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Abstract: Prosociality is a behavior characterized by actions
performed for the benefit or well-being of others. Recent stu-
dies have corroborated parallels in brain activation patterns
between rodents and humans during prosocial behaviors.
These findings have the potential to advance our under-
standing of social impairments observed in neurodevelop-
mental disorders, brain injuries, neurological conditions, and
mental health disorders. However, a consensus regarding pro-
social paradigms in rodents remains scattered. This conceptual
framework aims to (1) reframe prosociality as a set of complex
behaviors emerging in response to environmental determi-
nants that cannot be reduced to a single set of data; (2) high-
light important methodological considerations, mediating
variables, and behavioral analyses that influence prosocial
behaviors; and (3) present a decision tree as a dynamic ele-
ment within this conceptual framework to offer guidance to
researchers. The conceptual framework and decision tree are
concise and straightforward, providing a robust foundation
for the ongoing utilization of current models and the creation
of novel paradigms. The integration of this conceptual frame-
work into research practices will contribute to the advance-
ment of knowledge in the field of rodent prosociality and
foster greater confidence in the validity and reproducibility
of study findings.

Keywords: social behaviors, rats, mice, behavioral neu-
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1 Introduction

Mammals, including humans, primates, and rodents, display
diverse behaviors aimed at protecting and maintaining spe-
cies survival [1]. Social behaviors, communication, and inter-
actions are crucial for the maintenance of social organization
and ensure the species’ contextual adaptability [2]. Such beha-
viors observed in humans and many animals include repro-
duction [3], maternal and paternal care [4,5], dominance and
aggression [6,7], responses to social novelty and social recog-
nition [8,9], as well as vicarious observation [10], and social
play [11]. Empathy and prosociality also form essential com-
ponents of this repertoire [12].

Empathy can be described as feeling, understanding, and
sharing the emotional states of others [13,14]. Empathy is fre-
quently regarded as a uniquely human ability [14] due to (1) its
definition is closely linked to an internal state (i.e., emotions) and
(2) the advanced cognitive skills that enable humans to compre-
hend the intentions, emotions, desires, beliefs, and thoughts of
others [15,16]. Consequently, studying such phenomena in ani-
mals poses significant challenges and relies heavily on subjective
assessments of internal states. However, investigating prosoci-
ality in animals could serve as an initial step toward under-
standing what drives an animal to assist another. Prosociality
is defined as actions taken to benefit others or enhance their
well-being [17]. In the animal kingdom, prosociality is as crucial
for survival as empathy is for humans; engaging in prosocial
behaviors fosters cooperation and resource sharing [17,18].

Prosocial behaviors have been studied in many ani-
mals, ranging from humans [19] to non-human primates
[20,21], rodents [22], avians [23], invertebrates [24], and
fishes [25]. Animal models have been particularly valuable
for examining social organization and hierarchies amongst
different species (e.g., mole rats, prairie voles, non-human
primates) [22,26,27] and the underlying cerebral mechan-
isms involved in social behaviors and deficits [28–30].

1.1 Social behaviors in rodents and humans

Studies utilizing mice and rats have shown valuable in
investigating social behaviors, given that rodents are social
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animals [31]. Such research offers cost-effective options
that require minimal resources compared to the complexities
involved in studying non-human primates [32]. Furthermore,
they are often used in behavioral research as they are a cost-
effective solution and possess a high transability potential to
humans based on physiological similarities in their brain
morphology and development [33,34]. To date, the study of
“animal social behavior” has encompassed multiple social
actions, including reproduction, aggression, and resource
sharing [35,36] (Figure 1).

Notably, research in the field of rodent social behaviors
examines dominance and aggression due to the significant
role social hierarchy plays in regulating resource access,
reproductive behavior, and overall well-being, thereby
ensuring the survival of the species [6,37,38]. In rodents,
dominance is frequently assessed through the observation
of aggressive behaviors within pairs (e.g., biting, chasing)
and defensive responses (e.g., freezing, lying down, standing
upright with raised paws), or by using dominance paradigms
such as the tube test [37]. From an evolutionary standpoint,
aggression and dominance help animals and humans estab-
lish social hierarchies while securing control and priority
over vital resources [37–39].

Rodents typically exhibit a natural inclination toward
seeking social interaction and communication; therefore,
research focusing on novelty and social interaction can
help determine the presence of social deficits [8,9,40].
Indeed, several research have highlighted the rewarding

impact of social interaction from a behavioral perspective
to the neural activation related to social rewards [41–43].
Communication across species, both verbal and non-
verbal, is highly influenced by vicarious observation and
learning [10,44]. Observing fear or pain in a conspecific
promotes the communication of valuable information to
others [10,44]. These communication strategies are vital
for the survival of the species because vicariously learning
about potential dangers and threats, such as predators or
discomfort, enables observers to avoid or defend them-
selves from similar situations [45]. In humans, various fac-
tors influence social exploration and novelty seeking,
including environmental variables (e.g., structure, stabi-
lity, and predictability of the environment) [46,47], indivi-
dual characteristics (e.g., prior experience and knowledge,
cognitive capacity, demographics) [46,48,49], and social con-
tingencies (e.g., availability of information, competitiveness,
mutual exploration) [46,47,50]. Social contingencies can pre-
dict humans’ tendency to explore the unknown, influenced
by the actions and behaviors of others [46,51].

Similarly, reproductive and parental care are inher-
ently associated with social behaviors that have been con-
served through evolution and are oriented toward species
survival [3]. In both humans and animals, maternal care is
pivotal for fostering social and cognitive development, as well
as the overall well-being of offspring [4,52,53]. Additionally,
paternal care plays a significant role; fathers’ social behaviors
can influence the mother–infant relationship and impact the
development of the offspring [5,54]. Research also indicates
that parental attitudes geared toward enhancing the survival
and well-being of infants (e.g., increased attachment-related
rewards and heightened anxiety regarding the child’s safety)
can trigger alterations in specific brain networks (e.g., the
reward circuit) and affect hormonal secretion (e.g., oxytocin)
in offspring [55,56].

Other interactions are strongly associated with specific
developmental stages. For instance, social play behaviors
are prominently displayed by rodents during the juvenile
and adolescent periods, but these behaviors tend to
decrease as rodents transition into adulthood [57,58]. These
behaviors typically involve two animals engaging in rapid
pushing and grabbing actions, commonly referred to as
boxing, play-fighting, or rough-and-tumble play [11,57].
Research employing isolation experiments has revealed
the significance of play behaviors in the social, cognitive,
and emotional development of rodents [11,58]. Moreover,
such behaviors are essential for species survival, given
their highly rewarding nature and their role in fostering
the development of communication skills amongst indivi-
duals [11]. In humans, engaging in social play behaviors has
demonstrated numerous benefits for the social, emotional,Figure 1: Social behaviors in rodents.
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and cognitive growth of children [59–61]. Interacting with
peers through play is essential for acquiring vital social
abilities such as communication, language, sharing, friend-
ship, cooperation, and conflict resolution [59].

1.2 Prosocial behaviors

Prosocial behavior represents a category that encompasses
many other behaviors classified and studied under the
commonly used term “social behavior” [17] (Figure 1).
While there are similarities between the terms prosociality
and empathy, the latter infers a capacity to feel and under-
stand the suffering of others and to respond with compas-
sion and help [62]. In this context, empathy is frequently
regarded as an attribute exclusive to humans [62], despite
emerging research on non-human primates suggesting the
presence of comparable abilities [63]. This conceptual fra-
mework centers on prosocial behaviors, which involve
actions undertaken to benefit another individual or
enhance their well-being [17,64]. Engaging in prosocial
behaviors facilitates cooperation and resource sharing,
both integral components for the survival of social species
[17]. The investigation of prosociality in rodents originated
in the 1960s when researchers observed how rodents
responded to a conspecific experiencing electric shocks
[65,66]. In 2011, Ben-Ami Bartal et al. revisited this inquiry
by introducing a paradigm wherein a rat could open a door
to release a trapped conspecific [67]. This study sparked a
series of similar investigations [68,69] and led to the devel-
opment of various paradigms, including cooperation [70],
direct reciprocity [71], and prosocial choice tasks [64,72].

1.2.1 Aversive models

Aversive models are experimental paradigms that incorpo-
rate one or more aversive elements, inducing stress, pain,
and/or fear in animals. Examples include electric foot shocks,
forced swimming, and restraint devices. These models have
been favored for studying prosocial behaviors due to the
observable distress exhibited by rodents. In such paradigms,
a frightened or stressed rodent displays specific behaviors
that can be quantified such as freezing – characterized by a
complete cessation of movement – and distressed calls,
assessed through ultrasonic vocalizations [73].

1.2.1.1 Emotional contagion and fear conditioning
Emotional contagion, or sympathetic concern, is the tendency
to mimic or express the emotions displayed by another

individual [74–76]. A commonly used apparatus is the double
operant box, in which one subject receives electric foot
shocks while the other observes [76,77]. This model enables
researchers to record and analyze fear expression and beha-
vioral responses of the observing animal [76]. A meta-analysis
by Hernandez-Lallement et al. [78] found that rats and mice
can exhibit similar levels of emotional contagion, as indicated
by increased freezing responses.

Fear conditioning involves a rodent associating a condi-
tioned stimulus (e.g., a sound or context) with an aversive
unconditioned stimulus (e.g., a congener’s distress) [79]. Fear
conditioning is similar to emotional contagion in that both
involve a demonstrator (i.e., the animal receiving the shocks)
and an observer. In fear conditioning, the study focuses on the
animal’s response (i.e., freezing) to the conditioned stimulus
after being exposed to the demonstrator [79,80]. For example,
Bruchey et al. [81] exposed a rat to a tone followed by a mild
electric shock. Once the rat began to show freezing behavior
upon hearing the tone, it was exposed to a naive congener.
Results indicated that the naive rat also froze at the sound,
suggesting that fear of the stimulus can be transmitted [81].

1.2.1.2 Harm prevention task
Harm prevention tasks, while similar to emotional conta-
gion and fear conditioning, require an action to alleviate
harm to a conspecific. Hernandez-Lallement et al. published
this task in 2020, in which a rat could choose between a lever
that produced harm (i.e., foot shock) to a conspecific in an
adjacent compartment while also delivering a sucrose pellet,
and a lever that provided only a food reward for the actor
without causing shock to the conspecific [82]. They found that
male and female rodents decreased the number of lever
presses when it caused harm to a conspecific, choosing the
reward-only lever more often than the shock-delivering one
[82]. Interestingly, they showed that this harm aversion
decreased when the difference in value between the levers
was too high – deciding between a harmful lever that pro-
vided three pellets to the actor but delivered a shock to the
victim versus a lever providing one pellet to the actor and no
shock to the victim. This task was later replicated by Hess
et al. [83], who found that female rats tended to deliver more
shocks to the conspecific to receive a food reward than male
rats. While Hernandez-Lallement’s experiment delivered a
food reward regardless of the chosen lever, this later para-
digm increased the cost for the actor rat by offering a choice
between a lever that delivered a reward and a shock, or a
lever that delivered neither. Although this model has shown
promising results, it is still recent and requires further repli-
cation to fully explore its potential for studying prosocial
behaviors in rodents.
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1.2.1.3 Rescuing or freeing task
Ben-Ami Bartal et al. [67] were the first to study prosoci-
ality in rodents by using an experimental paradigm invol-
ving a rat learning to open the door of a restrainer to free a
trapped conspecific. Although this task is less aversive than
ones using electric foot shock, a level of aversiveness
remains due to the stress and fear experienced by the
trapped rodent [67,84]. Variants of this task include sce-
narios in which a rat is trapped in a water-filled area, since
rats typically dislike immersion in water [68,85]. Mice also
show a similar inclination to act for the benefit of others; a
study by Ueno et al. [86] demonstrated the willingness of
mice to chew through a paper lid to free a conspecific.

1.2.2 Non-aversive models

Non-aversive models refer to experimental paradigms that
do not induce distress, fear, or pain in animals. These models
offer several advantages over aversive ones: they promote
animal welfare by eliminating pain or fear, are less stressful
for the animals, and reduce the confounding variable asso-
ciated with instinctive survival responses. Additionally, non-
aversive models can study other forms of prosociality seen in
humans, such as sharing and cooperation.

1.2.2.1 Imitation and mimicry tasks
In rodents, imitation and mimicry are most studied using
the observation of specific behaviors like yawning and
scratching [87,88]. This phenomenon is associated with mirror
neurons, a group of neurons that activate when an action is
both performed and observed [89]. Mirror neuronsmay play a
significant role in prosociality by enabling the interpretation
of nonverbal body cues and facilitating learning through
observation (e.g., vicarious learning) [90,91]. Interestingly,
rats and mice display similar levels of yawning and itch con-
tagion [87,88]. The classification of socially contagious beha-
viors as prosocial remains debated, as some researchers argue
that prosociality involves benefiting another individual, while
socially contagious behaviors focus solely on observation,
similar to emotional contagion [91,92].

1.2.2.2 Prosocial choice task
Hernandez-Lallement et al. [72] first introduced the prosocial
choice test. This task utilizes a double T-maze with four com-
partments, compelling an actor rat to choose between a
“selfish” option (a single reward) and a “sharing” option (a
mutual reward) that benefits both rats. The actor rat can either
eat the single reward alone or select the “both reward” option

to share food with a conspecific through a perforated wall.
Choosing the mutual reward option allows the actor rat to
enjoy its reward in the presence of another rat while main-
taining physical separation (i.e., via the perforated wall) [72].
Results showed that rats chose the “both-reward” option more
often than the selfish one when paired with a partner, but not
when paired with a toy rat (i.e., control condition) [72].

1.2.2.3 Prisoner’s dilemma
The prisoner’s dilemma is an experimental task where rats
are placed in divided compartments and must choose
between pressing a cooperative lever or a defective one
during repeated trials. This choice can lead to either a shared
reward or no reward at all [93–95]. For instance, Wood et al.
[93] designed a prisoner’s dilemma with three possible sce-
narios: (1) both rats refrain from pressing the lever, resulting
in each receiving a food pellet; (2) both rats press the lever,
leading to no reward; or (3) one rat presses the lever while the
other does not, yielding five food pellets for the responding
rat and no reward for the other. Research using this para-
digm has shown that rats are willing to withhold their
responses to achieve mutual rewards [93,95,96].

1.2.2.4 Cooperation learning tasks
Cooperation learning tasks involve paired rodents that
must learn to coordinate their actions to achieve a mutual
reward [97–99]. These tasks typically utilize an operant box
paradigm, requiring both partners to learn specific actions
(e.g., lever pressing, lever pulling, nose poking) to secure a
shared benefit, such as a food reward. Research indicates
that rodents can learn to coordinate their actions to
achieve a mutual reward [97–99].

1.2.2.5 Generalized and direct reciprocity
Generalized reciprocity is often studied through the
repeated donation game, where an actor rat decides
whether to share a food reward with a conspecific after
interacting with multiple partners who display varying
degrees of helpfulness [100]. In contrast, direct reciprocity
focuses on the immediate decision of a rat to reciprocate
help after experiencing either a generous or selfish partner
[71,101]. Both paradigms allow researchers to investigate if
rodents remember previously helpful partners and
whether they are more prosocial toward these partners
than towards those who were unhelpful [100]. Findings
indicate that rodents can demonstrate both direct and gen-
eralized reciprocity by matching the quantity of help pre-
viously provided [101,102].
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For decades, researchers have delved into the neuro-
biology of human prosociality, aiming to gain a deeper
understanding of the underlying cerebral mechanisms
and associated impairments observed in various condi-
tions such as mental health disorders (e.g., mood disorders,
personality disorders), neurological conditions (e.g., trau-
matic brain injury, dementia, stroke), neurodevelopmental
disorders (e.g., autism spectrum disorder), and brain inju-
ries [103–108]. However, investigating prosociality deficits
in humans often necessitates brain imaging studies or post-
mortem analyses [109], both of which are resource-inten-
sive methods [110]. Consequently, rodent models offer
insights into the cerebral mechanisms and circuits
involved in prosocial behaviors, with the potential for
knowledge translation to humans [111].

2 Conceptual framework

A conceptual framework is a “network” or “plane” of inter-
connected concepts that collectively provide a thorough
understanding of a phenomenon [112]. Without such a fra-
mework, a field of research can quickly become a random
collection of results lacking structure [113]. This conceptual
framework builds upon our previous original research

[114] and scoping review of rodent prosocial models [64]
which identified significant gaps in the investigation of
prosociality in rodents (Figure 2). It aims to (1) reframe
prosociality as a set of complex behaviors that emerge in
response to environmental determinants, requiring mul-
tiple sets of observations for a comprehensive analysis;
(2) highlight important methodological considerations,
mediating variables, and behavioral analyses influencing
prosocial behaviors in rodents; and (3) present a decision
tree as a dynamic element to guide researchers. Addition-
ally, its emphasis on standardized definitions and metho-
dological rigor will promote replicability, providing clear
guidelines for researchers and enhancing the reliability
and consistency of research outcomes. Ultimately, inte-
grating this conceptual framework into research practices
will advance knowledge in the field of rodent prosociality
and foster greater confidence in the validity and reprodu-
cibility of findings.

2.1 Affective aspects of prosocial behaviors

In this conceptual framework, the affective aspects of pro-
sociality refer to the bottom-up information processing
involved in prosocial tasks. This foundation is based on

Figure 2: Conceptual framework of prosocial behaviors: Definitions, tasks, and methodological considerations.
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the theoretical construct of human affective empathy,
which suggests the ability to feel and share the emotional
experiences of others [115,116]. Bottom-up information pro-
cessing is defined as the process of taking sensory informa-
tion and using it to form a coherent understanding [117].
This approach suggests that rodents gather information
from their peers, such as distress signals conveyed through
verbal and nonverbal cues (i.e., bottom-up processing).
They then process this information and adjust their beha-
vior accordingly, such as by helping to alleviate the distress
of their peer (i.e., top-down processing). It is argued that
helping and harm prevention tasks are integral to the
affective aspects of prosociality (Figure 2). This is sup-
ported by the utilization of similar tasks to investigate
each concept, and the comparable patterns of brain activa-
tion observed in response to these tasks (Figure 3).

2.1.1 Existing paradigms and similarities

Helping tasks consist of a rodent presented with the possi-
bility of opening a door (e.g., lever press, nose poke) to free a
conspecific from an aversive environment (e.g., restraining
device, soaked area) [67,68]. Harm prevention tasks involve
one rodent exposed to an adverse stimulus (e.g., electric foot
shock), while another rodent can take action to terminate this
stimulus (e.g., via lever pressing or nose poking) [82]. These
paradigms share various similarities: (1) an aversive

component is always involved and (2) a rodent can mitigate
the distress caused by the aversive stimulus.

2.1.2 Similar cerebral activation pathways supporting
affective aspects of prosociality

The human emotional contagion brain network encom-
passes regions such as the inferior frontal gyrus (IFG),
inferior parietal lobule (IPL), insula, and anterior cingulate
cortex (ACC) [118,119]. Findings from rodent studies suggest
the involvement of the ACC [35,78,120,121] and the insula
[13,120,121]. Although the IFG [13] and IPL [13,18] may also
play a role, further research is needed to confirm the invol-
vement of these brain regions in rodents’ affective proso-
ciality. Additionally, the basolateral amygdala (BLA)
appears to be implicated in both rodents [67,122] and
humans [123]. In humans, the BLA is crucial for the expres-
sion of fear responses [124] and fear-related memory [125],
while fear conditioning activates BLA-projecting ACC neu-
rons in rodents [122,126,127] (Figure 3).

2.2 Cognitive aspects of prosocial behaviors

Cognitive aspects of prosociality are regulated through top-
down information processing. Current literature associates

Figure 3: Brain regions involved in affective aspects of prosocial responses in humans and rats. Brain designs reproduced and adapted with the
permission of Gill Brown from https://neuroscience-graphicdesign.com/. (a) Human brain and (b) rat brain.
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the expression of cognitive prosociality with the ability to
understand the feelings of others [115,116]. Top-down pro-
cessing requires the use of prior experiences, knowledge,
and cognition to interpret external information [117]. In
this conceptual framework, top-down processing related
to prosociality involves understanding a situation or task
(top) and responding in a way that benefits a conspecific
(down). Tasks in this category encompasses the prisoner’s
dilemma and cooperation learning tasks.

2.2.1 Existing paradigms and similarities

Cognitive aspects of prosociality are commonly assessed
using tasks requiring conditioning sessions or the learning
of a specific action (e.g., pressing a lever) [128]. While a
learning component can be present in affective prosocial
tasks (e.g., a rat learning how to open a door before the
freeing task) [67], cognitive tasks necessitate that rodents
acquire a higher level of knowledge or understanding of
the situation to successfully perform an action in response
to a conspecific’s experience. Cooperation tasks are organized
into two main categories: the prisoner’s dilemma and coop-
eration learning tasks. The prisoner’s dilemma occurs in
divided compartments, in which rodents on both sides can
choose between a cooperative or defective lever over
repeated trials, resulting in either a mutual reward or a

punishment [93–95]. Cooperation learning tasks involve two
rats or mice that must learn to coordinate their actions to
obtain a mutual reward [97–99]. Typically employing an
operant box paradigm, these tasks require both partners to
learn a coordinated action (e.g., lever pressing, lever pulling,
or nose poking) to receive a mutual benefit (e.g., food
reward).

2.2.2 Similar cerebral activation pathways supporting
cognitive aspects of prosociality

Both human and animal studies support the involvement
of the prefrontal cortex in the cognitive aspects of proso-
cial tasks (Figure 4). Specifically, four subregions have gar-
nered attention: the temporoparietal junction, the medial
temporal lobe, and the ventromedial and dorsomedial pre-
frontal cortices (vmPFC and dmPFC, respectively), the
latter two comprising the infralimbic cortex in rodents
[98,118,129]. Additionally, the insular cortex has emerged
as significant for social decision-making and the integra-
tion of external sensory stimuli in rodents, which are key
elements of cognitive tasks [130,131]. The BLA is also high-
lighted as an important region for cognitive prosociality in
both humans and rodents [132,133]. Lesions to the BLA in
humans impair social learning in a trust game [132], while

Figure 4: Brain regions involved in cognitive aspects of prosocial responses in humans and rats. Brain designs reproduced and adapted with the
permission of Gill Brown from https://neuroscience-graphicdesign.com/. (a) Human brain and (b) rat brain.
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projections to the BLA show activation during a rodent
cooperation task [134].

2.3 Affective and cognitive aspects in
prosocial paradigms

As stated in the literature, bottom-up and top-down infor-
mation processing are interrelated, providing constant
feedback to an individual [135]. While earlier sections
have emphasized the affective or cognitive dimensions of
experimental tasks assessing prosocial behavior, the sub-
sequent section suggests an additional task category
that could facilitate the testing of both information proces-
sing. Based on the findings presented above, a behavioral
task integrating both affective and cognitive facets
of prosocial behavior should entail: (1) a helping compo-
nent that benefits or helps another, (2) an action that
needs to be learned (e.g., lever pressing/pulling, nose
poking), and (3) two rodents that can alternate roles in
the task. To fulfill this requirement, the conceptual frame-
work introduces a third category of prosocial paradigms
termed “sharing tasks.” Examples of such tasks encompass
the prosocial choice test [72] and the repeated donation
game [100,136].

2.3.1 Prosocial choice test

Hernandez-Lallement et al. [72] were the first to publish
findings using the prosocial choice test. This task involves a
double T-maze containing four compartments, in which a
rat designated as the actor can opt to consume a solitary
reward in an individual compartment or select a “both
reward” alternative. In the latter case, a food reward is
simultaneously provided to both the actor rat and a con-
specific rat, each positioned in separate compartments
divided by a perforated wall. This paradigm forces the
rat to choose between a “selfish” option (single reward)
and a “sharing” option (mutual reward). Moreover, the
mutual reward option also allows the actor rat to eat its
reward in the company of another rat, in the absence of
possible physical contact [72].

2.3.2 Repeated donation game

Comparable to the prosocial choice test, the repeated dona-
tion game involves an actor rat (the donor) deciding
whether to share a food reward with another rat (the

responder) based on whether the responder previously
exhibited helpful behavior [100]. Furthermore, this task
delves into reciprocity, examining whether rodents
remember past instances of helpfulness and whether
they are inclined to display prosocial behaviors towards
those who have been helpful compared to unhelpful
responders [100]. These two sharing tasks are promising
tools for studying the cognitive and affective aspects of
prosociality. Cognitive aspects can be assessed through
the learning process, wherein rodents must acquire the
ability to press a lever in a specific compartment or adhere
to a given contingency. Additionally, the decision of
rodents to share a food reward can indicate the actor’s
understanding of how the conspecific, without access to
the reward, would benefit from receiving it. Supporting
the involvement of cognitive processes, research has
demonstrated the role of the PFC in the prosocial choice
task [137]. Similar to tasks involving cognitive and affective
aspects of prosociality, sharing tasks also involve activa-
tion of the BLA. In rats, BLA lesions have been associated
with impairments in mutual social preference in a proso-
cial choice task [133].

Sharing tasks also facilitate the examination of compo-
nents associated with the affective aspects of prosociality.
Although this type of prosociality is more often studied
using aversive tasks (e.g., observing a conspecific in pain
or distress), helping tasks are defined as actions that pro-
vide benefits or assistance to another [64]. In the case of
sharing tasks, the act of sharing a food reward with a con-
specific provides a benefit to another, representing an
affective aspect of prosociality. Activation of the ACC
is considered crucial for learning actions aimed at
rewarding others (as opposed to oneself) and has been
shown to contribute to the behavioral responses observed
in sharing tasks [138]. Likewise, the insula, known to
engage in processing shared negative and positive experi-
ences, has been involved in both forms of prosocial beha-
vior, suggesting a potential role in regulating sharing tasks
(Figure 5) [139].

2.4 Prosocial tasks: General considerations
and important variables

Many studies using prosocial tasks in rodents omit metho-
dological details that could impact the expression of pro-
sociality and, subsequently, affect outcomes [64]. Although
further investigation is warranted to deepen our under-
standing of the factors mediating rodents’ prosociality,
the following section provides an overview of previously
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identified factors that should be considered when concep-
tualizing tasks to assess prosociality in rodents.

2.4.1 Individual characteristics

Individual characteristics must be considered when con-
ceptualizing prosocial tasks and analyzing data, as they
have been associated to meaningful inter-individual differ-
ences. The most prevalent factors to consider include sex,
age, weight, strain, and dominance/aggression.

2.4.1.1 Sex
The sex gap in the scientific literature is well acknowl-
edged, and this field of research is no exception. A previous
scoping review reported that only 15% of studies examined
both sexes [64]. A longstanding rationale for the sole inclu-
sion of males pertains to the hormonal fluctuations related
to estrous cyclicity in females, which could introduce
uncontrolled variability in the collected data [140]. From
an evolutionary perspective, it is theorized that females
may have developed heightened prosocial responses to
improve reproductive success and ensure the survival of
their offspring [141]. Additional research is required to
characterize the role of sex in rodent behavior, particu-
larly prosociality. Therefore, it is strongly encouraged to
include both males and females when conceptualizing
tasks that assess prosocial responses.

2.4.1.2 Age
Age is a factor known to directly impact the display of
social behaviors in rodents. In particular, studies involving
adolescent rodents have emphasized the importance of
social behavior during this developmental stage [142].
Social play has been identified as a crucial behavior for
healthy brain development in both mice and rats
[11,142,143]. Adolescent rats deprived of social interaction
have exhibited cognitive and social deficits, including
impairments in social interaction and memory, as well as
difficulties in processing socially transmitted information
[142,144]. Although studies involving older rats are scarce,
current literature suggests a decline in social cognition and
motivation, as evidenced by reduced social contact
initiated by adult compared to adolescent rats [145]. Con-
sequently, age is a defining variable in assessing the
expression of social behaviors in rodents and necessitates
careful consideration.

2.4.1.3 Strain
Numerous studies have indicated the importance of strain
selection when designing research methodology.
Depending on the selected experimental paradigms, cer-
tain strains with limited visual acuity, like albino rats,
may be less optimal due to the visual components integral
to these tasks (e.g., lever presses, nose pokes, and touchsc-
reen tasks) [146]. In addition, research has demonstrated
that certain strains exhibit higher levels of activity, which

Figure 5: Brain regions involved in a sharing task in rats. Brain design reproduced and adapted with the permission of Gill Brown from https://
neuroscience-graphicdesign.com/.
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could impact learning curves for specific tasks as well as
overall task performance [147]. For example, a study using
five strains of mice (i.e., C57BL/6J, DBA/2J, FVB/NJ, A/J, and
B6129PF2/J hybrids) revealed that A/J mice displayed sig-
nificantly less interest in spending time with a congener in
a social novelty test compared to the other tested strains,
which could be explained by the hypolocomotion displayed
by the A/J mice [148]. In rats, the tendency of Sprague-
Dawley to be more active is associated with improved per-
formance in social tasks compared to Long-Evans and
Wistar rat strains [147,149]. From an evolutionary perspec-
tive, heightened prosocial behaviors are expected to occur
amongst conspecifics of the same strain to facilitate repro-
duction and individual survival [150]. Ben-Ami Bartal et al.
indeed observed that rats exclusively helped strangers
from the same strain and did not provide assistance to
members of other strains [151]. In this context, the selection
of a strain becomes a crucial variable in studying prosoci-
ality in rodents, and findings pertaining to strains should
be thoroughly examined before adopting a specific experi-
mental design [151].

2.4.1.4 Weight, dominance, and aggression
Rats and mice are social animals that establish specific
social hierarchies and roles within their groups, evident
in both pair and group housing arrangements, as well as
in dyadic tasks such as those observed in prosocial para-
digms. Weight appears to be one of the factors influencing
which rodent assumes the dominant role, with lighter
rodents typically adopting submissive roles and heavier
ones assuming dominance [37]. Research has shown that
dominant rodents display more prosocial behaviors than
submissive ones [137,152]. Additionally, aggression can
serve as a means of communication amongst congeners.
For instance, Dolivo and Taborsky [70] showed that rats
tended to display aggression towards non-sharing part-
ners, possibly to increase prosocial behavior. These exam-
ples demonstrate the importance of considering factors
such as weight, dominance, and aggression, as they can
mediate the expression of prosociality in rodents.

2.4.2 Context

The context of the study certainly represents an influential
factor that can vary widely across laboratories and affect
data collection. Important related factors should therefore
be carefully considered, including stress, familiarity, pre-
training and habituation, and behavioral analyses.

2.4.2.1 Stress
When designing rodent studies, especially behavioral para-
digms, stress is a factor that can significantly impact obser-
vations and collected data [153]. Different laboratory rou-
tines can introduce elements that affect the stress levels of
the animals [154]. Despite efforts by ethical committees and
laboratories to minimize stress, certain manipulations or pro-
cedures inherently induce stress or anxiety in animals. The
potential impact of such procedures should be meticulously
considered during data analysis and interpretation. For
example, handling is a common procedure involving the
manipulation of rodents to acclimate them to human touch
[155,156]. While certain handling techniques may have posi-
tive effects on animals, others are reportedly aversive.
Research indicates that tail handling induces more stress in
mice compared to alternative methods such as tunnel or cup
handling [155]. Conversely, for rats, tickling has been shown
to mitigate the stressful effects of handling [156].

Other laboratory procedures have also been shown to
induce stress in animals. These include blood collection
[157,158], gavage [159], injections [160], and other invasive or
painful procedures (e.g., surgeries) [161], all of which can
elevate stress levels and influence both behavioral and phy-
siological data. While these techniques are often necessary
for research purposes, it is strongly advised that experimen-
ters make efforts to minimize stress. Additionally, including a
control group (e.g., a sham group for surgeries) can provide
valuable insights into the impact of stressful conditions on the
animals’ well-being and the outcomes of the study.

Studies using females or both sexes often utilize vaginal
smears to monitor the estrous cycle and control for potential
hormonal fluctuations across its phases [162]. This technique
enables the identification of all four stages of the estrous
cycle, known to alter behavior, including heightened anxiety
during the diestrus phase [163,164]. However, vaginal smears
themselves can induce stress [165,166], introducing additional
variability into the results. Thus, it is important to consider
this factor when interpreting data from female rodents, par-
ticularly when comparing it to data collected from males
[166]. Alternative methods for evaluating the estrous cycle
are available, such as visual inspection [167–169], although
these assessments remain partly subjective.

Finally, aversive paradigms (e.g., foot shock, soaked
area) that induce pain, fear, or discomfort generate stress
in animals, which can complicate data interpretation [170].
Interestingly, recent studies suggest that stress and proso-
cial behavior in rats exhibit a U-shaped curve relationship.
This implies that a certain level of stress is necessary to
motivate an actor rat to liberate a distressed conspecific,
but excessively elevated levels of stress hinder the release
of a congener [171,172].
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2.4.2.2 Familiarity
Literature suggests that mice and rats possess kin recogni-
tion abilities, defined as the assessment of relatedness
[173]. Social animals, including humans, non-human pri-
mates, mice, and rats, typically form groups consisting of
both related and unrelated individuals [174]. Interacting
with and providing benefits to individuals of varying
degrees of relatedness contributes to the survival and
reproductive success of the species [175]. The level of famil-
iarity amongst rodents is also a key factor to consider when
examining prosocial behaviors. Research indicates that
rodents are more inclined to respond to the pain of a
familiar conspecific compared to an unfamiliar one
[13,44,176,177]. Additionally, rats demonstrate quicker
cooperation and helping behaviors with familiar partners
than with unfamiliar ones [136,151], while mice tend to
exhibit less aggression towards familiar conspecifics com-
pared to strangers [178,179]. The level of familiarity can be
mitigated by housing conditions and habituation to the
experimental apparatus [180] and should be explicitly
addressed in studies employing prosocial paradigms.

2.4.2.3 Training
It is essential to provide training to the animals prior to
experimental testing. This serves two primary purposes:
first, it familiarizes rodents with the testing environment,
thereby reducing potential stress from encountering
novelty, and second, it ensures that the animals under-
stand the task’s requirements, such as lever presses or
nose poking [181]. Prior research demonstrated that a pre-
training session has a notable effect on the manifestation
of prosocial behaviors in rats [114]. Specifically, rats that
underwent pretraining exhibited a higher level of activity,
resulting in an increased frequency of prosocial behaviors
compared to those that did not receive pretraining [114].
While there is no unanimous agreement on what consti-
tutes effective habituation or pretraining [181], it is crucial
to recognize that the duration and depth of these prepara-
tory phases significantly influence the quality of data gath-
ered on prosocial behaviors. Experimental conditions
should thus be carefully reported and considered in ana-
lyzing the data and discussing findings.

2.4.2.4 Behavioral analyses
Animal behavior is intricately related to context, implying
that an animal’s actions are influenced by the specific
nature of its environment and situation [182]. In prosocial
tasks, for instance, rodents have demonstrated a tendency
to wait for a conspecific before executing an action, such as

climbing a platform for a mutual reward in a cooperative
task [98,183]. Additionally, following instances of rescuing
behavior, rodents often engage in social contact and ven-
ture into the vacant compartment [67,151]. These examples
highlight the importance of analyzing behaviors during
prosocial tasks, as they can unveil crucial insights into
the dyadic interaction between the two animals. While
numerous tracking software options are available, Ethovi-
sion is widely recognized as a popular choice for recording
animal behavior [184], despite its costly nature. However,
reliance on manual coding can lead to low inter-rater
reliability [185]. Amongst open-access manual tracking
software, behavioral observation research interactive soft-
ware [186] is frequently utilized. Furthermore, open-access
semi-automated or fully automated tracking software pre-
sents a promising avenue for minimizing human error
[187]. Regarding behavioral analyses, examining individual
behaviors can yield valuable insights, but prosocial tasks
typically involve interaction between two subjects. There-
fore, analyzing behaviors from both animals can yield
more comprehensive findings [114]. Structural and discri-
minant analysis techniques enable the examination of
behaviors from multiple individuals and the prediction
of behavioral probabilities [188,189].

2.4.3 Environment

The environment in which the experiment takes place can
significantly influence prosociality data and conclusions.
Variables affecting environmental conditions in studies
evaluating prosocial behavior in rodents include housing,
reward systems, choice of experimental paradigm, restric-
tions on food and water, and performance analyses.

2.4.3.1 Housing
Housing conditions are known to affect the behavioral
performance of rodents [190]. An enriched environment
is a housing setup designed to provide animals with
increased cognitive, sensory, motor, and social stimulation
compared to standard laboratory conditions [191]. Enrich-
ment typically includes the addition of items to promote
play, exercise, foraging, or nesting, and/or offering larger
and more complex cages (i.e., with many levels) [192,193].
Co-housing larger groups of animals is social enrichment
[193]; this type of enrichment promotes social behaviors
such as play and communication [194]. Recent studies indi-
cate that providing an enriched environment enhances
animal welfare and ecological validity, especially consid-
ering that wild rodents typically live in social groups
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[192,195]. Research also suggests that an enriched environ-
ment influences prosocial behaviors of rodents. For
instance, one study observed that animals housed in
enriched conditions exhibited more door-opening beha-
viors but engaged in fewer interactions with the released
conspecific compared to individually housed rats [196].
Another study suggested that an enriched environment
might mitigate deficits resulting from maternal separation
in rats [197]. Consequently, housing conditions significantly
impact rodent prosocial behavior and, in turn, affect study
outcomes, highlighting the importance of careful consid-
eration and documentation. Nonetheless, further research
is necessary to fully comprehend the effects of an enriched
environment on prosocial behaviors in rodents.

2.4.3.2 Reward and restriction
For rodents to efficiently learn a specific task, such as lever
pressing, rewards are typically essential in shaping the
desired behavior [198]. The choice of reward used in a
prosocial paradigm may influence a rodent’s motivation
to engage in prosocial behavior. Dolivo and Taborsky
[199] demonstrated that rats reciprocate based on the
quality of the help they receive, whether it is a highly
palatable food item (such as banana, leading to increased
reciprocity) or a less desirable reward (like carrot,
resulting in decreased reciprocity). These findings suggest
that the palatability of a reward can impact the subjects’
performance in a social task. Rats show a preference for
sweet and fatty food items, whether solid (e.g., cereals,
chocolate chips, sucrose pellets) or liquid (e.g., chocolate
milk, strawberry milk, condensed milk, sucrose water)
[200]. To enhance the motivation and palatability of a
food reward, researchers commonly practice food restric-
tion, which involves limiting access to food and water.
However, this practice can raise animal welfare concerns
[198,201]. Interestingly, studies investigating cooperative
behaviors between rodents found that food-restricted
rats cooperated less than ad libitum-fed rats [93,202]. Con-
sequently, it is crucial to clearly specify the type of reward
and the restriction schedule, as these factors can influence
motivation to learn a specific task and thereby modulate
an animal’s prosocial response.

Another type of reward used in prosocial tasks
involves social contact. For example, social contact is often
permitted after a rodent frees a congener from a restrainer
[203], or a rodent can consume a mutual food reward in the
presence of a congener rather than alone [72]. This raises
questions about the genuine motivation behind helping
another individual versus the desire for social interaction
[204]. Since rodents are inherently social creatures, social

contact often motivates their behavior [205], making it
challenging to distinguish between actions driven by the
rewarding aspect of social interaction and those motivated
by a prosocial desire to aid or share with a conspecific.
Studies have demonstrated prosocial behavior occurring
in the absence of social interaction [67,68,206], while others
have reported conflicting results [207,208]. Although these
findings show promise, further research is necessary to
establish the essential contingencies in prosocial behavior.
In this regard, future studies should disclose the avail-
ability of social interaction throughout the experimental
procedure to allow for a better characterization and dis-
cussion of its contribution to the expression of prosocial
responses.

2.4.3.3 Performance analyses
Performance pertains to the quantity of prosocial actions
executed by the animals (such as lever presses, nose
poking, door opening, compartment choice, and lever
pulling). As previously discussed, behavioral analyses are
vital for enriching the insights obtained from task perfor-
mance. While the frequency of lever presses on the
“sharing” lever can signify heightened prosociality, it is
essential not to overlook the behavior exhibited by the
rodent before and after the action. This comprehensive
examination can provide a more nuanced and precise
understanding of prosocial behavior.

3 Decision tree

Figure 6 introduces a decision tree designed to facilitate
the practical application of the conceptual framework. Its
aim is to enhance the consistency and reproducibility of
future studies, with the final step providing examples of
specific tasks associated with each prosocial category. In
addition to assisting in the selection of existing experi-
mental paradigms, this decision tree can also aid
researchers in developing new tasks by guiding them in
categorizing and clearly defining experimental properties
of the paradigm.

4 Conclusion

Rodent models can offer important insights into the beha-
vioral and cerebral mechanisms underlying prosociality,
with the objective of eventually translating this knowledge
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to benefit human conditions. Currently, rodent paradigms
on prosociality lack proper standardization. As such, this
conceptual framework provides a robust foundation for
the continued use of existing models of rodent prosociality
and the development of new paradigms to (1) promote
replicability, (2) enhance the reliability and consistency
of research outcomes, and (3) foster the translation of find-
ings to humans. Understanding the various variables med-
iating the behaviors of laboratory rodents can increase

insight into the ecological validity that each model may
bring to the field of behavioral research. Ecological validity
within the proposed conceptual framework refers to the
extent to which rodent behavior can be interpreted
through a comprehensive understanding of their natural
environment, its influence on observed behavior, and how
this context might affect results in a laboratory setting
[209]. As demonstrated in this model, factors such as the
environment (i.e., housing, rewards, choice of paradigm,

Figure 6: Decision tree.
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and food/water restrictions), context of the study (i.e.,
stress variables, familiarity of the rodents, pretraining,
and habituation), and individual factors (i.e., sex, age,
weight, and strain of the rodents, dominant and aggressive
behaviors) can potentially mediate prosocial behaviors in
rodents, as prosociality is a complex behavior in both ani-
mals and humans [210]. Consequently, integrating this con-
ceptual framework into research practices will advance
knowledge in the field of rodent prosociality and foster
greater confidence in the ecological validity and reprodu-
cibility of findings.

While rodent laboratory research is often conducted in
the hopes of translating knowledge to humans, the welfare
of such animals remains an important part of the field’s
practices [211]. As such, this conceptual framework focuses
mostly on non-aversive models as to promote their use and
guide researchers towards increased animal welfare prac-
tices, as shown in the decision tree.

4.1 Limitations

As the first conceptual framework of its kind in this field, this
work inevitably presents certain limitations. Prosociality is a
multifaceted and context-dependent behavior that remains
difficult to define and operationalize with precision. While
the framework aims to be comprehensive, some aspects may
remain underrepresented due to existing gaps in the scien-
tific literature. Moreover, current knowledge on the cerebral
mechanisms involved in prosociality in rodents is still emer-
ging, and further research is needed to clarify and deepen our
understanding of this phenomenon. Finally, this framework
is specifically designed for rodent models and should not be
considered directly generalizable to other species.

4.2 Future directions

The field of rodent prosociality has been expanding quickly
in the last decades, with recent technological advances
promising interesting results, both on the neuroscience
and behavioral levels. Indeed, recent studies have started
to explore a potential social brain network in rodents [205],
and even markers for consciousness and self-awareness in
rodents [212,213]. Furthermore, recent studies are showing
that rodents possess far more complex cognitive and affec-
tive abilities than what researchers have originally attrib-
uted [211]: rodents can infer causality [214], understand
rules [215], comprehend and respond to others’ goals
[216], and be helpful to robotic rats that had been

previously generous [217]. Together, these findings point
to a previously underestimated level of cognitive and social
complexity in rodents, with significant implications for the
neurobiological underpinnings of prosocial behavior.
Importantly, they are not only reshaping our under-
standing of rodent behavior but also advancing the trans-
lational relevance of these insights to humans.
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