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Abstract: Valorization of lignocellulosic biomass and food residues to obtain valuable chemicals is
essential to the establishment of a sustainable and biobased economy in the modern world. The
latest and greenest generation of ionic liquids (ILs) are deep eutectic solvents (DESs) and natural
deep eutectic solvents (NADESs); these have shown great promise for various applications and have
attracted considerable attention from researchers who seek versatile solvents with pretreatment,
extraction, and catalysis capabilities in biomass- and biowaste-to-bioenergy conversion processes.
The present work aimed to review the use of DESs and NADESs in the valorization of biomass and
biowaste as pretreatment or extraction solvents or catalysis agents.

Keywords: deep eutectic solvent; natural deep eutectic solvent; biomass; food residue; pretreatment;
extraction

1. Introduction

The growing demand for eco-benign processes has led to the discovery of new green solvents [1].
Some ionic liquids (ILs) and deep eutectic solvents (DESs) can be considered green. ILs are defined as
organic salts that are liquid below 100 ◦C [2,3]. They have attracted considerable attention as green
solvents due to their remarkable properties, such as non-flammability, recyclability, non-volatility, low
vapor pressure, and high boiling point [2–4]. Nevertheless, the hazardous toxicity, high cost, difficult
synthesis, low biodegradability, and high water solubility of some ILs [3–5] have challenged their
“green” aspect and driven researchers to explore alternative solvents. DESs, which were introduced
at the beginning of this century [5], are prepared by simply mixing two or three components at
appropriate molar ratios to form eutectic mixtures with greatly depressed freezing points relative to
their components [4–6]. DESs make attractive candidates for green solvents, due to properties like
short preparation time, low costs, potentially good biodegradability, and low toxicity [4,5,7]. The cost
of producing a DES has been estimated to be 20% of that of an IL [8].

Natural deep eutectic solvents, NADESs, which meet green chemistry objectives and are composed
of naturally occurring substances from cellular metabolites [9], are considered to be suitable alternatives
for organic solvents, ILs, and even for common DESs [10]. Among a diverse list of applications [4,11–19],
the use of DESs and NADESs in biofuel [8,20–22] and bio-oil [23,24] production, as reaction media or
extractive agents [25–35], and as media to tune intermolecular interactions [36] are of special importance
to researchers.

In recent years, an increasing effort has been made to decrease the use of fossil fuels by substituting
them with green and sustainable alternatives [37–48] and thus reducing environmental, economic, and
societal problems. On the other hand, the agri-food industry produces large quantities of byproducts
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that are abandoned and can cause potential environmental issues. Meanwhile, these byproducts
could be a remarkable source of valuable compounds like phenolic compounds [25], proteins [27],
flavonoids [29], anthocyanins [33], lignin [26], peptides [31], polyphenolic antioxidants [49], chitin [50],
etc. Therefore, particular interest has been given to food residue and biomass resources, to solve the
environmental issues related to waste product management and to valorize these resources to produce
green fuels and platform chemicals. All these value-added materials are either obtained via extraction
processes or produced by biowaste transformation. In this aspect, the use of DESs and NADESs instead
of common organic solvents have drawn significant attention, as they can play essential roles in most
of these biochemical processes [51–54].

A United Nations Food and Agriculture Organization 2011 report estimated annual global food
waste to be approximately 1.3 billion tons [55]. Canadians waste $27 billion of food every year, half of
which occurs at the household level [56]. Industrialization and population growth are responsible
for the rapid increase of food waste generation worldwide. The manufacturing, agricultural, and
food industries harvest large amounts of residues each year, but these are simply discarded as
biowaste. These residues contain carbohydrates (cellulose, starch, and sugars), lignin, lipids, proteins,
and oils [42,43,48,57–62]. There is a growing awareness that the problematic challenges of waste
management, resource depletion, and the loss of valuable and energy-containing waste can all be solved;
more efficient use of biowaste will contribute to sustainable development. Food waste and food residue
can be converted to bio-oil [41,63–67], biogas [68,69], or biochar [37] with hydrothermal methods.
Alternatively, the desirable components can be harvested using an extraction process [27,31,33,49,70].
Food waste can also be processed by anaerobic digestion for biogas production [71–76] (Figure 1).
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Plant-based biomass is a natural, renewable, organic source of carbon [62,77] for conversion to 
fuel products or valorization to produce biobased chemicals [20,21,26,28,34,35,78–87]. Biomass 
conversion into fuels and value-added chemicals decreases the world’s need for fossil fuels and can 
effectively reduce CO2 emissions by combining chemical methods and photosynthesis [88]. The 
realities of fossil fuel depletion and increasing environmental damage have stimulated both academic 
and industrial sectors to seek ways to transform biomass. Of all the types of biomass feedstock, 
lignocellulosic biomass is the most abundant type [89], prevalent in the cell walls of hardwoods, 
softwoods, energy crops, and other plants [90,91]. The primary constituents of lignocellulosic biomass 
are carbohydrate polymers such as cellulose and hemicellulose, embedded in a lignin matrix, as 
illustrated in Figure 2. 

Figure 1. Illustration of the overall biorefinery process to produce bioenergy from biowaste/biomass.

Plant-based biomass is a natural, renewable, organic source of carbon [62,77] for conversion to fuel
products or valorization to produce biobased chemicals [20,21,26,28,34,35,78–87]. Biomass conversion
into fuels and value-added chemicals decreases the world’s need for fossil fuels and can effectively
reduce CO2 emissions by combining chemical methods and photosynthesis [88]. The realities of fossil
fuel depletion and increasing environmental damage have stimulated both academic and industrial
sectors to seek ways to transform biomass. Of all the types of biomass feedstock, lignocellulosic
biomass is the most abundant type [89], prevalent in the cell walls of hardwoods, softwoods, energy
crops, and other plants [90,91]. The primary constituents of lignocellulosic biomass are carbohydrate
polymers such as cellulose and hemicellulose, embedded in a lignin matrix, as illustrated in Figure 2.
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Figure 2. Schematic illustration of lignocellulosic components and their chemical structures. 
Reprinted from Reference [92] with permission. 

Two feasible methods for the valorization of lignocellulosic biomass for bioenergy applications 
are: (1) fermentation of sugars from cellulose and hemicellulose components to biofuel [21] or (2) 
hydrothermal liquefaction and gasification to produce bio-oil [93–95] and biogas [96,97] (Figures 1 
and 3). In all these methods, pretreatment and solvation are critical steps, and it is important to find 
green solvents that can substitute the previously used hazardous solvents. DESs and NADESs have 
captured the attention of the scientific community for their ability to pretreat and selectively dissolve 
the constituents of biomass (polysaccharides and lignin) or food products (lipids, proteins, and 
carbohydrates) to yield valuable products. 
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NADESs and their physicochemical properties; (2) recent research on the uses of DESs and NADESs 
in biomass and food industry processes—these solvents are categorized based on their role in the 
process (pretreatment solvent, extraction solvent, reaction solvent, or catalyst)—(3) the recyclability 
of DESs; (4) the effects of the DESs and NADESs on the structure of biomass components. Finally, 
after a short concluding statement, the future prospects for the possible application of eutectic 
solvents in the valorization of real food waste in an innovative process design are discussed. 

2. Definition and Classification of Deep Eutectic Solvents 

DESs are eutectic mixtures with their eutectic points lower than that of the ideal liquid mixture 
[99]. DESs are liquid when they have a eutectic or near-eutectic composition, formed of an 
appropriately mixed molar ratio of Lewis or Brønsted acids and bases [5,6]. DESs with ionic 
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from Reference [92] with permission.

Two feasible methods for the valorization of lignocellulosic biomass for bioenergy applications
are: (1) fermentation of sugars from cellulose and hemicellulose components to biofuel [21] or
(2) hydrothermal liquefaction and gasification to produce bio-oil [93–95] and biogas [96,97] (Figures 1
and 3). In all these methods, pretreatment and solvation are critical steps, and it is important to
find green solvents that can substitute the previously used hazardous solvents. DESs and NADESs
have captured the attention of the scientific community for their ability to pretreat and selectively
dissolve the constituents of biomass (polysaccharides and lignin) or food products (lipids, proteins,
and carbohydrates) to yield valuable products.
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The present review consists of the following sections: (1) a brief description of DESs and NADESs
and their physicochemical properties; (2) recent research on the uses of DESs and NADESs in biomass
and food industry processes—these solvents are categorized based on their role in the process
(pretreatment solvent, extraction solvent, reaction solvent, or catalyst)—(3) the recyclability of DESs;
(4) the effects of the DESs and NADESs on the structure of biomass components. Finally, after a short
concluding statement, the future prospects for the possible application of eutectic solvents in the
valorization of real food waste in an innovative process design are discussed.
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2. Definition and Classification of Deep Eutectic Solvents

DESs are eutectic mixtures with their eutectic points lower than that of the ideal liquid mixture [99].
DESs are liquid when they have a eutectic or near-eutectic composition, formed of an appropriately
mixed molar ratio of Lewis or Brønsted acids and bases [5,6]. DESs with ionic components are regarded
as a new generation of IL analogues, since they have some similarities with ILs. They usually consist
of large nonsymmetrical ions, most commonly a quaternary ammonium cation coupled with a halide
anion, which is complexed with a metal salt or a hydrogen bond donor (HBD). Figure 4 shows a
number of common salts as hydrogen bond acceptors (HBAs) and HBDs used to make DESs.
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DESs are classified in Table 1 based on the nature of their HBDs. Type I DESs are made up of
nonhydrated metal halide, MClx, and quaternary ammonium salt, Cat+X−, in the general form of
Cat+X−zMClx where X− is a Lewis base (x and z refer to the number of Cl− and MClx, respectively).
However, the number of nonhydrated metal halides appropriate for a low melting point mixture is
limited. Type II DESs are made of hydrated metal halides, MClx.yH2O, combined with salts (y refers
to the number of H2O molecules). Type III DESs typically contain a combination of choline chloride
(ChCl) and HBDs such as alcohols, amides, and carboxylic acids. Appropriate HBDs can be mixed
with suitable metal halides to form Type IV DESs. For example, ZnCl2 suitably mixed with several
HBDs, including ethylene glycol, urea, acetamide, and 1,6-hexandiol has been reported by Abbott et al.
to form eutectic mixtures [100]. Finally, non-ionic compounds can be used to make mixtures with
decreased freezing points to establish a new class, type V, of DESs [101].

Table 1. Classification of DESs.

Type General Formula Terms

I Cat+X−zMClx M = Zn, Sn, Fe, Al, Ga, In
II Cat+X−zMClx.yH2O M = Cr, Co, Cu, Ni, Fe
III Cat+X−zRZ Z = CONH2, COOH, OH
IV MClx + RZ = MClx−1

+.RZ + MClx+1
− M = Al, Zn and Z = CONH2

V Non-ionic DES Composed only of molecular substances
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Natural Deep Eutectic Solvents

The term “natural deep eutectic solvent”, NADES, was proposed to represent mixtures formed by
cellular metabolites such as alcohols, amino acids, organic acids, and sugars [9], as shown in Figure 5.
They are ubiquitous in nature and are highly applicable because of their superiority over ILs and DESs
as being more nontoxic, sustainable, and environmentally benign [102]. In the same way as for a DES, a
NADES is obtained by combining HBDs and HBAs in appropriate molar ratios to develop interspecies
H-bonds, causing a significant melting point drop. NADESs play major roles in cellular metabolism;
many biological phenomena can be explained when considering their formation and existence. For
example, many water-insoluble metabolites are transferred into plants because of the presence of
such natural solvents. Plants can also survive extremely cold temperatures since the membranes,
enzymes, and metabolites are stabilized in plant cells rich in NADESs [103]. In the following section,
the physicochemical properties of DESs are discussed. In most cases, the discussion also holds true
for NADESs.

Molecules 2019, 24, x 5 of 35 

The term “natural deep eutectic solvent”, NADES, was proposed to represent mixtures formed 
by cellular metabolites such as alcohols, amino acids, organic acids, and sugars [9], as shown in Figure 
5. They are ubiquitous in nature and are highly applicable because of their superiority over ILs and 
DESs as being more nontoxic, sustainable, and environmentally benign [102]. In the same way as for 
a DES, a NADES is obtained by combining HBDs and HBAs in appropriate molar ratios to develop 
interspecies H-bonds, causing a significant melting point drop. NADESs play major roles in cellular 
metabolism; many biological phenomena can be explained when considering their formation and 
existence. For example, many water-insoluble metabolites are transferred into plants because of the 
presence of such natural solvents. Plants can also survive extremely cold temperatures since the 
membranes, enzymes, and metabolites are stabilized in plant cells rich in NADESs [103]. In the 
following section, the physicochemical properties of DESs are discussed. In most cases, the discussion 
also holds true for NADESs. 

 
Figure 5. Typical natural constituents used for natural deep eutectic solvent (NADES) synthesis. 

3. General Information on Deep Eutectic Solvents 

3.1. Deep Eutectic Solvent Preparation 

For preparation of DESs, no solvent is needed and, as no side product forms—except for some 
ChCl:Carboxylic-acid-based DESs which are discussed in the following section—there is no need for 
purification of the final product. Most eutectic mixtures are prepared simply by mixing suitably 
measured components and then stirring at around 80 °C. However, highly viscous sugar-based DESs 
are difficult to stir. This problem can be overcome by adding extra water into the mixture [104]. Other 
methods for DES preparation and purification (e.g., removal of water or gases) include a freeze-
drying method [105], grinding in a mortar [106], or mixing in an extruder [107]. For example, 
Gutierrez et al. [105] obtained pure {ChCl:Urea} and {ChCl:Thiourea} DESs in 1:2 molar ratio by 
dissolving urea (thiourea) and ChCl separately in water in appropriate concentrations and then 
mixing the mixtures together. Finally, the mixtures were freeze dried to obtain pure DESs. 

3.2. Physicochemical Properties of Deep Eutectic Solvents 

The interest in employing DESs for the biomass and food industries has led to the need for 
accurate and reliable knowledge of their physicochemical properties. A very important solvent 

Figure 5. Typical natural constituents used for natural deep eutectic solvent (NADES) synthesis.

3. General Information on Deep Eutectic Solvents

3.1. Deep Eutectic Solvent Preparation

For preparation of DESs, no solvent is needed and, as no side product forms—except for some
ChCl:Carboxylic-acid-based DESs which are discussed in the following section—there is no need
for purification of the final product. Most eutectic mixtures are prepared simply by mixing suitably
measured components and then stirring at around 80 ◦C. However, highly viscous sugar-based DESs
are difficult to stir. This problem can be overcome by adding extra water into the mixture [104].
Other methods for DES preparation and purification (e.g., removal of water or gases) include a
freeze-drying method [105], grinding in a mortar [106], or mixing in an extruder [107]. For example,
Gutierrez et al. [105] obtained pure {ChCl:Urea} and {ChCl:Thiourea} DESs in 1:2 molar ratio by
dissolving urea (thiourea) and ChCl separately in water in appropriate concentrations and then mixing
the mixtures together. Finally, the mixtures were freeze dried to obtain pure DESs.
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3.2. Physicochemical Properties of Deep Eutectic Solvents

The interest in employing DESs for the biomass and food industries has led to the need for accurate
and reliable knowledge of their physicochemical properties. A very important solvent property of
DESs is their potential to be tailored. They are task-specific, i.e., they can be tailored to a specific
type of chemistry. Compared to ILs, DESs have some superior characteristics: they are recyclable and
made of relatively inexpensive components. Many researchers have been intrigued by DESs’ versatile
capabilities and have attempted to characterize their physicochemical properties [4,5]. In this section,
the main physicochemical features of DESs are discussed.

3.2.1. Thermal Behavior and Phase Diagram

The thermal behavior and stability of DESs is dependent on their ingredients and molar
ratios. Processes for food residues and biomass such as pretreatment, dissolution, or extraction
in high temperatures or hydrothermal conditions [23,24,26,27,31,81,108–111] can only be optimized
by understanding DES thermal behavior. A study of the thermal stability of eutectic mixtures based
on urea and alcohols or carbohydrates found that the investigated DESs decomposed after heating
for 7 h at 80 ◦C and produced carbonates and ammonia [112]. In another study, it was shown that
a series of DESs composed of ChCl and carboxylic acids (glutaric acid, glycolic acid, malonic acid,
oxalic acid, and levulinic acid) decomposed in the temperature ranges between 400–500 K [106].
Chemical reactions such as esterification between DES components have also been reported for some
ChCl:Carboxylic-acid-based DESs [113]. Accordingly, it was found that a number of DESs containing
ChCl and some carboxylic acids (lactic acid, glutaric acid, glycolic acid, malic acid, malonic acid, oxalic
acid, and levulinic acid) undergo an esterification reaction between the hydroxyl group of choline
and the carboxylic acid [113]. In these cases, esterification reactions take place independent of the
preparation method and temperature. In general, many of the physicochemical properties of DESs
are influenced by the underlying interspecies interactions, most importantly the HBD–HBA H-bonds
(Figure 6). The magnitude of such interactions affects the freezing point depression, ∆Tf, which is
defined as:

∆Tf = Tf(real) − Tf(ideal) (1)

where Tf(real) is the measured freezing point of a mixture at the eutectic composition and Tf(ideal) is
the theoretically predicted freezing point for an ideal mixture (Figure 7) [99]. These interactions are
more favored energetically compared to the interactions that are behind the lattice energies of the pure
components [114]. For example, the melting point of a 1:2 molar ratio of {ChCl:Urea} is 12 ◦C, which is
much lower than those of ChCl, 302 ◦C, and urea, 133 ◦C [6].
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It has been widely assumed, although not universally agreed upon, that the significant melting
point depression of a eutectic mixture compared to that of the pure materials is due to charge
delocalization from, for instance, the halide anion (HBA) to the HBD, facilitated by hydrogen bond
(H-bond) formation [116] (Figure 6). However, the increased strength of the H-bonds developed at a
eutectic composition must be counterbalanced by a reduction in strength of several other cohesive
interactions [117]. Other decisive factors influencing the melting point values are the lattice energies
of the HBA and HBD, the way the anion and HBD interact, and the entropy changes upon DES
formation [116]. Abbott et al. suggested that the charge transfer via H-bonds between urea and
chloride anion from the ChCl is the main reason of the large melting point depression of the {ChCl:urea}
eutectic system at a 1:2 molar ratio [6].

The strength of the H-bond developed between the HBD and HBA can be correlated with
the temperature of phase transition, i.e., the stronger the H-bond, the deeper the reduction in
melting point [6]. Perkins et al. [118] studied the deep eutectic solvent {ChCl:Urea} system. At the
eutectic composition (1:2 molar ratio), the IR spectrum revealed no detectable bands assignable to
non–H–bonded N–H, O–H, or C=O groups. It may provide an indication of a specific packing of
the system to maximize the intermolecular H-bonds between different moieties. To investigate the
molecular interactions, charge transfer, and thermodynamic changes and to find a way to rationalize
the freezing point depression, three popular DESs, i.e., reline {ChCl:Urea} and ethaline {ChCl:Ethylene
glycol} in a 1:2 molar ratio and maloline {ChCl:Malonic acid} in a 1:1 molar ratio, with freezing points
of 12, −66, and 10 ◦C were selected and studied by Wagle et al. [119]. They characterized different
types of H-bonds, such as C–H· · ·O and C–H· · ·π, as well as conventional O–H· · ·Cl− or N–H· · ·Cl−

interactions which contributed to the DESs stabilization. They showed that charge is mainly transferred
from Cl− and Ch+ to HBDs. Bond order (BO) analysis revealed that the sum of BOs between Ch+

and Cl− in DESs is proportional to freezing point of the DESs. The direct correlation between sum of
BOs and charge transfer of Ch+

· · ·Cl− interactions and their straight relationship with the freezing
point of DESs clearly demonstrates how the selection of HBDs can affect the physical properties of
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DESs, such as their freezing temperature. Some mixtures have also been reported to have two eutectic
points [120,121]. For example, Cerajewski et al. [120] studied {1-ethyl-3-methylimidazolium Cl:urea}
mixtures at different molar ratios by employing electron paramagnetic resonance, differential scanning
calorimetry, molecular dynamics simulations, and Raman spectroscopy. They found two eutectic
points at 25% and 72.5% urea. It was shown that Cl− is the central species to form networks of H-bonds,
in such a way that its quantity determines the extent of intermolecular interactions and the melting
behavior of the mixture. They concluded that the macroscopic features of the DES are governed by the
nanointerface of the constituents. A direct relationship between features of H-bond network on the
basis of topological analysis and the melting point of 45 DESs was established by Garcia et al. [122]. The
electron density characterized in the cage critical points (CCP) of the entire DES complex was regarded
as a characteristic able to explain the melting point of DESs. They found that lower electron densities
in CCPs, which are due to charge delocalization, result in lower melting points. Zahn et al. [123]
challenged the well–known concept that charge transfer from the anion to the HBD is responsible for
DES formation and the respective depression in melting point. In their communication, they studied
three DESs: {ChCl:Ethylene glycol}, {ChCl:Oxalic acid} and {ChCl:Urea}. They found that, despite the
first two systems, the charge transferred from Cl− to urea in {ChCl:Urea} mixture is negligible and the
urea remains uncharged overall. The respective radial distribution functions (RDFs) suggested weaker
Cl−· · ·Urea H-bonds than those between Ch+

· · ·Cl−, which clearly explained the lower Cl−· · ·urea
charge transfer. Therefore, they questioned the assumption that charge spread from anion to HBD is
responsible for the decrease in the freezing point of a DES.

To lower melting points of eutectic mixtures, Chen et al. [117] devised a ternary mixture composed
of ethylammonium bromide (EABr), butylammonium bromide (BABr), and urea in a 0.6:0.6:1 molar
ratio with a eutectic melting point of 10 ◦C, more than 40 ◦C less than the eutectic temperatures of
{EABr:Urea} and {BABr:Urea} mixtures. The prepared ternary mixture possesses the strongest H-bond
interactions, which are offset by cohesive interactions such as electrostatic or van der Waals. Weaker
cohesive interactions lead to more orientations of species and, in turn, facilitate H-bond formation.
Most DESs have melting points below 100 ◦C, and a limited number of them are liquid at room
temperature. Table 2 lists the melting point of selected ChCl-based DESs. Generally, the lower the
melting point, the greater the applicability of the DESs. Accordingly, the DESs with melting points less
than 50 ◦C are more favorable for practical purposes.

Table 2. Selected properties of some ChCl-based DESs reported in the literature.

HBD ChCl:HBD
Molar Ratio

Melting Point
(◦C)

Density
(g cm−3)

Viscosity (cP) Ref.

Ethylene glycol

0.36:0.64 −33.32 [124]
1:2 −66 1.12 37 (25 ◦C) [125–127]

0.28:0.72 4.15 [124]
1:3 1.12 19 (20 ◦C) [124,127]
1:4 19 (20 ◦C) [127]

Urea 1:2 12 1.25 750 (25 ◦C) [6,128]

Thiourea 1:2 69 [6]

1-methyl urea 1:2 29 [6]

1,3-dimethyl urea 1:2 70 [6]

1,1-dimethyl urea 1:2 149 [6]

Acetamide 1:2 51 [6]

Benzamide 1:2 92 [6]
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Table 2. Cont.

HBD ChCl:HBD
Molar Ratio

Melting Point
(◦C)

Density
(g cm−3)

Viscosity (cP) Ref.

Glycerol

1:1 1.16 [129]
1:1.5 [129]
1:2 −40 1.18 259 (25 ◦C) [127,129]
1:3 1.20 450 (20 ◦C) [127]
1:4 503 (20 ◦C) [127]

CF3CONH2 1:2 1.34 77 (40 ◦C) [130]

Malonic acid
1:1 10 [116]
1:2 1.25 1124 (25 ◦C) [125]

Glucose 1:1 34,400 (50 ◦C) [131]

1,4-butanediol 1:3 140 (20 ◦C) [127]
1:4 88 (20 ◦C) [127]

Imidazole 3:7 56 15 (70 ◦C) [132]

ZnCl2 1:2 85,000 (25 ◦C) [133]

Adipic acid 1:1 85 [116]

Benzoic acid 1:1 95 [116]

Citric acid 1:1 69 [116]

Oxalic acid 1:1 34 [116]

Phenylacetic acid 1:1 25 [116]

Phenylpropionic acid 1:1 20 [116]

Succinic acid 1:1 71 [116]

Tricarballylic acid 1:1 90 [116]

3.2.2. Density

The significance of density in designing chemical processes is well recognized [134]. Table 2
gives the densities of some ChCl-based DESs. In general, the reported densities in literature are in
0.785–1.63 g·cm−3 range, with the majority falling in the 1.0–1.35 g·cm−3 range at room temperature [4,
5,135,136], higher than water. The highest density reported is associated with Type IV DESs of a
{ZnCl2:Urea} mixture at a 1:3.5 molar ratio (1.63 gcm−3) [4]. This remarkable difference in densities can
be ascribed to molecular packing diversities. However, discrepancies can be found in the literature
over the reported densities for a specific DES. For instance, differences up to 4% between density values
for {ChCl:Urea} can be found in the available literature [136].

3.2.3. Viscosity

The viscosity of DESs has also been a critical parameter for industrial applications. DESs usually
have high viscosities, ascribed to their extensive networks of H-bonds, van der Waals forces, and
electrostatic interactions between constituents. Table 2 shows the viscosities of some ChCl-based DESs
at different temperatures. The nature of the DES components, their molar ratios, and the temperature
are the main factors that determine the viscosity of DESs. Since DESs were introduced as alternative
solvents, preparing DESs with low viscosities in order to expand their applicability has been of great
interest. It is well known that highly viscous DESs can be made less viscous by adding water. However,
because many properties of DESs change remarkably in water presence, DES dilution should be
performed with caution. In Section 3.2.4, the effects of water on the physicochemical properties
of DESs will be discussed. To date, studies for viscosity measurements have been carried out at
atmospheric pressure. More results are needed, especially for viscosity data at elevated pressures.
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High-pressure conditions are used for the hydrothermal processes used in many biomass and food
waste transformations.

3.2.4. Effects of Water

It has been suggested that adding water may decrease the viscosity of DESs and hence increase
their usefulness when low viscosity is important [137]. On the other hand, water is usually a main
component of biomass and food waste. Most DESs are very hygroscopic and can absorb water from air.
Even a trace amount of water influences their structures and properties [138]. DESs contain cations and
anions and, therefore, their binary mixtures with water can be very different from ordinary solvents.
Figure 8 represents a proposed mechanism for water addition to a typical DES. When water is added to
the DES, all the species are hydrated, but it is expected that the anions will be more tightly connected to
the surrounding water molecules. Small anions like halides are usually fully solvated, even in highly
diluted mixtures [139]. Understanding the effects of water on physicochemical properties of DESs such
as density, viscosity, conductivity, surface tension, etc. is crucial. Among all the properties, density and
viscosity are the most widely investigated features. The excess values of volume (VE) and viscosity
(ηE) of DES binary mixtures, which can be either positive, negative, or both, are usually regarded as
measures of non-ideality of such mixtures.
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Effects of Water on the Density of Deep Eutectic Solvents

Density, ρ, and excess molar volumes, VE, are often used for analyzing the variations of DESs
upon water addition. VE is defined by the following Equation:

VE =
x1M1 + x2M2

ρmix
−

x1M1

ρ∗1
−

x2M2

ρ∗2
(2)

where x1 and x2 are the mole fractions, M1 and M2 are molecular weights, and ρ∗1, ρ∗2 and ρmix are the
densities of Component 1, Component 2, and the binary mixture, respectively. Different DES–water
binary mixtures show different VE features throughout the entire compositional range [139–143]. For
instance, Kuddushi et al. suggested that the negative VE values of the {ChCl:Malonic acid} and
{ChCl:Glutaric acid} DESs combined with water could be due to the dominance of intermolecular
interactions, i.e., H-bonds between ions and water and HBD and water over intramolecular
interactions [143]. Most of the available experimental data measured the densities of DESs in
atmospheric pressure. Only a few studies have investigated the densities or excess molar volumes at
elevated pressures [144,145], and these have shown that pressure has a greater effect on VE values than
temperature does.

Effects of Water on the Viscosity of DESs

Adding water decreases the viscosity of DESs remarkably. To further study the effects of addition
of water on DES viscosity, excess viscosity, ηE, can be obtained as follows:

ηE = ηmix − x1η
∗

1 − x2η
∗

2 (3)
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where η∗1, η∗2, and ηmix are the viscosity of Component 1, Component 2, and the binary mixture,
respectively. The non-ideal behavior of binary mixtures results in a variety of shapes and positive
or negative signs of ηE values [146,147]. All the experimental ηE results were calculated at ambient
pressure, and no data, to the authors’ best knowledge, are available for elevated pressures.

3.2.5. Dielectric Properties

The dielectric properties of mixtures have significant effects on their intermolecular
interactions [148]. The static dielectric constant is a measure of the polarity and intermolecular
interactions in a solvent [149], which helps to understand the solvation ability of the solvent [150].
The dielectric constants of 42 ILs were measured by Huang et al. [150] using dielectric relaxation
spectroscopy. Dielectric relaxation spectroscopy (DRS) is known to be a useful technique to investigate
the structural dynamics of liquids [151]. Moreover, for materials of an ionic nature, dielectric
spectroscopy is an effective method by which to understand the mechanisms related to charge
transport [152]. Despite many studies on ILs, only a few studies on the dielectric properties of
DESs have been performed [152–159]. For example, Griffin et al. [159] utilized broadband dielectric
spectroscopy in combination with depolarized dynamic light scattering to explore the charge transport
and structural dynamics of a deep eutectic mixture, {Lidocaine:2Decanoic acid}. The dielectric
spectra at room temperature showed that the mixture was around 25% ionic. They also showed
that at elevated temperatures, the mixture had modest direct current (DC) conductivity. One year
later, Mukherjee et al. [158] studied the dielectric relaxation of six different acetamide-based DESs.
The electrolytes used to form DESs with acetamide were: LiBr, LiNO3, LiCl4, NaClO4, NaSCN,
and KSCN. The measurements revealed that the relaxation parameters were dependent on the
nature of the electrolytes. Their results suggest that the dielectric relaxation in DESs are similar
to those reported for ILs and electrolyte solutions. The two ionic DESs, {Acetamide:LiNO3} and
{Acetamide:NaSCN},were further investigated by Tripathy et al. [157] using dielectric relaxation
spectroscopy in a relatively wide temperature range (173–373 K). They were able to establish the
fundamental of the secondary relaxation process. They found that below the temperature of glass
transition, two secondary relaxation processes happened. Not only ionic DESs, but non-ionic DESs
were also studied to explore their dielectric properties. Mukherjee et al. [155] performed dielectric
relaxation spectroscopy and time-resolved fluorescence to study a polyethylene-glycol-based DES.
For this DES, the obtained static dielectric constant was large, even greater than that of many polar
solvents. Moreover, as for the ionic acetamide DESs, the non-ionic polyethylene-glycol-based DES has
a nanosecond relaxation component. Very recently, Reuter et al. [152] employed dielectric spectroscopy
to study the reorientational relaxation dynamics and the charge transfer of three DESs, {ChCl:Ethylene
glycol}, {ChCl:Urea} and {ChCl:Glycerol}, all at a 1:2 molar ratio. They found that the ionic translational
motions and the reorientational motions were closely coupled.

4. Major Applications of Deep Eutectic Solvents and Natural Deep Eutectic Solvents

DESs and NADESs are now viewed as convenient green alternatives to many conventional
solvents with vast applications. However, in the following section, we present their use only in biomass
and food industry processing.

4.1. Application of Deep Eutectic Solvents in Biomass and Food Industry Processing

Table 3 gives a selection of DESs/NADESs used as pretreatment agents, solvents, cosolvents, or
catalysts in biomass and food industry processes. In several cases, the aim is to produce biofuel and
value-added chemicals. Lignocellulosic biomass is a raw material for fuel and chemical production
that is available from various sources. As shown in Figure 2, lignocellulosic biomass is comprised of
three major constituents: cellulose, hemicellulose, and lignin. The composition of the biomass varies
depending on the origin. However, processing the lignocellulosic biomass and its constituents is
hindered by low solubility in aqueous and organic systems.
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Table 3. DES/NADES used in biomass and food residue processes.

DES/NADES Molar Ratio Role of the DES/NADES Ref.

DES/NADES as Pretreatment Solvents

ChCl:Oxalic acid
ChCl:Levulinic acid

ChCl:Urea
ChCl:Ethylene glycol

ChCl:Sorbitol

1:2
1:2
1:2
1:2
1:1

Pretreatment of microalgae for solvent
extraction of lipids [110]

ChCl:Glycerol
ChCl:Ethylene glycol

Ethylammonium Cl:Glycerol
Ethylammonium Cl:Ethylene glycol

ChCl:Urea

1:2 Pretreatment media on oil palm trunk fiber [160]

ChCl:Urea 1:2 Pretreatment for oil palm empty fruit bunch [161]

ChCl:Ethylene glycol (under acidic condition) 1:2 Pretreatment of switchgrass to remove
lignin and xylan [26]

Ammonium thiocyanate:Urea
Guanidine hydrochloride:Urea 1:2 Pretreatment for cellulose nanofibril

production [162]

ChCl:Glycerol
ChCl:Urea

ChCl:Imidazole

1:2
1:2
3:7

Pretreatment and saccharification of
corncob residues [84]

ChCl:Urea 1:2 Pretreatment of rice straw [163]

ChCl:Oxalic acid
ChCl:KOH

ChCl:Lactic acid
ChCl:Urea

1:1 and 1:2
1:4
1:2
1:2

Fractionation of waste lignocellulosic
biomass and its conversion to value-added

chemicals
[164]

ChCl:Lactic acid 1:10 Pretreatment to deconstruct the recalcitrant
structure of eucalyptus [165]

ChCl:Glycerol
1:2
1:3
1:6

Pretreatment of lignocellulosic date palm
residues to enhance cellulose digestibility [81]

ChCl:Ethylene glycol 1:2 Pretreatment of eucalyptus wood globules [166]

ChCl:Water Different
ratios

Pretreatment and delignification of garden
waste [167]

ChCl:Urea 1:2 Pretreatment and delignification of oil palm
fronds [168]

ChCl:Glycerol 1:2 Pretreatment of lettuce leaves [21]

ChCl:Glycerol
ChCl:Ethylene glycol

1:2
1:2

Pretreatment of apple residues, potato peels,
coffee silverskin, and spent brewer’s grains [169]

ChCl:Glycerol:AlCl3.6H2O 1:2:1 Cleavage of lignin–carbohydrate complexes
and the fractionation of lignin. [80]

ChCl:Urea
ChCl:Glycerol

ChCl:Formic acid
ChCl:Acetic acid
ChCl:Oxalic acid

ChCl:Malonic acid
ChCl:Citric acid

1:2
1:2
1:2
1:2
1:1
1:1
1:1

Pretreatment of corn stover biomass [8]

ChCl:Boric acid
ChCl:Glycerol

Betaine:Glycerol

5:2
1:1
1:1

Pretreatment of eucalyptus pulp, spruce
saw dust, and wheat straw [82]

8 ChCl-based DESs Different
ratios Pretreatment of wood cellulose fibers [170]
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Table 3. Cont.

DES/NADES Molar Ratio Role of the DES/NADES Ref.

Guanidine hydrochloride:Ethylene
glycol:p-toluenesulfonic acid

Guanidine hydrochloride:Propylene
glycol:p-toluenesulfonic acid

Guanidine
hydrochloride:Glycerine:p-toluenesulfonic acid

ChCl:Ethylene glycol:p-toluenesulfonic acid
ChCl:Propylene glycol:p-toluenesulfonic acid

ChCl:Glycerine:p-toluenesulfonic acid

1:1.95:0.06
1:1.95:0.06
1:1.95:0.06
1:1.95:0.06
1:1.95:0.06
1:1.95:0.06

Pretreatment to remove lignin and xylan
from switchgrass [171]

ChCl:Urea 1:2 Pretreatment of oil palm fronds after
ultrasonication in water medium [172]

Benzyltrimethylammonium Cl:Lactic acid
Benzyltriethylammonium Cl:Lactic acid

1:1
1:1 Pretreatment of corncob [173]

ChCl:Lactic acid
ChCl:Urea

ChCl:Glycerol

Different
ratios

1:2
1:2

Pretreatment of oil palm empty fruit bunch [174]

ChCl with different carboxylic acids Different
ratios

Pretreatment of lignocellulosic oil palm
empty fruit bunch [175]

DES/NADES as Extraction Solvents

ChCl:Urea (aqueous) 1:2 Upgrading the biogas from anaerobic
digestion of biological wastes [176]

ChCl with different monocarboxylic, dicarboxylic
acids or polyalcohols

Different
ratios Delignification of corncob biomass [22]

6 ChCl-based DESs (ChCl:Oxalic acid was the
best DES)

Different
ratios

Extraction of collagen peptide from cod
skins [31]

ChCl:Glycerol 1:2 Extraction of proteins from oilseed cakes [27]

11 ChCl-based NADESs (the best one is
ChCl:DL-malic acid)

Different
ratios

Removing calcium carbonate and protein to
produce O-acylated chitin in shrimp shells. [177]

ChCl:Ascorbic acid
1.2:1
2:1

2.5:1
Extraction of antioxidants [178]

Betaine monohydrate: Glycerol 1:8 Deacidification of palm oil [179]

ChCl- or lactic acid-based DES with different
HBDs 1:1 Delignification of rice straw [180]

Various NADESs Different
ratios Extraction of vanillin from vanilla pods [181]

Various DESs Different
ratios

Extraction of phenolic compounds from
olive oil [32]

ChCl:Malic acid 1:1 Extraction of minerals and proteins from
shrimp shells [182]

Various DESs 1:2 or 1:1:1 Delignification and n-butanol production [183]

Lactic acid:Glucose:Water 6:1:6 Extraction of phenolic compounds in extra
virgin olive oils [184]

Various acidic or neutral DES Different
ratios Delignification and ethanol production [185]

Lactic acid:Glucose
Citric acid:Glucose
Fructose:Citric acid

5:1
1:1
1:1

Phenolic compound extraction from
agri-food byproducts [186]

Tetrabutylammonium Cl:Decanoic acid 1:3 Extraction of quercetin from vegetable and
fruit samples [187]

ChCl:Citric acid:30% water 1:1 Extraction of isoflavones from soy products [188]

ChCl:different HBDs Different
ratios Extraction of anthocyanins from grape skin [33]
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Table 3. Cont.

DES/NADES Molar Ratio Role of the DES/NADES Ref.

Betaine:Glycerol:D-(+)-glucose 4:20:1 Extraction and storage media for bioactive
natural products from green tea [189]

ChCl:Acetic acid
ChCl: Malonic acid

ChCl:Citric acid

1:2
1:1
3:2

Extraction of tocols from crude palm oil [190]

ChCl:Lactic acid
Sodium acetate:Lactic acid

Ammonium acetate:Lacticacid
Glycine:Llactic acid:Water

3:1
3:1
3:1

3:1:3

Extraction of antioxidant polyphenols from
common native Greek medicinal plants [191]

Proline:Glycerol 2:5 Flavonoid extraction from Flos sophorae [192]

Various NADESs Different
ratios

Extraction of rutin from tartary buckwheat
hull [193]

l-Proline:Glycerol 1:4 Extraction of flavonoids from Radix
scutellariae [194]

Various DESs Different
ratios

Extraction of different types of bioactive
alkaloids [195]

Betaine:Hexafluoroisopropanol
l-Carnitine:Hexafluoroisopropanol

1:2, 1:2.5, 1:3
1:2, 1:2.5, 1:3

Microextraction of pyrethroids in tea
beverages and fruit juices [196]

ChCl:Lactic acid 1:2 Delignification of corn stover, switchgrass
and Miscanthus [197]

Various DESs Different
ratios

Extraction of bioactive flavone C-glycosides
from Flos trollii [198]

ChCl:Ethylene glycol 1:3 Extraction of phenolic compounds from
rattan [25]

12 ChCl-based DESs Different
ratios

Recovering polyphenols from microalgal
biomass [199]

ChCl:Lactic acid 1:1 Extraction of baicalin from Scutellaria
baicalensis Georgi [200]

14 ChCl-based DESs (ChCl:Malonic acid was the
best DES) 1:2 Extraction of chitin from shrimp shells [50]

ChCl:1,4–butanediol 1:5 Extraction of flavonoids from Cyclocarya
paliurus (Batal.) Iljinskaja leaves [29]

Various DESs Different
ratios

Extraction of hydrophilic and hydrophobic
components from Radix salviae miltiorrhizae [201]

ChCl:Glycerol
ChCl:Oxalic acid
ChCl:Malic acid

ChCl:Glucose
ChCl:Fructose
ChCl:Xylose

ChCl:Citric acid

1:2
1:1
1:1
2:1

1.9:1
2:1

Not found

Extraction of wine lees anthocyanins [202]

ChCl:Acetic acid
ChCl:Lactic acid

ChCl:Levulinic acid
ChCl:Glycerol

1:1 Delignification of poplar and Douglas fir
wood [203]

ChCl:Glucose
ChCl:Fructose
ChCl:Xylose

ChCl:Glycerol
ChCl:Malic acid

2:1
1.9:1
2:1
1:2
1:1

Extraction of phenolic compounds in grape
skin [204]

Various DESs Different
ratios

Extraction of alkaloids, flavonoids,
saponins, anthraquinones, and phenolic

acids
[111]

ChCl:Oxalic acid dihydrate
ChCl:Glycerol

ChCl:Urea
1:1 Delignification of poplar wood [205]
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Table 3. Cont.

DES/NADES Molar Ratio Role of the DES/NADES Ref.

ChCl:1,2-propanediol
Lactic acid:Glucose
Proline:Malic acid
ChCl:Malic acid

ChCl:Glucose
Glucose:Fructose:Sucrose

1:1
5:1
1:1
1:1
1:1

1:1:1

Extraction of anthocyanins from
Catharanthus roseus [206]

7 ChCl-based DESs 1:2 Extraction of seaweed polysaccharides from
Saccharina japonica in subcritical condition [108]

ChCl:Malonic acid:55%Water 1:2 Extraction of proanthocyanidin from Ginkgo
biloba leaves [207]

Glycerol:Xylitol:D-(−)-Fructose 3:3:3 Extraction polyphenols and
furanocoumarins from fig leaves [208]

ChCl:Maltose:20% Water 1:2 Extraction and determination of phenolics
in Cajanus cajan leaves [209]

20 ChCl- and glycerol-based NADESs Different ratio Extraction of cadmium from rice flour [210]

Various NADESs Different ratio Extraction of main bioactive flavonoids
from Radix ccutellariae [211]

ChCl:Urea
ChCl:Glycerol
ChCl:Thiourea

ChCl:Malonic acid

1:2 Extraction of chitin from lobster shells [212]

Various DESs Different
ratios Extraction of saponins from sisal and juá [213]

Glycerol:L-proline:Sucrose 9:4:1 Extraction of polar ginseng saponins from
white ginseng [214]

ChCl:Urea
ChCl:Glycerol

ChCl:Ethylene glycol
1:2 Extraction of k-carrageenan from

Kappaphycus alvarezii [215]

Lactic acid:Glucose:Water
Lactic acid:Glucose

Lactic acid:Glycine:Water
Lactic acid:Glycine

6:1:6 and 5:1:3
5:1

3:1:1
9:1

Extraction of pectin from pomelo peels [216]

ChCl:Phenol 1:3 Separation of caffeine from beverages [217]

9 ChCl-based DESs (ChCl:p-cresol had the
highest extraction efficiency) 1:2 Extraction of polar and non-polar lignans [218]

Various DESs (ChCl:Lactic acid, 1:9, exhibits
optimal extraction capacity)

Different
ratios

Selective extraction of lignin from poplar
wood meal [219]

ChCl:Oxalic acid
ChCl:Betaine

ChCl:Urea

1.5:1
3:1
1:1

Solvent for conversion of lignocellulosic
waste into HMF/furfural [220]

ChCl:Urea
ChCl:Glycerol

ChCl:Citric acid
ChCl:Lactic acid

1:2
1:2
1:1
1:1

Solvent for conversion of furfural into
cyclopentenone derivatives [221]

ChCl:Formic acid
ChCl:Lactic acid
ChCl:Acetic acid

Betaine:Lactic acid
Proline:Lactic acid

1:2
1:10
1:2
1:2

1:3.3

Solvents to solubilize lignocellulosic
components [222]

ChCl:Oxalic acid
ChCl:Citric acid

ChCl:Tartaric acid

1:1
0.7:0.3
0.7:0.3

Solvent and catalyst for conversion of
cellulose into low molecular compounds [223]

Various NADESs Different
ratios Solvent to solubilize proteins [224]

ChCl:Imidazole
Imidazole:Glycerol

Imidazole:Citric acid
Imidazole:Malic acid

3:7 and 2:3
1:1 and 7:3

7:3
7:3

Starch dissolution and plasticization [225]
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Table 3. Cont.

DES/NADES Molar Ratio Role of the DES/NADES Ref.

ChCl:Lactic acid 1:2 Extraction of lignin nanoparticles from
wheat straw [226]

ChCl:Levulinic acid:Methyl urea 1:1:1 Extraction of flavonoids from citrus peel
waste [227]

11 ChCl-based DESs 1:1 to 1:3 Extract bioactive compounds from Lycium
barbarum L. fruits [228]

DES/NADES as Catalyst

ChCl:KOH
ChCl:p-Toluenesulfonic acid monohydrate

ChCl:Glycerol
ChCl:FeCl3

1:4
1:4
1:3
1:3

Catalyst and cosolvent for hydrothermal
liquefaction of de-oiled Jatropha curcas cake [24]

ChCl:p-Toluenesulphonic acid 1:3, 1:5, 1:7 Catalyst in co-liquefaction of Jatropha curcas
seed [23]

Citric acid:Alanine 1:1
Catalyst in extraction of phenolic

compounds from mangosteen pericarps in
subcritical water

[109]

ChCl:Oxalic acid Different
ratios

Conversion of biomass furfural to fumaric
acid and maleic acid in the presence of

H2O2

[229]

ChCl:p-Toluenesulfonic acid 1:6
Using DES as heterogeneous and

homogeneous catalysts to produce
biodiesel from Pongamia pinnata seed oil

[230]

Therefore, DESs or NADESs are usually used for fractionation and pretreatment of lignocellulosic
biomass for further processing and/or to selectively isolate the desired component(s) from the
remaining matrix. DESs and NADESs are also widely used for the extraction of desired chemicals from
different materials. Food residues contain considerable amounts of proteins, lipids, and carbohydrates.
Nevertheless, despite the widely recognized potential of such solvents for the extraction of chemicals
and pretreatment of materials, their application in the food industry is still rather unexplored.

4.1.1. Deep Eutectic Solvents and Natural Deep Eutectic Solvents as Pretreatment Solvents

The conversion of food residue or biomass to biofuel usually consists of several consecutive
stages. Pretreatment, as a key stage in the bioconversion of biomass and food residue, involves the
enzymatic hydrolysis, a feasible method for lignocellulosic biomass that reduces the recalcitrance of
the biomass [231,232]. The recalcitrance is mainly due to the lignin component.

Figure 9 represents the role of a typical DES as a pretreatment solvent for wheat straw to facilitate
the enzymatic hydrolysis of the biomass components.
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A pretreatment process can be used to facilitate solvent extraction. Different pretreatment
technologies have been developed in the last few decades [234], and each can be employed for a
specific objective. At present, these technologies suffer from several drawbacks, most importantly the
high cost and harmful effects of the pretreatment agents on the desired components. To overcome
these disadvantages, DESs and NADESs have been introduced as green pretreatment agents. They are
used on lignocellulosic biomass to improve the production of biofuel. The power of these solvents to
dissolve the hard lignin component of biomass has paved the way for biomass pretreatment under
mild conditions.

In a study, Xu et al. [8] used seven DESs to pretreat corn stover for obtaining biobutanol. Among
all the DESs, the acidic {ChCl:Formic acid} showed the best performance for hemicellulose and
lignin removal. Chen at al. [26] used {ChCl:Ethylene glycol} DES under acidic conditions to pretreat
switchgrass. Lignin and hemicellulose components were substantially removed and the cellulose was
enriched up to 72.6%. The fermentable sugar was finally converted to 90.2 g/L 2,3-butanediol.

Mamilla et al. [164] prepared and applied several ChCl-based DESs to fractionate lignocellulosic
biomass. {ChCl:Oxalic acid} and {ChCl:KOH} DESs proved to be more effective in dissolving beech
wood polymers. During the experiment, other parameters such as reaction time, temperature, and
the chip to solution mass were controlled. The results showed that {ChCl:Oxalic acid} DES separated
phenols selectively, and that this DES could be scalable for employment in biorefinery plants where
lignin is to be isolated first.

Precentese et al. [169] pretreated apple residues, potato peels, coffee silverskin, and spent brewer’s
grains with {ChCl:Glycerol} and {ChCl:Ethylene glycol} DESs to produce fermentable sugar. The
optimum operating conditions were 3 h of pretreatment with {ChCl:Glycerol} DES with a solid:solvent
ratio of 1:16 at 115 ◦C.

The fractionation efficiency of lignocellulosic material can be improved when using an additional
hydrothermal pretreatment. For instance, in order to increase the efficiency of the {ChCl:Glycerol}
DES treatment, a prior hydrothermal pretreatment was applied to reduce the recalcitrance of date
palm residues [81]. This proposed approach revived the efficiency of DESs for cellulose digestibility.
Liang et al. [166] used hydrothermal and {ChCl:Ethylene glycol} DES pretreatment for biomass
fractionation and lignin removal. At the end, they separated and recovered the DES components by
electrodialysis with recovery ratios of 92% and 96% for ChCl and ethylene glycol, respectively.

Some researchers used in situ prepared eutectic solvents, with one component usually taken from
the biomass. For example, Yu et al. [167] proposed a modified liquid hot water (MLHW) process for
the pretreatment and delignification of garden wastes based on in situ preparation of {ChCl:H2O} DES.
For one type of the tested biomass (leaf sheaths of Roystonea regia, LSR), the biomethane yield was
improved by as much as 309.0%.

Shen et al. [165] developed a biomass-derived {ChCl:Lactic acid} NADES (1:10 molar ratio)
pretreatment to deconstruct eucalyptus structure at 110 ◦C and 6 h for the removal of hemicellulose
and lignin. Under this optimum condition, the glucose yield was up to 94.3%, 9.8 times higher than
the original biomass without DES pretreatment.

In some cases, water can be mixed in with the eutectic solvent to, for example, improve the
viscosity of the media. However, the new aqueous mixed solvent gains new characteristic features.
To study the effect of water addition and consequent improved viscosity of {ChCl:Urea} DES for
delignification of oil palm fronds, New et al. [168] pretreated the biomass sample with the prepared
aqueous DES at 120 ◦C for 4 h. They found that the DES/water mixture had an improved lignin
removal ability compared to pure DES. The energy requirement for biomass transformations can also
be considered. Procentese et al. [21] compared the energy required for pretreatment of lettuce leaves to
produce biobutanol by {ChCl:Glycerol} solvent and by NaOH solvent and steam explosion method.
They found that DES pretreatment with 94.9% glucose and 75.0% xylose yield, required 28% and 72%
less energy than NaOH and steam explosion processes, respectively.
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Microalgae-derived lipids are regarded as a sustainable biodiesel feedstock alternative. In order
to extract lipids from microalgae biomass using dimethyl carbonate (DMC) and supercritical CO2

solvents, ChCl-based DESs combined with microwaves were used for pretreatment [110]. It was found
that DESs made of {ChCl:Carboxylic acids} had an increased selectivity (16%) and increased total fatty
acid (TFA) extraction yield (80%) in DMC. This pretreatment also improved the extraction yield of
lipids in supercritical CO2.

However, not all DESs are always suitable for biomass fractionation and breakage of
lignin–carbohydrates. For example, it has been reported that {ChCl:Glycerol} DES is less effective
at fractionating lignocellulosic biomass than other types of DES [81,84,203]. Therefore, coordinating
suitable components into the DESs and preparing a ternary DES can significantly improve the DES’s
power to fraction biomass. In the case of {ChCl:Glycerol} DES, Xia et al. [80] conducted a study using
density functional theory (DFT) and Kamlet–Taft solvatochromic methods to analyze the nature of the
interactions between the DES components and biomass, and to explore why this DES has low efficiency
in lignin fractionation during pretreatment processes. They found that the decreased efficiency of the
DES in lignin solubilization (breakage of lignin–carbohydrate linkages) is because of the mutually
anionic and cationic H-bonds in the DES network, which result in weak competing interactions towards
the biomass linkages. Moreover, as the DES lacks acidic sites, the ether bonds of the biomass are not
broken. To increase the DES efficiency, they incorporated AlCl3.6H2O into the DES to design a ternary
DES (Figure 10). The resulting multisite-ligand-containing DES could effectively break the ether bonds
as well as the H-bonds of the biomass. By doing so, the lignin fractionation yield increased from 3.61%
to 95.46%.
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In another study, a ternary DES composed of {guanidine hydrochloride:ethylene
glycol:p-toluenesulfonic acid} was developed to pretreat switchgrass and produce concentrated
sugar hydrolysate [171]. This solvent was the most efficient DES, with 79% xylan and 82% lignin
removal at 120 ◦C and in 6 min with 10 wt. % solid loading.

4.1.2. Deep Eutectic Solvents and Natural Deep Eutectic Solvents as Extraction Solvents

The number of studies on extraction and separation media for bioactive compounds is increasing.
Since DESs and NADESs are composed of simple and naturally occurring components, they can be
employed for the extraction of desired compounds such as proteins, peptides, phenolic compounds,
etc. from plants or other matrices. In one recent study, six types of DES were employed to extract
collagen peptides from cod skins [31]. Based on the criteria of high extraction efficiency and high
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purity, {ChCl:Oxalic acid} DES was considered to be an optimal solvent for extraction. However,
the efficiency was influenced by several factors, including the molar ratio of DES components, the
operating temperature, and the ratio of DES to sample.

Shrimp shells are a source of several valuable chemicals that can be extracted by eutectic mixtures.
Huang et al. [182] used a NADES, {ChCl:Malic acid}, to extract chitin from shrimp shells. Assisted by
microwave irradiation, the NADES could remove most of the minerals and proteins from the shells. In
another study, chitin was extracted from shrimp shells by various NADESs to produce chitin films.
Among all tested NADESs, {ChCl:Malic acid} NADES extracted the highest purity chitin with a yield
of 19.41% ± 1.35%, higher than the conventional method (16.08% ± 0.57%) [50]. The conventional
method included treatment of the demineralized sample with 6% HCL (w/v) and the treatment of
the residue with 10% NaOH (w/v) [212]. Feng et al. [177] used acidic NADESs with decalcification,
deproteinization, and acylation abilities. The nature of the NADES, temperature, and time were key
factors affecting the experiment efficiency. With {ChCl:DL-malic acid} NADES in a 1:2 molar ratio, the
purity of O-malate chitin was up to 98.6%.

Microalgae biomass has many bioactive substances. In a study by Mahmood et al. [199] to evaluate
the ability of 12 ChCl-based DESs and compare their performance with two benchmark conventional
solvents (ethyl acetate and water), microalgae biomass was subjected to extraction for recovering
polyphenols at 60 ◦C, with a DES to biomass ratio of 20:1 for 100 min [199]. The results support the
superiority of DESs over conventional solvents for polyphenolic extraction yield.

Agri-food industrial by-products are also subjected to valorization. In a study conducted by
Garcia et al. [32] a variety of ChCl-based DESs were used to extract phenolic compounds from virgin
olive oils. Two of the DESs, {ChCl:Xyliton} and {ChCl:1,2-Propanediol} showed a profound increase of
extraction up to 20%–33% and 67.9%–68.3% compared to a conventional 80% (v/v) methanol/water.
In 2017, Bosiljkov et al. [202] performed an ultrasound-assisted {ChCl:malic acid} NADES extraction
of wine lees anthocyanins. In their study, the optimum conditions were: 30.6 min of extraction time,
341.5 W of ultrasound power and 35.4% water content in the NADES (w/w). Grudniewska et al. used
{ChCl:Glycerol} DES for enhanced extraction of proteins from oilseed cakes [27]. First, they extracted
the proteins into the DES. The extract was then precipitated upon addition of an antisolvent, water. The
noticeable point is that the yield of precipitate increased with increasing temperature of the treatment.

Fernandez et al. [186] employed a novel NADES, {Lactic acid:Glucose}, {Citric acid:Glucose}, and
{Citric acid:Fructose} in, respectively, 5:1, 1:1, and 1:1 molar ratios for ultrasound-assisted extraction
of 14 phenolic compounds from onion, olive, tomato, and pear byproducts at 40 ◦C. The aqueous
{Lactic acid:Glucose} NADES was selected as the optimal solvent. To show the power of the NADES in
the extraction of phenolic compounds, the extraction efficiency of the eutectic solvent was compared
to those from methanol and water. It was concluded that the {Lactic acid:Glucose} NADES yielded
higher extractability.

Deng et al. [196] synthesized a series of water-soluble DESs composed of hexafluoroisopropanol
(HFIP) as HBD and l-carnitine/betaine as HBAs to extract pyrethroid residues from tea beverages
and fruit juices. The results indicated that the extraction method based on {l-Carnitine:HFIP} (1:2
molar ratio) solvent had several advantages, such as a short extraction time and high enrichment factor.
In 2019, Cao et al. [25] applied a combination of {ChCl:Ethylene glycol} DES (1:3 molar ratio) with a
homogenate-assisted vacuum-cavitation extraction method for isolation of phenolic compounds from
rattan. Under the optimum conditions, the extraction efficiency of total phenolic compounds was
6.82 mg/g.

Eutectic mixtures can perform as reaction media as well as extraction solvents for bioconversion
of a number of components. For example, Gioia et al. [221] explored the possibility of a selective
conversion of furfural, produced by biomass, to bifunctionalized cyclopentenone derivatives in a DES
made of {ChCl:Urea}. In another study, cellulose derived from sunflower stalks was converted to some
value-added components in a DES medium [223]. Three DESs, namely, {ChCl:Oxalic acid}, {ChCl:Citric
acid}, and {ChCl:Tartaric acid} were used as solvents and catalysts. With {ChCl:Oxalic acid} DES and



Molecules 2019, 24, 4012 20 of 37

under microwave irradiation, 99.07% carbon efficiency was obtained at 180 ◦C in 1 min. Under such
conditions, 4.07% of 5-hydroxymethyl furfural (5-HMF), 76.2% of levulinic acid, 5.57% of furfural, and
15.24% of formic acid were produced.

The applicability of NADESs for the removal of cadmium from rice flour was examined by
Huang et al. [210]. Among the ChCl-based and glycerol-based NADESs, the former demonstrated
good removal of Cd (51%–96%). The interesting point was that the NADESs did not affect the structure
or chemical components of rice flour.

Anaerobic digestion of biological and food wastes produces biogas, which is considered a
renewable energy supply. Biogas’ main impurity is CO2, which should be removed in the upgrading
process. In a very recent study [176], the well-known DES {ChCl:Urea}, in aqueous form, was employed
as a liquid absorbent in a conceptual process to upgrade biogas. For the simulation, experimental
thermophysical properties were evaluated. In comparison with a pure water process, it was concluded
that the DES addition decreased the energy use by 16%. Moreover, to study how environment could
be influenced by the process, they employed the Green Degree (GD) assessing method [235]. In this
method, an integrated index containing nine environmental factors is reported. The DES loss was
negligible due to its very low vapor pressure and thermal stability. They found that the calculated
difference of GDs, ∆GD, was higher than zero for aqueous {ChCl:Urea} processes, implying that this
process is environmentally benign.

4.1.3. Deep Eutectic Solvents as Catalysts

In spite of their great potential, the use of DESs as catalysts or cosolvents in hydrothermal
liquefaction of biomass has barely been studied. In a study in 2016 [24], the efficiencies of four
ChCl-based DESs as catalysts and cosolvents ({ChCl:KOH}, {ChCl:p-toluenesulfonic acid monohydrate},
{ChCl:Glycerol} and {ChCl:Ferric Cl}) and their effects on biocrude production were evaluated in a
hydrothermal liquefaction process of de-oiled Jatropha cake. The highest biocrude yield was obtained
by {ChCl:KOH} (43.53%) and {ChCl:p-Toluenesulfonic acid monohydrate} (38.31%) DESs. They found
that when using DESs as catalysts and cosolvents simultaneously in the hydrothermal liquefaction
of biomass, the selectivity of biocrude could be increased. They also found that DESs containing
HBDs preferred to yield aromatic oil via the condensation and hydrolysis of lipids. In another study,
{ChCl:p-Toluenesulphonic acid} DES was employed as a catalyst for the co-liquefaction of glycerol and
whole Jatropha curcas seed to obtain bio-oil [23]. Among all the parameters, temperature was found to
be the predominant one. The results were compared with those of Na2CO3-catalyzed liquefaction.
The bio-oil yield and oxygen content were higher for liquefaction (32.87% and 28.15 ± 0.88 wt. %)
than co-liquefaction (8.99% and 21.58 ± 0.70 wt. %). The higher heating value (HHV) of bio-oil from
co-liquefaction (31.73 ± 0.69 MJ/kg) was higher than that of liquefaction (28.80 ± 1.32 MJ/kg). Therefore,
it was concluded that the bio-oil yield was decreased with the DES-catalyzed process, but the quality
of the product improved. Machmudah et al. [109] extracted xanthone and phenolic compounds from
pericarps of mangosteen. They employed a subcritical water treatment, containing deionized water
and 10%–30% (v/v) {Citric acid:Analine} DES as extraction media. Different temperatures (120–160 ◦C)
and pressures (1–10 MPa) in batch and semi-batch systems were applied. They concluded that the
higher extraction efficiency in presence of the DES seemed to be due to the role of the DES as a catalyst
in the solution. To produce biodiesel from non-edible seed oil, {ChCl:p-Toluenesulfonic acid} DES
was synthesized to be used as heterogeneous (supported on silica gel) and homogeneous (without
support) catalysts. In the temperature range 273–353 K, the catalysts showed thermal stability. The
homogeneous catalyst had a dual role of catalyst and cosolvent, reducing reaction time and enhancing
the phase homogeneity. The homogeneous and heterogeneous catalysts were recycled for four and
seven cycles, respectively. It was concluded that both types of catalysts effectively produced an
acceptable quality biodiesel through a single step esterification [230].

Under some conditions, a component of the DES can perform as a catalyst in a bioconversion. For
instance, in a very recent study, Ni et al. [229] explored the conversion of biomass-derived furfural
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to maleic acid and fumaric acid with {ChCl:Oxalic acid} DES, where oxalic acid worked as an acidic
catalyst for the mentioned conversion (Figure 11). The maleic acid and fumaric acid conversion yield
95.7% at 50 ◦C with H2O2 as an oxidizer.
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5. Recyclability of Deep Eutectic Solvents

Recyclability of a solvent is desirable to achieve an economically and environmentally sustainable
material extraction or pretreatment process. This usually involves recovery or separation and,
if necessary, purification of the solvent, followed by reusing or recycling it. When it comes
to eutectic solvents, besides pretreatment or extraction efficacy, recyclability is a significant
advantage [52,79,236]. The number of cycles for DES regeneration has so far been limited by factors such
as a decrease of performance efficiency, thermal instability, and susceptibility to contaminants [237,238].
Kumar et al. [239] reported no loss in performance strength of used DES after three cycles of pretreatment.
Gioia et al. [221] used {ChCl:Urea} as a reaction medium and claimed that the solvent could be reused
up to four times with no reduction in its efficiency.

However, reduction in recycled DES efficiency has been observed in some cases. Shen et al. [165]
found that the recovered yield of {ChCl:Lactic acid} DES, evaluated by mass measurement was at
least 90% per cycle. In a study by Morais et al. [28], xylan was solubilized and extracted by aqueous
{ChCl:Urea} DES. The DES was then successfully recycled up to four times. However, as shown in
Figure 12, xylan solubility decreased by 5% after the first two cycles. The decrease in the DES efficiency
was due to the dissolution of some low-molecular-weight compounds like furfural and phenolic
compounds that did not precipitate from the DES through the process.Molecules 2019, 24, x 21 of 35 
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The DESs can be recovered with different methods [79,240–244]. Ultrafiltration is a common
method. For example, in the example illustrated in Figure 13 for a pretreatment process of a typical
biomass (switchgrass) [79], Liquid 1 which contains DES, extracted component (lignin) and cosolvents
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(water and ethanol) is separated from the solid residue. The dissolved lignin is then separated from
Liquid 1 by ultrafiltration. Finally, Liquid 2 is heated to evaporate the cosolvents to obtain pure DES.
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The recovered DESs are sometimes examined to analyze any possible structural changes to their
components during the process. For example, FTIR was used to qualitatively analyze the recovered
ChCl and ethylene glycol components of the {ChCl:Ethylene glycol} DES after a combined hydrothermal
and DES pretreatment [166]. For both components, no significant change was observed in the stretching
or bending vibrations of O–H and C–H. The structural maintenance of components indicated the
efficient recovery method (ultrafiltration and electrodialysis) in the bioconversion process.

6. Effects of Deep Eutectic Solvents and NADESs on the structure of biomass components

Different components of the biomass and food residue are chemically influenced by solvents
during any specific stage of bioconversion. Depending on the type of the DES and other conditions
such as temperature, pressure, and pH of the mixture, the structures of these components may change.
For extraction purposes, structural modifications of the isolated species are highly avoided. There
are varieties of experimental techniques with which the structural changes of target constituents are
revealed upon solvent addition and through the process. Among the experimental methods, XRD
and SEM analysis, and FTIR, UV-vis, and NMR spectroscopies are of high importance for structural
exploration. Additionally, the use of such techniques may help to identify and prove the existence of
the desired components and to study the extraction mechanism.

In a study, delignification of corncob was performed with three ChCl-based DESs as pretreatment
solvents [22]. XRD, FTIR, and SEM were employed to explore the structure of the sample during the
process. The XRD experiment revealed that the crystallinity index of corncob residues had a minor
increase upon DES pretreatment. Because the crystallinity index of cellulose considerably decreased
after the same pretreatment process, it was concluded that the relative amount of cellulose in corncob
residues increased due to hemicellulose and lignin removal. The SEM images also indicated that the
surface of the corncob was roughened and disordered after being pretreated. This was attributed to
destructuration of the corncob by DESs via lignin and cellulose removal. In the FTIR analysis, the
decrease in the amplitude of the wavenumber bands assigned to H-bonded hydroxyls in cellulose after
DES addition indicated the formation of stronger H-bonds between DESs and corncob. The intensity
decrease and disappearance of the band at 1737 cm−1 after pretreatment by {ChCl:Carboxylic acid} and
{ChCl:Polyalcohol} was ascribed to the rupture of the ether bonds between hemicellulose and lignin.
Furthermore, the decrease of the band at 834 cm−1 after pretreatment was indicative of delignification.
In another study, FTIR and NMR spectroscopies were used to explore the molecular structure of lignin,
isolated from wheat straw biomass, before and after pretreatment with {ChCl:ZnCl2} at a 1:2 molar
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ratio [245]. The FTIR results indicated that the backbone structure of lignin did not change much
after DES pretreatment. However, the phenolic hydroxyl in the precipitates increased as the carbonyl
groups decreased. The 13C-NMR analysis also suggested that the DES used had little impact on the
amount of aromatic ring substitution.

In another study, a 2D NMR experiment on the lignin extracted from switchgrass via {ChCl:Ethylene
glycol} pretreatment revealed the cleavage of β-O-4 linkages in lignin, which facilitated the solubilization
of lignin. This clearly showed the importance of the acidic protons in the DES [26]. Huang et al. [182]
employed several techniques, namely FTIR, XRD, and TGA, to explore the chemical composition
changes of the extracted chitin from shrimp shells using {ChCl:Malic acid} NADES and acidic/alkaline
solvents. Regarding FTIR spectroscopy, they found that the spectra of the shrimp shells was considerably
different from those obtained from NADES-/acid-/alkali-extracted chitin. The XRD of NADES-extracted
samples showed a crystal lattice type of α–chitin. The increase in crystallinity index indicated that
mineral and proteins were extracted from shells by NADES. For the TGA experiment, in the range of
200 to 250 ◦C (the range typically observed for proteins in shrimp shells) the mass loss was absent in
the NADES-extracted chitin, indicating that the proteins were removed by NADES.

A series of strongly basic DESs was used to pretreat wheat straw for delignification [233]. XRD
analysis of the sample was carried out before and after DES pretreatment. The results of the untreated
sample showed that its crystalline structure was the native cellulose I crystal type. As the pretreated
sample did not reveal any alteration in crystal type, it was concluded that the DESs that were used could
not disrupt the crystalline structure of the wheat straw. However, the crystallinity index suggested
higher crystallinity of the sample after DES pretreatment. The IR analysis indicated decreases in the
characteristic bands of DES-pretreated wheat straw compared to untreated samples. This implies the
depolymerization of lignin and hemicellulose via pretreatment. Very recently, FTIR spectroscopy was
used to study the structural modifications of the used lignocellulosic biomass, beech wood polymers
upon DES ({ChCl:KOH} and {ChCl:Oxalic acid}) pretreatment. As illustrated in Figure 14, the size of
the peaks at 990, 1032, and 1160 cm−1 assigned to C–O, C=C, C–C–O, and C–O–C groups of cellulose,
were reduced when pretreated by {ChCl:KOH}, confirming the cellulose removal from the biomass
sample. Furthermore, the disappearance of the two peaks at 1215 and 1270 cm−1, attributed to C–C and
C–O vibrations of the lignin aromatic ring, indicated lignin removal from biomass upon {ChCl:Oxalic
acid} pretreatment. Considering the hydroxyl stretching region, the peak of lignin is usually wider
and that of cellulose is deeper. In Figure 14, the peak at around 3340 cm−1 is broader for {ChCl:KOH}
and deeper for {ChCl:Oxalic acid} DESs, indicating that the hydroxyls were from phenols (lignin) and
cellulose molecules, respectively.
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The FTIR and UV-vis spectroscopies were examined for collagen peptides extracted with DESs
from cod skins [31]. The strong absorbance at 218 nm of the collagen peptides in {ChCl:Ethylene
glycol} DES was assigned to n→π* transitions of carbonyl in the peptide bonds, indicating that neither
of the DESs affected the peptide structure, or any chemical bond formed between peptide and the
DES. However, the other DES, {ChCl:Oxalic acid}, behaved differently. The IR spectra showed that the
bands assigned to collagen peptides disappeared when peptides were dissolved in {ChCl:Oxalic acid}
DES, meaning that the functional groups of peptides were broken under the effect of this acidic DES.
Grudniewska et al. [27] obtained the solid state 13C-NMR, FTIR, and TGA of oil cakes (RC and EC),
biomass residues (RCBR and ECBR), and precipitates (RCP and ECP) after biomass pretreatment with
{ChCl:Glycerol} to investigate any structural change of the biomass and characterize the proteins in
the precipitates.

Regarding only the 13C-NMR analysis, the spectra revealed signals of cellulose and other structural
polysaccharides for the oil cakes and biomass residues. The spectra also signified a broad peak attributed
to the carbonyl groups of proteins, hemicellulose, and lignin. The intensity of the carbonyl group of the
biomass residues, compared to that of oil cakes, decreased and the signal features of cellulose increased.
For the precipitants (RCP and ECP), the intensity of carbonyl group increased, while cellulose C1 signal
disappeared (ECP) or diminished (RCP). This also happened to polysaccharide sugar units where C2,
C4, C5, and C6 signals decreased compared to oil cakes. In both precipitates, the signals at 65–48 ppm
and 56–54 ppm were attributed to α-carbons found in the proteins and CH3O in lignin.

7. Conclusions and Future Prospects

In this article, we reviewed DESs and NADESs in state-of-the-art technologies for biomass/biowaste
valorization, where DESs and NADESs were used as reaction media, pretreatment or extraction solvents,
catalysts, or as multifunctional solvents. A variety of multipurpose eutectic mixtures can be prepared
with properties superior to those reported for ILs; the eutectic mixtures can be made to be less
toxic, more biodegradable, and quicker and easier to prepare. Their unfavorable properties can be
surmounted by tailoring them, for example by changing the nature of the salt or its molar ratio to HBD,
adding appropriate cosolvents, or simply by changing temperature or pressure. If the DES or NADES
suffers from high viscosity, adding water in measured amounts works well. In biomass and food waste
valorization, materials can be pretreated to enhance enzymatic hydrolysis and selectively solubilize the
desired components or catalyze the thermochemical processes. They can also be used as reaction media
for chemical and biochemical processes. In some cases, the efficiency of the all the above-mentioned
functions of DESs or NADESs could be increased if combined with another technique. For example, the
pretreatment power of the solvents improved when coupled with microwave or ultrasonic irradiation
or hydrothermal methods. Eutectic solvents can, however, have serious impacts on the structures and
functional groups of biomass components.

The existing routes for the bioconversion of biomass and food residue should be optimized,
with the possibility of taking full advantage of the features and advantages of eutectic solvents.
We looked into the future prospects of the use of DESs and NADESs for valorization of real food
waste, and the feasibility of a successive two-step process for biofuel and bio-oil production through
sugar fermentation and hydrothermal liquefaction, where DESs and NADESs have the potential
to be employed as multifunctional agents. There are three aspects of future study that we think
are important.

i. Using real food waste instead of only lignocellulosic biomass, single-component biowaste, or
even food waste models for production of chemicals, biofuel, and bio-oil: Food waste can provide free
biomass from many sources, including households, restaurants, and food processing industries. There
are several methods able to transform biomass, single-component wastes, or multi-food waste into
liquid, solid, or gaseous fuels [37,65,68]. However, food waste is seldom used and, to our knowledge,
no single study has yet explored the use of DESs or NADESs for such purposes.
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ii. A successive two-step process for biofuel and bio-oil production via sugar fermentation
and hydrothermal liquefaction: Food waste can be first pretreated and enzymatically hydrolyzed to
produce fermentable sugars, after which biofuel is obtained through microbial fermentation. The
unhydrolyzed residue usually contains undigested recalcitrant carbohydrates, lipids, and proteins, and
can be transferred to hydrothermal reactors for further processing. Hydrothermal processes involve
thermochemical conversion of material using high-pressure and high-temperature water to decompose
the polymeric material structures. Depending on the type of the hydrothermal analysis, bio-oil, biochar,
or biogas is produced by hydrothermal liquefaction, carbonization, and gasification, respectively.
The efficient conversion of unhydrolyzed residue into bio-oil, biochar, or biogas fuels enhances the
overall efficiency of food waste conversion. Employing DESs or NADESs in (co)solvent-requiring or
catalyst-requiring stages is believed to be a major step towards building a sustainable bioeconomy.

iii. For this type of successive two-step process, DESs or NADESs should be employed as
(co)solvents or catalysts. This requires innovative design of highly efficient eutectic solvents.
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