electrons injected into MQW is relatively small, the emission wavelength is longer. The
increase in voltage frequency leads to an increasing number of injected electrons. The
electrons can shield the polarized electric field and weaken the quantum-confined Stark
effect. Therefore, the ground state in the well rises, which shifts the LED peak wavelength
toward shorter wavelengths. Additionally, full width at the half maximum (FWHM) of the
EL spectra also increases with frequency, as shown in Figure 3f. This is because the increase
in the number of electrons in MQW leads to an increase in the probability of radiative
recombination at each location of the MQWs, thereby broadening the EL spectrum.

3.2. The Mechanism of Carrier Transport

Due to the inevitable difference between the parameters of the simulation model and
the parameters of the actual device, there is a certain difference between experimental
data and simulation data. However, the trend of the simulation results is consistent with
experimental results. Therefore, it is expected that the simulation model can be used to
more clearly understand the dynamic change process of the device energy band and carrier
concentration, which is of great value for revealing the working mechanisms of the device
and further optimizing the device’s performance. First, we investigate the energy band
variation of the device. Because there is no electrical contact between external electrodes
and the LED chip, the energy band of the NEC&NCI-LED is different from that of the
LED operating in traditional mode. The energy band change in one operation cycle is
demonstrated, as shown in Figure 4a. Significant energy bending in the MQWs region
and device terminals (including p-GaN and n-GaN terminals) can be observed due to
the redistribution of constant inherent carriers [34,35]. The energy bending in the device
terminals means that an induced electric field opposite to the applied electric field is
generated. In particularly, parameters related to the length of energy change (∆LEB) and the
value of energy change (∆EEB) are proposed to quantitatively characterize energy bending,
as shown in bottom right corner of Figure 4a.
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During the increasing process of forward voltage (process I in Figure 4b), the capacitors
of CX1 and CX2 are charging. The holes in the p-GaN region and the electrons in the n-GaN
region diffuse into MQW, respectively. In this case, depletion regions are formed on both
sides of the semiconductor (∆EEB > 0). Therefore, energy bending in the p/n GaN terminals
can be observed. The values of ∆EEB and ∆LEB reach the maximum at the peak voltage,
as shown in Figure 4d,e. Quantitatively, the maximum values of ∆EEB-p and ∆LEB-p in the
p-GaN terminal are 12.504 eV and 148.4 nm, respectively. The maximum values of ∆EEB-n
and ∆LEB-n in the n-GaN terminal are 1.705 eV and 24.4 nm, respectively. It should be
noted that because the doping concentration of p-GaN is lower than that of n-GaN, more
obvious energy bending can be observed in the p-GaN terminal. Since the PN junction is in
a forward-biased state, the change in ∆EEB-MQW is relatively small, as shown in Figure 4c.
The maximum value of ∆EEB-MQW is only 0.259 eV.

As the forward voltage is decreasing (process II in Figure 4b), the induced electric
filed is stronger than the applied field. Thus, the inherent carriers are moving to both
terminals under the induced electric field to fill the depletion regions, and ∆EEB decreases,
which corresponds to the discharging process of CX1 and CX2. It should be noted that when
the forward voltage reduces to 0 V (t = 50 ns), the state of the energy band is different
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from the initial state, as shown in Figure 4d,e. The reason is that the carrier concentration
cannot completely restore the initial state due to the unidirectional characteristics of LED.
Quantitatively, when the forward voltage reduces to 0 V (t = 50 ns), the values of ∆EEB-p
and ∆LEB-p in the p-GaN terminal are 1.73 eV and 73.917 nm, respectively. The values of
∆EEB-n and ∆LEB-n in the n-GaN terminal are 0.2392 eV and 16.3 nm, respectively. The value
of ∆EEB-MQW is 11.6598 eV.

In the process of increasing the reverse voltage (process III in Figure 4b), the direction
of the induced field is the same as that of the applied field. Thus, the moving behavior
of carriers is similar to process II. Finally, the depletion regions in the p/n-GaN terminals
disappeared (∆EEB = 0) and the accumulation layer is formed (∆EEB < 0), as shown in the
red regions in Figure 4d,e. During the accumulation period, the maximum values of ∆LEB-p
and ∆LEB-n are 24.763 nm and 12.4 nm, respectively. The minimum values of ∆EEB-p and
∆EEB-n are −0.075 eV and −0.0837 eV, respectively. Since the PN junction is in a reverse
biased state, the change in ∆EEB-MQW is relatively large. The maximum value of ∆EEB-MQW
is 24.1722 eV, as shown in Figure 4c.

As the reverse voltage decreases (process IV in Figure 4b), the induced electric filed is
stronger than the applied field. Thus, the carriers in the accumulation layers are moving far
away from the terminals, which corresponds to the discharging process of CX1 and CX2. As
a result, the accumulation regions of the p/n GaN terminals disappeared (∆EEB = 0) and
the depletion regions are reformed (∆EEB > 0). When the reverse voltage reduces to 0 V, the
∆EEB-p and ∆LEB-p in the p-GaN terminal are 1.7289 eV and 71.516 nm, respectively. The
∆EEB-n and ∆LEB-n in the n-GaN terminal are 0.239 eV and 23.3 nm, respectively. The values
of ∆EEB-MQW is 11.6538 eV. As shown in Figure 4d,e, at the end of one cycle (t = 100 ns),
∆LEB-n and ∆LEB-p are non-zero, which is different from the initial state (t = 0 ns). This
means that when the reverse voltage reduces to 0 V, there is remarkable energy bending
in the p/n-GaN terminals. The reason is that the carrier concentration cannot completely
restore the initial state because of the unidirectional characteristics of the LED.

The dynamic change of the energy band reveals the state of inherent carriers in
NEC&NCI-LED. To have a clearer understanding of the working status of the device, the
change in carrier concentration within one cycle is further studied, as shown in Figure 5. It
can be found that the carrier concentration changes dramatically in the terminals, which
is completely different from traditional LED [36,37]. Similarly to the analysis of change
in energy band, the parameters related to the length of the majority carrier concentration
variation is defined as ∆Lcc, as shown in Figure 5a.

During the increasing process of the forward voltage (process I in Figure 5b), holes
in the p-GaN region and electrons in the n-GaN region diffuse into MQW, respectively, as
schematically presented in Figure 6a. Thus, the hole concentration in the p-GaN termi-
nal and the electron concentration in the n-GaN terminal are reduced, and the depletion
regions are formed on both terminals. The concentration of hole in the p-GaN terminal
(pp) and electron in the n-GaN terminal (nn) reach the minimum (pp = 6.1804 × 10−64/cm3,
nn = 2.4492 × 10−11/cm3) when the voltage reaches the peak value, as shown in Figure 5c,d.
The maximum ∆Lcc-p in the p-GaN terminal and ∆Lcc-n in the n-GaN terminal are 139.32 nm
and 29.7 nm, respectively. In this case, the minority carrier concentrations in the p-GaN
terminal (np) and the n-GaN terminal (pn) are 2520.6/cm3 and 2.6968 × 1011/cm3, respec-
tively. The maximum value of ∆Lcc-p is 70 percent of the length of p-GaN (Figure 5c), and
the maximum value of ∆Lcc-n is 1.5 percent of the length of n-GaN (Figure 5d). This means
that the holes in p-GaN are more sensitive to the applied voltage. Thus, in the design of
NEC&NCI-LEDs, increasing the length of p-GaN and reducing the length of n-GaN can
help improve the utilization rate of carriers.
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(a) Radiative recombination in the MQW region under forward bias. (b) Formation of an induced
electric field that shields the external field. (c) Carriers accumulate in the p-GaN/n-GaN terminals of
the nano-LED under reversed bias. (d) Movement of the accumulated carriers.

As the forward voltage decreases (process II in Figure 5b), the carriers move to both
terminals to fill the depletion regions under the induced electric field, as schematically
presented in Figure 6b. Therefore, pp and nn increased. At this time, pn and np are reduced.
It should be noted that when the voltage reduces to 0 V (t = 50 ns), the carrier concentrations
are different from the initial state, which is similar to the variation of the energy band
(Figure 4). When the forward voltage reduces to 0 V, pp and nn are 1.2631 × 10−12/cm3 and
3.8679 × 1014/cm3, respectively. The ∆Lcc-p in the p-GaN terminal and ∆Lcc-n in the n-GaN
terminal are 57.9 nm and 17.3 nm, respectively. The values of np and pn are 1977.4/cm3 and
3.2871 × 1011/cm3, respectively. When the forward voltage reduces to 0 V, the depletion
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region still exists. In order to restore the device to the initial state faster, the addition of
electron and hole transport layers can be considered.

In the process of increasing the reverse voltage (process III in Figure 5b), the moving
behavior of carriers is similar to the process II. pp and the nn increased, as schematically
demonstrated in Figure 6c. Finally, the depletion region of the p/n-GaN terminals disappear
(The pp is 7 × 1017/cm3 and the nn is 5 × 1018/cm3) and the accumulation layer is formed,
as shown in the red regions in Figure 5c,d. The maximum pp and nn are 1.3706 × 1019/cm3

and 1.9001 × 1019/cm3 respectively. The maximum ∆Lcc-p in the p-GaN terminal and ∆Lcc-n
in the n-GaN terminal are 20.923 nm and 13.4 nm, respectively. The minimum np and pn
are 1.2791 × 10−32 cm3 and 60.338/cm3, respectively. The accumulation process of carriers
is the most important in process III. In order to provide enough carriers to participate in
light emission in the next cycle, the accumulation time can be increased to make carriers
move toward p/n-GaN terminals as much as possible.

As the reverse voltage decreases (process IV in Figure 5b), the carriers in the accumula-
tion layers move far away from the terminals under the induced electric field, as shown in
Figure 6d. The hole concentrations in the p-GaN terminal and the electron concentrations
in the n-GaN terminal are reduced. As a result, the accumulation regions of the p/n-GaN
terminals disappeared and depletion regions formed. When the reverse voltage reduces to
0 V (t = 100 ns), pp and nn are 1.3226 × 10−12/cm3 and 3.8917 × 1014/cm3, respectively. The
∆Lcc-p in the p-GaN terminal and ∆Lcc-n in the n-GaN terminal are 81.347 nm and 17.3 nm,
respectively. np and pn are 8.0056 × 10−27/cm3 and 0.13865/cm3, respectively. Within one
cycle, the carrier concentrations at the initial state (t = 0 ns) are different from that at the
final state (t = 100 ns). The results show that due to the unidirectional characteristics of
the LED, the carrier concentration cannot fully recover the initial state, which is consistent
with the energy bending analysis shown in Figure 4. Therefore, in order to improve device
performance, the device structure should be optimized so that the final state is consistent
with the initial state.

The change in carrier concentration reveals that the working mechanism of NEC&NCI-
LED is completely different from traditional LED. As is well known, the number of carriers
in the MQW affects EL intensity [38]. Thus, the change in the carrier concentration in
the MQW is furthered studied, as shown in Figure 7a–d. In the positive half cycle, the
concentration of electrons and holes in the MQW increases initially, followed by a decrease,
as shown in Figure 7a,b. During the increasing process of the forward voltage (0–25 ns),
the holes in the p-GaN region and the electrons in the n-GaN region diffuse into MQW,
respectively. The orders of magnitude of electrons and holes concentration are 1018/cm3

and 1017/cm3, respectively. Thus, EL can be observed.
As the forward voltage decreases (25–50 ns), the induced electric field is formed and

shields the applied field. As a result, the value of the carrier concentration in MQWs
slightly decreased. When voltage reduces to 0 V, the orders of magnitude of electrons
and holes concentration are 1015/cm3 and 107/cm3, respectively. As the reverse voltage
is increasing (50–75 ns), the majority carrier concentration in MQW further decreases
until the terminal carrier concentration reaches the maximum. At this time, the orders of
magnitude of electrons and holes concentration are 1012/cm3 and 102/cm3, respectively. In
the remaining period of time (75–100 ns), the concentration of electrons and holes remain
basically unchanged, as shown in Figure 7c,d.
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3.3. Frequency Response Characteristics

As well known, the frequency of the applied voltage is a critical parameter that would
impact the luminous characteristics of NEC&NCI-LED [39,40]. This is because the car-
rier concentration in MQWs will change with the driving frequency. In order to explore
the influence of frequencies on the device performance, the variation of carrier concentra-
tion in the MQWs with different frequencies is presented, as shown in Figure 8a. From
p-GaN side to n-GaN side, the QWs are defined as QW1, QW2, QW3, QW4, QW5, QW6,
and QW7, respectively. The electron and hole concentrations in QW1 to QW7 are de-
fined as n1 to n7 and p1 to p7, respectively. Considering that there are seven QWs in
the MQWs, revealing the exact carrier concentration in each QW is important. On the
one hand, it is helpful to analyze the working mechanism of the device by exploring
the variation of the carrier concentration in each QW. On the other hand, analyzing the
changes in the carrier concentration at different frequencies can help to find potential
methods to improve luminescence intensity. Generally, the carrier concentration in MQWs
increases initially and then decreases. At ~1 MHz, the hole concentrations in QW1 to
QW7 are 4.6179 × 1011/cm3, 6.0531 × 1013/cm3, 5.7997 × 1015/cm3, 1.1941 × 1017/cm3,
5.3281 × 1017/cm3, 9.1368 × 1017/cm3, and 3.3103 × 1018/cm3, respectively. Moreover,
the electron concentrations in QW1 to QW7 are 6.5236 × 1016/cm3, 6.7363 × 1016/cm3,
8.9176 × 1016/cm3, 1.6809 × 1017/cm3, 3.8208 × 1017/cm3, 5.3344 × 1017/cm3, and
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1.7899 × 1017/cm3, respectively. The concentrations of electrons and holes in the QW4,
QW5, and QW6 are very close at ~1 MHz (the order of magnitude is 1017). At ~800 MHz,
the summation of electrons in the MQW is 1.31 × 1019/cm3 and the summation of holes in
the MQW is 1.98 × 1019/cm3, which reaches the maximum. NEC&NCI-LED is equivalent
to a series circuit of an LED and two capacitors. Thus, the charging current increases
with the frequency and the carrier concentration in MQW increases initially. However,
the moving distance of carriers will change with frequencies. When frequency is low, the
carriers in the device have sufficient time to diffuse into MQW due to the relative small
lifetime of the carriers. Once the frequency is high enough, the movement of carriers cannot
keep up with the change of applied electric field due to the relative small lifetime of carriers.
As a result, the number of carriers in the MQW is reduced.
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The emission rate and the power efficiency at different driving frequencies are pre-
sented in Figure 8c. The emission rate and power efficiency also show a trend of increases
initially and then decreases, which is consistent with experimental results [11]. The optimal
frequency point of emission rate is ~800 MHz, which corresponds to the frequency point
where the summation of the carrier in MQWs reaches the maximum. Thus, the probability
of radiative recombination is maximized. This phenomenon can be directly reflected by
the carrier concentration of MQW, as shown in Figure 8a. The optimal frequency point of
power efficiency is ~1 MHz. The concentration of electrons and holes in the QW4, QW5,
and QW6 are very close at ~1 MHz (the order of magnitude is 1017) and the number of QWs
with the same order of magnitude of carriers reaches maximum, as shown in Figure 8b.
Therefore, the carrier utilization rate is relatively high. On the other hand, the current
remains basically unchanged in the low frequency range (<1 MHz). As a result, a maximal
power efficiency can be obtained at ~1 MHz. For NEC&NCI-LEDs, only inherent holes and
electrons contribute to radiative recombination. It should be noted that the number of carri-
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ers for radiative recombination is much less than that of conventional LEDs, which results
in the low output luminous power. On the other hand, due to the existence of insulating
layers, the working voltage of NEC&NCI-LEDs is greater than that of conventional LEDs,
and only a small portion of the voltage is applied to the LED. Thus, the power efficiency of
NEC&NCI-LEDs is low.

The thicknesses of the insulator are critical parameters that can impact the luminous
characteristics of NEC&NCI-LED [12]. In order to explore the influence of insulator thick-
nesses on the device, the emission rates of the devices with different insulator thicknesses
are presented, as shown in Figure 8d. As thickness increases, the emission rate shows a
downward trend. The value of the emission rate is reduced by 11 times as the insulator
thicknesses increase from 50 nm to 1000 nm. The value of the current directly reflects the
concentration of carriers for movement. This is because the impedance of the equivalent
capacitors (Cx1 and Cx2) can increase with the increase in insulator thicknesses. From the
simulation results, the device performance is better when the insulating layer is thinner.
However, an insulating layer that is too thin can result in device breakdown. In order
to obtain the optimized structure of a real device, it is necessary to combine simulations
and experiments.

4. Conclusions

In summary, we using finite element simulation to study the working mechanism of
the nano-LED operating in the NEC&NCI mode. The energy band, carrier concentration
redistribution, emission rate, emission spectrum, and current-voltage characteristics are
studied. It is found that the change of the energy band structures and carrier concentrations
in terminals of NEC&NCI-LED is different from that of conventional LEDs. This is because
there is no injection of external carriers to supplement the carriers flowing away from the
p/n GaN regions. The performances of the nano-LED operating in the NEC&NCI mode
are highly sensitive to frequencies of the applied voltage. We also demonstrate that the
insulator thickness is a key parameter impact on the luminous properties of NEC&NCI-
LEDs. We hope that this work can provide a simulation guidance for the follow-up study
of NEC&NCI-LED.
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