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Simple summary
Glioma is one of the most fatal type of cancer and it is necessary to find better detection 
and treatment options for it. Segmentation of a tumor is the most challenging task in 
identification various aspects and regions of the tumor. In current study, we developed a 
cloud-based 3D U-Net framework of brain tumor segmentation where the network can 
be trained for once and can be accessed from anywhere in the world using any terminal 
device. Our method performed brain tumor segmentation with a high accuracy score of 
95% compared to the other state-of-the-art methodologies.

Abstract 

Glioma is the most aggressive and dangerous primary brain tumor with a survival 
time of less than 14 months. Segmentation of tumors is a necessary task in the image 
processing of the gliomas and is important for its timely diagnosis and starting a treat-
ment. Using 3D U-net architecture to perform semantic segmentation on brain tumor 
dataset is at the core of deep learning. In this paper, we present a unique cloud-based 
3D U-Net method to perform brain tumor segmentation using BRATS dataset. The 
system was effectively trained by using Adam optimization solver by utilizing multiple 
hyper parameters. We got an average dice score of 95% which makes our method 
the first cloud-based method to achieve maximum accuracy. The dice score is calcu-
lated by using Sørensen-Dice similarity coefficient. We also performed an extensive 
literature review of the brain tumor segmentation methods implemented in the last 
five years to get a state-of-the-art picture of well-known methodologies with a higher 
dice score. In comparison to the already implemented architectures, our method ranks 
on top in terms of accuracy in using a cloud-based 3D U-Net framework for glioma 
segmentation.
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Introduction
Brain tumors are the most dangerous type of tumors that causes life-threatening con-
sequences. Glioma is the most common and aggressive primary brain tumor that 
comprises of 16% of neoplasms occurring in brain and central nervous system (CNS). 
Gliomas mostly occur in brain and 61% of all gliomas appear in the four lobes of the 
brain. However, they can also emerge in spinal cord, cerebellum, and brain stem [1, 2]. 
Glioma occurs usually at an age of 64 years on average but it can emerge at any time 
of life including childhood. It is a fatal type of cancer and the survival time of patients 
after diagnosis is less than 14 months on average [3]. According to World Health Organ-
ization, gliomas are classified into 4 grades depending on their malignancy i.e. grade I, 
grade II, grade III and grade IV. Grade I and grade II gliomas are considered as low-grade 
in which tumors grow slowly while grade III and grade IV are high-grade that grows 
quickly and can be fatal. Grade I gliomas occur rarely and are mostly limited to child-
hood. Grade II gliomas can appear at any age and mostly occur in young adults. Grade 
III and grade IV gliomas are the most malignant classes of brain tumor [4]. Among all 
the different types, glioblastoma is the most dangerous and malignant type with an inci-
dent rate of 3.2 in a population of 100,000 people. It spreads more quickly and it is diffi-
cult to remove it completely even after a surgery. An early and comprehensive diagnosis 
and treatment method is necessary for patient’s survival [5].

Traditionally, medical imaging techniques such as Magnetic Resonance Imaging 
(MRI), Computer Tomography (CT), Positron Emission Tomography (PET), Single-
Photon Emission Computed Tomography (SPECT), and Magnetic Resonance Spectros-
copy (MRS) are used for diagnosis of brain tumors. Among these, MRI is considered 
as a standard technique for detection of tumors. MRI is a non-invasive procedure that 
excite the target cells and tissues by using radio frequency signals. It generates detailed 
internal images of the tissues and can also measure size, shape and localization of the 
tumor. There are four standard modalities of MRI used for the diagnosis of glioma that 
generates different type of images and yield important structural information of the 
tumors. The modalities are T1-weighted, T2-weighted, T1-weighted MRI with contrast 
enhancement (T1ce) and Fluid Attenuation Inversion Recovery (FLAIR). Each of these 
modalities represent various aspects of brain cells. T1 images focuses tumor contour 
and differentiates healthy tissues while T2 images show whole tumor region. Contrast 
enhanced T1-weighted MRI can easily distinguish tumor core regions due to the bright 
signals of the contrast agent. FLAIR images can differentiate between edema and Cer-
ebrospinal Fluid (CSF). During an MRI acquisition, a 3D brain volume is represented by 
producing approximately 150 slices of 2D images [6]. Figure 1 showing Segmentation of 
different tumor regions in a multimodality MRI image.

Segmentation of tumors is a necessary task in the image processing of the gliomas and 
is important for starting a treatment. Manual segmentation of brain tumors is a time-
consuming and laborious process and can only be performed by professional neuroradi-
ologists. Compared to the manual segmentation, automatic techniques for brain tumor 
detection and segmentation are rapidly gaining interest and can assist in better diagnosis 
and treatment of brain tumor [6, 7].

During the past two decades, machine learning techniques have brought a rapid 
growth in classification and segmentation of brain tumors. The focus of most researches 
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has been shifted on automatic segmentation of tumors using computer algorithms for 
quantitative assessment of brain tumors.

Literature review
Zhao et al. [8] in 2017 proposed a novel brain tumor segmentation method by combining 
fully convolutional neural networks (FCNNs) and Conditional Random Fields (CRFs). 
They developed a unified framework and trained the deep learning model in 3 steps by 
using 2D image patches and image slices. BRATS 2013, BRATS 2015 and BRATS 2016 
datasets were used. The experiment resulted in a better performance and it was con-
cluded that unifying FCNNs and CRFs can improve the segmentation robustness. The 
dice score of the segmentation was compared with other competitive methods of brain 
tumor segmentation and it showed promising results in various ways. The method was 
ranked first among the 19 teams that participated in segmentation using BRATS 16 
dataset for multi-temporal evaluation. Havaei et al. [9] presented a fully automatic brain 
tumor segmentation method using a novel architecture based on Convolutional Neu-
ral Networks (CNN). The dataset utilized in the study was BRATS 2013 and the results 
demonstrated that their proposed architecture gave improved results compared to the 
previously performed state-of-the-art methodologies. The method also proved to be 30 
times faster than the other methods of brain tumor segmentation.

An efficient 11-layers deep, 3D Convolutional Neural Network (CNN) was proposed 
by Kamnitsas et al. [10], known as DeepMedic. The method analyzed the advantages of 
utilizing small convolutional kernels in 3D CNNs which resulted in a deeper and more 

Fig. 1  Segmentation showing different regions of tumor in a multimodality MRI image
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discriminative network without any change in the computational cost. According to the 
author, their system achieved highest accuracy in brain lesion segmentation of patients 
with severe traumatic brain injury (TBI).

Zeineldin et al. [11] proposed DeepSeg, a generic deep learning architecture that uti-
lized Fluid-attenuated inversion recovery (FLAIR) MRI data for automatic detection and 
segmentation of the brain lesion. The method applied different deep learning models 
and it accurately detected the tumor regions in the validated set with a mean dice score 
ranging from 0.81 to 0.84. The study utilized different CNN models including ResNet, 
DenseNet, and NASNet. Alkassar et  al. [12] proposed a deep neural network (DNN) 
based architecture, SegNet for automatic segmentation of brain tumor using BRATS 
2015 dataset. The framework consisted of three parts i.e. the encoder network, decoder 
network, and classification layer. Results of the experiment demonstrated that the pro-
posed method achieved a global accuracy (0.9) and dice score (0.89) on BRATS 2015 
dataset.

A novel approach for brain tumor segmentation was proposed by Chahal et  al. [13] 
using Convolutional Neural Network (CNN) based models. The method utilized two 
types of architectures i.e. Input Cascade and Mean Failure Cost (MFC) Cascade. BRATS 
2013 dataset was used containing MRI scans of both high grade (HG) and low grade 
(LG) gliomas. The resultant outcomes showed that the Input cascade gave better per-
formance compared to the MFC cascade in both HG and LG glioma with a dice score of 
0.943 and 0.950 respectively.

In another experiment, Ding et al. [14] proposed a novel architecture for multi-modal 
brain tumor segmentation which they named as “Deep Residual Dilate Network with 
Middle Supervision (RDM-Net)”. The framework integrates the residual network with 
dilated convolution and is designed to boost information propagation in representative 
pipelines. The method was evaluated on BRATS 215 benchmark dataset and in com-
parison, to other state-of-the-art methods, the framework showed better performance 
in terms of the dice score. Ramírez et al. [15] proposed a new Deep Variational Frame-
work based on a U-Net CNN architecture for brain tumor segmentation. The framework 
allowed the CNN to optimize the parameters of the model using input data. BRATS 
2015 Flair MRI dataset was used and the result showed promising outcomes of using the 
proposed framework with a dice score of 0.857.

A hybrid convolutional neural network architecture was proposed by Sajid et al.[16], 
which uses a patch-based approach for predicting output label by taking into account 
both local and contextual information. The method was tested on BRATS 2013 dataset 
containing different modalities of MRI. The dice score achieved by the method showed 
improved results when compared to other methodologies. Wang et al. [17] proposed a 
method called wide residual & pyramid pool network (WRN-PPNet) for automatic seg-
mentation of glioma. In their method, 3D MRI images are used to get 2D slices which 
are then put into the WRN-PPNet model. The results of the experiment showed that the 
method is simple and can give a good dice score compared to the other state-of-the-art 
methods.

Jiang et  al. [18] proposed a two-stage cascaded U-Net architecture for end-to-end 
multimodal brain tumor segmentation using BRATS 2019 challenge dataset. The result-
ing outcomes indicated that the proposed method achieved a good average dice score for 
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the enhancing tumor, whole tumor and for the tumor core. Zhao et al. [19] performed 
useful tricks on Deep Convolution Neural Network (DCNN) to improve the accuracy 
of the method for brain tumor segmentation. They used BRATS 2019 dataset and per-
formed different tricks on different levels including data processing, sampling, random 
patch-size training, semi-supervised learning and model devising. The method achieved 
a mean dice score of 0.81, 0.88 and 0.86 for enhancing tumor, whole tumor and core 
tumor respectively.

Yogananda et  al. [20] developed a triple network architecture based on 3D-Dense-
UNet for fully automatic brain tumor segmentation. The algorithm was tested on BRATS 
2017, BRATS 2018 and an independent clinical data set from Oslo University Hospital. 
The results showed that the algorithm was one of the top 3 performers in segmenting 
tumor core on BRATS 2017 dataset and segmenting whole tumor and enhancing tumor 
on BRATS 2018 dataset.

Recently, Zhang et  al. [21] performed automatic segmentation of glioma using an 
ensemble and post-processing. The aim of their study was to improve the segmentation 
performance. They reported that compared to the conventional CNN model, ensemble 
provides a more robust solution with less variance. The ensemble method takes advan-
tages of three individual models which were 3D UNet, 3D MI-UNet, and joint 3D + 2D 
MI-UNet. Their implemented method scored an average dice score of 0.87.

In another research study, et al. [1] proposed a fully automatic brain tumor segmenta-
tion method that utilizes all the four MRI modalities. The techniques uses a Cascade 
Convolutional Neural Network (C-CNN) model that extracts both local and global 
features in two different routes. An average dice score of 0.90 was achieved using this 
approach.

Deep Learning 3D U‑Net architecture based on Cloud
Deep learning methods have received huge attention of researchers for past few years 
and there has been a considerable increase in the amount of work done each year. We 
searched different databases to investigate the number of publications for the past 
5  years in the area of brain tumor segmentation using deep learning and it showed a 
tremendous increase. Figure 2 shows a graph of number of publications in reputable web 
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search engines/obliged databases including Google Scholar, PubMed, Scopus and Web 
of science with respect to their publication year.

In machine learning, appropriate representations are found out for the input data. 
Deep learning is a type of machine learning algorithm that learns a hierarchy of increas-
ingly complex representations from the raw input [22]. For instance, it is used to detect 
sub tumoral region features across each candidate lesion using convolutional neural net-
work (CNN) [23, 24]. CNNs are artificial neural networks that have multiple hidden con-
volutional layers and are capable of extracting higher level representative features [25]. 
Deep learning methods with CNN can perform various tasks related to medical imaging 
and have shown excellent results in skin cancer classification [26], diabetic retinopathy 
detection [27], and brain tumor segmentation [28–30]. Table 1 shows number of publi-
cations in reputable databases including Google Scholar, PubMed, Scopus and Web of 
science with respect to their publication year.

Cloud based semantic segmentation using U‑Net

Cloud computing came out as a powerhouse of enterprise technology [31]. The end 
users accelerate their application and begin working in a cloud computing network; they 
have no clue about the information of the servers, where they are located, or anything 
else [32]. Cloud computing is user-friendly and very advantageous; it provides services 
all over the world and permits anyone to utilize their services in a matter of minutes [33, 
34].

U-Net is a simple network which is very efficient and fast, it has become popular in the 
semantic segmentation domain. In Semantic segmentation each pixel is labeled with a 
class in a voxel or image of a 3-D volume. This study illustrates the use of deep learning 
methods to perform binary semantic segmentation of brain tumors in magnetic reso-
nance imaging (MRI) scans. In this binary segmentation, each pixel is labeled as tumor 
or background.

State of art implementation
In image segmentation, a digital MRI image is partitioned into multiple divided seg-
ments with each segment having a distinct property. Traditionally, image segmentation 
helps in locating objects and boundaries in an image. In brain tumor segmentation, not 
only the location of the tumors is identified but extensions of the tumor regions includ-
ing active tumorous tissue, necrotic or dead tissue, and edema (swelling near the tumor) 
are also detected [22]. Brain tumor segmentation identifies abnormal areas in the brain 
by comparing them with the normal tissues. Glioblastomas, the most malignant form 

Table 1  Number of publications related to tumor Segmentation in last 5 years

Year Google scholar PubMed Scopus Web of science

2021 3020 1495 319 200

2020 2350 1100 268 170

2019 1710 742 185 140

2018 1140 408 89 74

2017 709 224 26 26
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of tumor infiltrate the neighboring tissues that causes unclear boundaries. Hence, they 
are hard to differentiate from normal tissues, as a result, multiple image modalities are 
used to identify glioblastomas. There are three sub categories of brain tumor segmenta-
tion based on the involvement of human which includes manual segmentation, semiau-
tomatic segmentation, and fully automatic segmentation [35].

Manual segmentation involves the use of specialized tools by a human expert in draw-
ing and painting the tumor regions and boundaries. Its accuracy depends upon the skills 
and knowledge of the operator performing it. Despite of the fact that manual segmenta-
tion is a laborious and time-consuming process, it is still considered as a gold standard 
for semi-automatic and fully automatic segmentation. Figure 3 shows workflow of brain 
tumor segmentation. In semi-automatic segmentation, human expertise and computer 
programs are combined and an operator is required to initialize the segmentation pro-
cess and for evaluation of the results. Fully automatic segmentation does not require any 
human interaction. It involves the use of artificial intelligence in combination with prior 
knowledge and datasets to solve the segmentation problems [6].

Fully automatic brain tumor segmentation methods are classified into discrimina-
tive and generative methods. Discriminative methods usually depend upon supervised 
learning. Techniques that rely on supervised learning usually involve learning where the 
relationships between an image and a set of manually annotated data are learned from 
a huge dataset. In fully automatic image segmentation, machine learning algorithms 
has gained popularity due to their unmatched performance. Over the past few years, 
classical machine learning algorithms have been used extensively. However, due to the 
complexity of the data, classical machine learning techniques are not suitable for most 
applications [36]. Deep learning methods are becoming more popular due to their abil-
ity to learn and improve on complex computer vision tasks. Compared to discrimina-
tive methods, generative methods use prior knowledge such as location and size of the 
healthy tissues and generate probabilistic models [22].

Expertimental setup

Available datasets

Automatic brain tumor segmentation has gained immense popularity in the past few 
years and there has been an increased interest in performing automatic brain tumor 
segmentation using publicly available datasets. The benchmark dataset Multi-modal 
Brain Tumor Image Segmentation (BRATS) [37], developed in 2012 is currently the 
most common publicly accessible dataset and has emerged to standardize performance 

Fig. 3  Semantic Segmentaion Workflow for Tumor MRIs
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evaluation in brain tumor segmentation process. Previously, The Internet Brain Segmen-
tation Repository (IBSR) [38] and the BrainWeb datasets [39] have been used by sev-
eral researchers in their image processing algorithms. The Reference Image Database to 
Evaluate Therapy Response (RIDER) [40] is another targeted data collection repository. 
RIDER neuro MRI contains imaging data of 19 patients with recurrent high-grade gli-
oma and the dataset has been used by researchers in their automatic brain tumor seg-
mentation experiments.

BRATS challenge contains datasets of four modalities T1, T1c, T2 and Flair belong-
ing to both high-grade and low-grade gliomas. Initially, BRATS dataset contained only 
30 MRI scans of glioma patients but the number grew substantially over the next few 
years. Medical Segmentation Decathlon (MSD) [41] is another challenge that provides 
a relatively larger dataset for brain tumor segmentation and can offer a wide range of 
modalities. It is actually a subset of the data of BRATS 2016 and 2017 challenge. It offers 
750 multiparametric magnetic resonance images (mp-MRI) of both high and low-grade 
gliomas. The Decathlon challenge contains ten publicly available datasets that belongs to 
different regions of human body including brain, heart, hippocampus, liver, lung, pan-
creas, prostate, colon, hepatic vessel and spleen.

Dataset parameters for this study

We used the BraTS brain tumor dataset for training and validation. The size of the data-
set was approximately 7 GB which contains 750(484 training volumes with voxel labels 
and 266 test volumes without labels) MRI scans of brain tumors as defined in Table 2, 
namely gliomas, having 4-D volumes, which represents 3-D images stack. Each 3-D vol-
umetric image has dimensions 240(height) × 240(width) × 155(depth) × 4(different scan 
modalities). 484 training volumes were further divided into three independent sets that 
was used for training, testing and validation. Figure 4 showing volumetric image from 
dataset showing ground truth left as well labeled pixel on the right while Fig. 5 shows 
four different labeled training volumes.

Table 2  BraTS brain tumors dataset specifications

Target Gliomas segmentation necrotic/active tumor and oedema

Modality Multimodal multisite MRI data FLAIR

T1w

T1gd

T2w

Size 750 4D volumes 484 training

266 testing

Dimensions Height 240

Width 240

Depth 155

Dimen Different scan modalities
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Experiment environment

We used Microsoft Azure Cloud Virtual Machine to run our experiment as it provides 
a low latency, high-throughput network interface optimized for tightly coupled paral-
lel computing workloads. A CUDA Capable GPU is required for performing semantic 

Fig. 4  Dataset Ground Truth versus Pixel Labels

Fig. 5  Preview of four different labeled training volumes from the dataset

Table 3  Experimental specifications used to perform semantic segmentation on cloud

Cloud server RAM 56 GiB

Storage 340 GiB

GPU 1 × K80

Instance Azure NC6

vCPU(s) 6

Cost $1.321/hour

NVIDIA Tesla K80 accelerator Memory 24 GB GDDR5

Bandwidth 480 GB/s

CUDA cores 4992

Single-precision 8.73 teraflops

Double-precision 2.91 teraflops
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segmentation of the image volumes. So, we choose N-series virtual machines as its ideal 
for compute and graphics-intensive workloads, like high-end remote visualization, deep 
learning, and predictive analytics, detailed experimental specifications are defined in 
Table 3. NC-series virtual machines feature the NVIDIA Tesla accelerated platform K80 
GPU which dramatically lowers data center costs by delivering exceptional performance 
with fewer, more powerful cloud servers. It’s engineered to boost throughput in real-
world applications by 5-10x, while also saving customers up to 50% for an accelerated 
data center compared to a CPU-only system.

Training and validation

Preprocessing

To efficiently train 3-D U-Net network, we need to preprocess the MRI dataset to crop it 
to a region primarily containing the brain and tumor. Cropping reduces the size of data 
as it only retains the critical part of each MRI volume and its corresponding labels. Each 
volume modality independently normalized by subtracting the mean and dividing by the 
standard deviation of the cropped region. Then the training volumes was further split 
into 55 test sets, 400 training sets, and 29 validation sets.

Random patch extraction

Extracting Random Patches to prevent running out of memory is a common technique 
while training with large volumes as shown in Fig.  6. Use a random patch extraction 
datastore (specifications in Table 4) to feed the training data to the network and to vali-
date the training progress. This datastore extracts random patches from ground truth 
images and corresponding pixel label data.

Fig. 6  Random patch extraction datastore

Table 4  Random patch extraction datastore specifications

Patch size 64 × 64 × 64 
voxels

Patch per image 16

Mini-batch size 8
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To make the training more robust, we used a function to augment 3D Patch which 
randomly reflects and rotates the training data. As time progresses, to evaluate whether 
the network is continuously learning, underfitting, or overfitting we used validation data.

3‑D U‑Net layers set up

This study practices discrepancy of the 3-D U-Net network as in U-Net, the prelimi-
nary sequences of convolutional layers (CL) are intermingled with max pooling layers, 
consecutively reducing the resolution of the input image. These layers are trailed by a 
sequence of convolutional layers intermingled with upsampling operators, consecutively 
increasing the resolution of the input image. The zero padding convolutions returns the 
same output size as of input.

Deep Learning 3-D U-Net using following layers:

•	 3-D image input layer
•	 3-D convolution layer for convolutional neural networks
•	 Batch normalization layer
•	 Leaky rectified linear unit layer
•	 3-D max pooling layer
•	 Transposed 3-D convolution layer
•	 Softmax output layer
•	 Concatenation layer

The first, image Input 3d Layer, operates on image patches of size 64 × 64 × 64 voxels. 
The image input layer in 3-D U-Net is trailed by the contracting path, which consists 
of three encoder modules. Each encoder contains two convolution layers with 3 × 3 × 3 
filters that double the number of feature maps, followed by a nonlinear activation using 
reLu layer. The first convolution is also followed by a batch normalization layer. Each 
encoder ends with a max pooling layer that halves the image resolution in each dimen-
sion.Unique names assigned to all the layers in the network.

For example, "en1" denotes the first encoder module and "de4" denotes the fourth 
decoder module. Where “en” denotes to encoder and “de” denotes to decoder while 1 
and 4 are corresponding index to that module.

The expanding path were created of the 3-D U-Net which consists of four decoder 
modules as shown in Fig.  7, while Fig.  8 shows 3D U-Net Deep Network diagram we 
used to train the system. The result analysis is given in Table 5 below. All decoders com-
prise of two convolution layers with same filters as of encoder that halve the number of 
feature maps, trailed by a nonlinear activation using a reLu layer. The first three decoders 
conclude with a transposed convolution layer that upsamples the image by a factor of 2. 
The final decoder includes a convolution layer that maps the feature vector of each voxel 
to the classes.

The concluding decoder consist of a convolution layer that maps the feature vector 
of each voxel to each of the two classes (background and tumor region). The custom 
Dice pixel classification layer weights the loss function to increase the effect of the small 
tumor regions on the Dice score.
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Dice loss is calculated by using Sørensen-Dice similarity coefficient which measures 
the overlap between two segmented volumes. The general Dice loss L between one 
image Y and the corresponding T (ground truth) is given by

where M is the number of elements along the first two dimensions of Y(image), K is the 
number of classes and Wk is a class specific weighting factor that controls the influence 
each class makes to the loss. Wk is characteristically the opposite area of the expected 
region:

This weighting used to reduce the influence of larger regions on the Dice score mak-
ing it easier for the network to learn how to segment smaller regions. Concatenatin were 
done using input layer and encoder modules with the fourth decoder module. While 
other decoder modules were added as separate branches to layer graph. Concatenation 
Layers were used to connect the second reLu layer of each encoder module with a trans-
posed convolution layer of equal size from a decoder module. The output of each con-
catenation layer were connected to the first convolution layer of the decoder module.

To effectively train the system "Adam" optimization solver was used with following 
hyperparameters shown in Table 6.

(1)L = 1−
2
∑

K
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YkmTkm
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M
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2
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1

M
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Tkm

2

Fig. 7  3-D U-Net Layers Diagram
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Methemtical experenseion of algorithm to effectively train the system can be defined 
as.

In Eq. 3 mt describes aggregate of gradients at time t, Vt denotes sum of square of past 
gradients. While Wt is weights at time t, ∂L is derivative of Loss Function and ∂Wt is 

(3)mt = β1mt−1 + (1− β1)

[

δL

δwt

]

vt = β2vt−1 + (1− β2)

[

δL

δwt

]2

Fig. 8  3D U-Net Deep Network Diagram used to train the system
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Table 5  Network analysis result of 3D U-net layers with reference to Figs. 7 and 8

Sr Name Type Activations Learnable Total learnable

1 Input
64 × 64 × 64 × 4 
images

3-D Image Input 64 × 64 × 64 × 4 – 0

2 en1_conv1
32 3 × 3 × 3 × 4 con-
volution with stride 
[1 1 1] and padding 
‘same’

Convolution 64 × 64 × 64 × 32 Weights 
3 × 3 × 3 × 4 × 32
Bias 1 × 1 × 1 × 32

3488

3 en1_bn1
Batch normalization 
with 32 channels

Batch Normalization 64 × 64 × 64 × 32 Offset 1 × 1 × 1 × 32
Scale 1 × 1 × 1 × 32

64

4 en1_relu1
ReLU

ReLU 64 × 64 × 64 × 32 – 0

5 en1_conv2
64 3 × 3 × 3 × 32 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 64 × 64 × 64 × 64 Weights 
3 × 3 × 3 × 32 × 64
Bias 1 × 1 × 1 × 64

55,360

6 en1_relu2
ReLU

ReLU 64 × 64 × 64 × 64 – 0

7 en1_maxpool
2 × 2 × 2 max pool-
ing with stride [2 2 2] 
and padding ‘same’

3-D Max Pooling 32 × 32 × 32 × 64 – 0

8 en2_conv1
64 3 × 3 × 3 × 64 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 32 × 32 × 32 × 64 Weights 
3 × 3 × 3 × 64 × 64
Bias 1 × 1 × 1 × 64

110,656

9 en2_bn1
Batch normalization 
with 64 channels

Batch Normalization 32 × 32 × 32 × 64 Offset 1 × 1 × 1 × 64
Scale 1 × 1 × 1 × 64

128

10 en2_relu1
ReLU

ReLU 32 × 32 × 32 × 64 – 0

11 en2_conv2
128 3 × 3 × 3 × 64 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 32 × 32 × 32 × 128 Weights 
3 × 3 × 3 × 64 × 128
Bias 1 × 1 × 1 × 128

221,312

12 en2_relu2
ReLU

ReLU 32 × 32 × 32 × 128 – 0

13 en2_maxpool
2 × 2 × 2 max pool-
ing with stride [2 2 2] 
and padding ‘same’

3-D Max Pooling 16 × 16 × 16 × 128 – 0

14 en3_conv1
128 3 × 3 × 3 × 128 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 16 × 16 × 16 × 128 Weights 
3 × 3 × 3 × 128 × 128
Bias 1 × 1 × 1 × 128

442,496

15 en3_bn1
Batch normalization 
with 128 channels

Batch Normalization 16 × 16 × 16 × 128 Offset 1 × 1 × 1 × 128
Scale 1 × 1 × 1 × 128

256

16 en3_relu1
ReLU

ReLU 16 × 16 × 16 × 128 – 0

17 en3_conv2
256 3 × 3 × 3 × 128 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 16 × 16 × 16 × 256 Weights 
3 × 3 × 3 × 128 × 256
Bias 1 × 1 × 1 × 256

884,992
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Table 5  (continued)

Sr Name Type Activations Learnable Total learnable

18 en3_relu2
ReLU

ReLU 16 × 16 × 16 × 256 – 0

19 en3_maxpool
2 × 2 × 2 max pool-
ing with stride [2 2 2] 
and padding ‘same’

3-D Max Pooling 8 × 8 × 8 × 256 – 0

20 de4_conv1
256 3 × 3 × 3 × 256 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 8 × 8 × 8 × 256 Weights 
3 × 3 × 3 × 256 × 256
Bias 1 × 1 × 1 × 256

1,769,728

21 de4_relu1
ReLU

ReLU 8 × 8 × 8 × 256 – 0

22 de4_conv2
512 3 × 3 × 3 × 256 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 8 × 8 × 8 × 512 Weights 
3 × 3 × 3 × 256 × 512
Bias 1 × 1 × 1 × 512

3,539,456

23 de4_relu2
ReLU

ReLU 8 × 8 × 8 × 512 – 0

24 de4_transconv
512 2 × 2 × 2 × 512 
transposed 3D con-
volutions with stride 
[2 2 2] and cropping 
[0 0 0; 0 0 0]

Transposed Convolu-
tion 3D

16 × 16 × 16 × 512 Weights 
2 × 2 × 2 × 512 × 512
Bias 1 × 1 × 1 × 512

2,097,664

25 concat3
Concatenation of 2 
inputs along dimen-
sion 4

Concatenation 16 × 16 × 16 × 768 – 0

26 de3_conv1
256 3 × 3 × 3 × 768 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 16 × 16 × 16 × 256 Weights 
3 × 3 × 3 × 758 × 256
Bias 1 × 1 × 1 × 256

5,308,672

27 de3_relu1
ReLU

ReLU 16 × 16 × 16 × 256 – 0

28 de3_conv2
256 3 × 3 × 3 × 256 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 16 × 16 × 16 × 256 Weights 
3 × 3 × 3 × 256 × 256
Bias 1 × 1 × 1 × 256

1,769,728

29 de3_relu2
ReLU

ReLU 16 × 16 × 16 × 256 – 0

30 de3_transconv
256 2 × 2 × 2 × 256 
transposed 3D con-
volutions with stride 
[2 2 2] and cropping 
[0 0 0; 0 0 0]

Transposed Convolu-
tion 3D

32 × 32 × 32 × 256 Weights 
2 × 2 × 2 × 256 × 256
Bias 1 × 1 × 1 × 256

524,544

31 concat2
Concatenation of 2 
inputs along dimen-
sion 4

Concatenation 32 × 32 × 32 × 384 – 0

32 de2_conv1
128 3 × 3 × 3 × 384 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 32 × 32 × 32 × 128 Weights 
3 × 3 × 3 × 384 × 128
Bias 1 × 1 × 1 × 128

1,327,232

33 de2_relu1
ReLU

ReLU 32 × 32 × 32 × 128 – 0
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derivative of weights at time t, β denotes Moving average parameter, ϵ is equal to a small 
positive constant.”

Table 5  (continued)

Sr Name Type Activations Learnable Total learnable

34 de2_conv2
128 3 × 3 × 3 × 128 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 32 × 32 × 32 × 128 Weights 
3 × 3 × 3 × 128 × 128
Bias 1 × 1 × 1 × 128

442,496

35 de2_relu2
ReLU

ReLU 32 × 32 × 32 × 128 – 0

36 de2_transconv
128 2 × 2 × 2 × 128 
transposed 3D con-
volutions with stride 
[2 2 2] and cropping 
[0 0 0; 0 0 0]

Transposed Convolu-
tion 3D

64 × 64 × 64 × 128 Weights 
2 × 2 × 2 × 128 × 128
Bias 1 × 1 × 1 × 128

131,200

37 concat1
Concatenation of 2 
inputs along dimen-
sion 4

Concatenation 64 × 64 × 64 × 192 – 0

38 de1_conv1
64 3 × 3 × 3 × 192 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 64 × 64 × 64 × 64 Weights 
3 × 3 × 3 × 192 × 64
Bias 1 × 1 × 1 × 64

331,840

39 de1_relu1
ReLU

ReLU 64 × 64 × 64 × 64 – 0

40 de1_conv2
64 3 × 3 × 3 × 64 
convolution with 
stride [1 1 1] and 
padding ‘same’

Convolution 64 × 64 × 64 × 64 Weights 
3 × 3 × 3 × 64 × 64
Bias 1 × 1 × 1 × 64

110,656

41 de1_relu2
ReLU

ReLU 64 × 64 × 64 × 64 – 0

42 convlast
2 1 × 1 × 1 × 64 con-
volution with stride 
[1 1 1] and padding 
‘same’

Convolution 64 × 64 × 64 × 2 Weights 
1 × 1 × 1 × 64 × 2
Bias 1 × 1 × 1 × 2

130

43 softmax
softmax

Softmax 64 × 64 × 64 × 2 – 0

44 Output
Dice loss

Classification Output – – 0

Table 6  System parameters to train 3D U-Net network

Initial learning rate 5e-4

Maxepochs 100

Learning rate schedule Piecewise

Learning rate drop period 5

Learning rate drop factor 0.95

Validation frequency 400

Verbose False

Mini-batch size 8
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Results
Gliomas are the most common primary brain malignancies. Our method identified 
tumor with a high accuracy. We obtained an average DSC of 0.95583/95% across the test 
set which is higher than the other cloud-based brain tumor segmentation methods using 
deep learning. Figure 9 below shows 3D orientation at corresponding angles of a Labeled 
Volume.

Fig. 9  3D Orientation at Corresponding angles of a Labeled Volume

Table 7  List of methods with a high accuracy and dice score

Dataset Segmentation method Dice score Publication year References

BRATS 2013
BRATS 2015

FCNNs and CRFs 0.83
0.82

2017 [8]

BRATS 2013 CNN 0.80 2017 [9]

BRATS 2015 DeepMedic + CRF 0.71 2017 [10]

BRATS 2019 CNN 0.84 2020 [11]

BRATS 2015 FCN 0.89 2019 [12]

BRATS 2013 CNN HG 0.943
LG 0.950

2019 [13]

BRATS 2015 RDM-Net 0.73 2019 [14]

BRATS 2015 CNN + TVS 0.857 2018 [15]

BRATS 2013 Hybrid CNN 0.86 2019 [16]

BRATS 2015 WRN-PPNet 0.94 2019 [17]

BRATS 2019 Two-stage Unet 0.84 2020 [18]

BRATS 2019 DNN 0.85 2020 [19]

BRATS 2017
BRATS 2018
Oslo Dataset

3D U-Net 0.82
0.84
0.80

2020 [20]

BRATS 2020 Ensemble + post-processing 0.87 2021 [21]

BRATS 2018 C-ConvNet 0.90 2021 [1]

BRATS 2020 3D U-NET 0.95 2022 This Study
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An extensive review was performed to compare our method with other state-of-the-
art methods for semantic segmentation of brain tumor. Table 7 shows the list of studies 
performed in the last five years with a high accuracy and dice score. All of the studies 
used different architectures based on deep learning. A lot of work has been performed 
on brain tumor segmentation in the last few years and various researchers have pro-
posed different architectures to obtain the maximum accuracy and dice score. It was not 
possible to include the details of all of the work done on brain tumor segmentation in 
this paper but we chose some of them with well-represented architectures and better 
results.

Table 8  Summary of evaluation matrics

Metrics Expression

Dice score (DSC) DSC =
2TP

2TP+FP+FN

Sensitivity (SEN) SEN =
TP

TP+FN

Specificity (SPEC) SPEC =
TN

TN+FP

Fig. 10  Labled Ground Truth Left versus Network Predicted Right

Fig. 11  Dice Accuracy Plot of 3D U-NET Trained Network
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Table 8 shows the Summary of the evaluation metrics commonly used for Brats data-
sets. With respect to the number of false positive (FP), true positive (TP), false negative 
(FN) and true negative (TN) (Fig. 10).

The plot above in Fig. 11 foresees statistics about the Dice scores across the set of test 
volumes, while Fig. 10 gives us comparative view labeled ground truth with network pre-
diction. The red lines in the plot above shows the median Dice value for the classes. The 
upper and lower bounds of the blue box indicate the 25th and 75th percentiles, respec-
tively. Black whiskers extend to the most extreme data points not considered outliers.”

Conclusions
We developed a fully automatic cloud-based 3D-UNet architecture for semantic seg-
mentation on brain tumor (BRATS) dataset. Our method proves to be the most accu-
rate cloud-based deep learning brain tumor segmentation method with a distinctive 
dice score of 95%. This study practices divergence of the 3-D U-Net network in which 
the preliminary sequences of convolutional layers (CL) are intermixed with max pool-
ing layers. Using cloud computing has several benefits. It reduces computational cost 
as this network is accessible all over the globe. It only requires a stable internet con-
nection and a terminal device for accessibility. We ran the experiment using Microsoft 
Azure Cloud Virtual Machine as it provides a low latency, high-throughput network 
interface optimized for tightly coupled parallel computing workloads. A CUDA Capa-
ble GPU is required for performing semantic segmentation of the image volumes. For 
intensive graphic workload like high-end remote visualization, deep learning, and pre-
dictive analytics, N-series virtual machines are ideal. NC-series virtual machines feature 
the NVIDIA Tesla accelerated platform K80 GPU which dramatically lowers data center 
costs by delivering exceptional performance with fewer, more powerful cloud servers.
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