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Abstract
The TERT promoter (pTERT) mutations, C228T and C250T, play a significant role in malignant transformation by telomer-
ase activation, oncogenesis and immortalisation of cells. C228T and C250T are emerging as important biomarkers in many 
cancers including glioblastoma multiforme (GBM), where the prevalence of these mutations is as high as 80%. Additionally, 
the rs2853669 single nucleotide polymorphism (SNP) may cooperate with these pTERT mutations in modulating progres-
sion and overall survival in GBM. Using liquid biopsies, pTERT mutations, C228T and C250T, and other clinically relevant 
biomarkers can be easily detected with high precision and sensitivity, facilitating longitudinal analysis throughout therapy 
and aid in cancer patient management.
In this review, we explore the potential for pTERT mutation analysis, via liquid biopsy, for its potential use in personalised 
cancer therapy. We evaluate the relationship between pTERT mutations and other biomarkers as well as their potential clini-
cal utility in early detection, prognostication, monitoring of cancer progress, with the main focus being on brain cancer.
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Introduction

Telomerase reverse transcriptase (TERT) plays an impor-
tant role in telomere lengthening and oncogenesis in many 
human cancers (Moyzis et al. 1988). Two particular muta-
tions in the human TERT promoter (pTERT) region, C228T 
and C250T, are important as they promote the formation of 
a novel binding site for transcriptional enhancers. This in 
turn drives increased expression and activity of telomerase, 

an event considered critical for cell immortalisation, and 
a hallmark of oncogenesis (Hanahan and Weinberg 2011; 
Huang et al. 2015).

pTERT C228T and C250T have been identified in a range 
of cancers, including primary brain cancers, and are associ-
ated with reduced overall survival (OS), suggesting that they 
may serve as genomic cancer biomarkers (You et al. 2017). 
Cancer biomarkers are increasingly used in determining dis-
ease diagnosis, monitoring of progression, and determining 
the best outcome-based therapy for patients. Several studies 
indicate that the presence of pTERT mutations are tightly 
linked with other biomarkers such as EGFR amplification, 
IDH wild type (in GBM), 1p19q co-deletion, CDKN2A 
deletion, chromosome 10q loss and SEL1L, suggesting evo-
lutionary co-selection with pTERT mutations (Labussière 
et al. 2014a; Mellai et al. 2020; Nonoguchi et al. 2013). In 
contrast, there is no association between pTERT mutations 
and other mutations such as IDH and TP53 (Labussière et al. 
2014a).

Currently, there are few options for the treatment of brain 
cancers, regardless of their molecular profile. The Standard-
of-care treatment is maximal safe resection (where possible), 
followed by post-operative radiation and chemotherapy with 
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adjuvant temozolomide (Stupp et al. 2010). Therefore, new 
treatment approaches are needed, which are tailored for each 
patient to improve patient outcomes.

In this review, we examine the effects of pTERT muta-
tions in various cancers focusing on those originating in 
brain tissues. We also examine the interaction of pTERT 
mutations with other prognostic biomarkers and their role 
in cancer progression, OS and potential implementation of 
pTERT mutation screening from liquid biopsies in clinical 
settings.

Telomeres and function of telomerase

The telomerase reverse transcriptase (TERT) gene, located 
on chromosome 5p15.33, encodes the catalytic subunit of 
telomerase, a ribonucleoprotein enzyme essential for the 
replication of chromosome termini and extension of telom-
eres in eukaryotic organisms. This function is required for 
continued cell division and is implicated in cell immortal-
ity. Telomeres are chromosome termini that contain repeti-
tive DNA sequences (TTA GGG ). The repetitive telomere 
DNA hexamers occur at chromosomal 3′-ends and can be 
hundreds and thousands of copies in repetition (Moyzis 
et al. 1988). Telomeres, without the presence of telomerase 
function, become progressively shorter during each succes-
sive cell division. Loss of telomere length beyond a cer-
tain point may cause chromosomal instability and genomic 
rearrangement. Thus, telomere shortening has important 
implications for cell proliferation. Once telomere length 
has reached a critical size (the Hayflick limit) through serial 
cell divisions, normal cells will undergo irreversible cell 
cycle arrest, referred to as senescence (Becker and Hafer-
kamp 2013; Hayflick 1965). Senescence prevents further 
cell proliferation and DNA replication, protecting cells from 
genetic mutations and chromosome rearrangements which 
could result in oncogenesis. Telomerase counters telomere 
loss by stabilising and elongating telomeres through the 
addition of the telomere repeat of TTA GGG  to the 3′ ends 
of human chromosomes (Blackburn 2005).

Telomerase is turned off in most normal adult human 
cells due to the transcriptional repression of the TERT 
promoter and are only consistently active in proliferative 
cells such as germline tissue (ovary and testis), lymphoid 
lineage-committed progenitor cells, at a low level in normal 
peripheral leukocytes (including lymphocytes) and bone 
marrow (Broccoli et al. 1995; Kim et al. 1994; Weng et al. 
1996). Reactivation of telomere maintenance mechanisms 
via telomerase expression is essential for the transformation 
of normal cells into cancer cells allowing for unlimited cell 
division and immortality (Counter et al. 1992). In approxi-
mately 90% of cancers immortality is achieved by reactiva-
tion of telomerase, involving reactivation of the TERT gene 

expression. The remaining cancers use an alternate telomere 
lengthening (ALT) pathway where homologous recombi-
nation occurs to maintain the telomere length (Cesare and 
Reddel 2010; Heaphy et al. 2011; Patel et al. 2016; Shay 
and Bacchetti 1997). Reactivation of telomerase reverse 
transcriptase via pTERT alterations plays a pivotal role in 
gliomas with pTERT mutations found in 80–90%, correlat-
ing with higher TERT mRNA and protein expression, and 
subsequent increased telomerase activity. (Borah et al. 2015; 
Huang et al. 2015; Killela et al. 2013).

Telomerase promoter mutations

The TERT gene is located on the short arm of chromosome 
5 and consists of 16 exons and 15 introns (Cong et al. 1999). 
The pTERT, embedded in a CpG island, located from  – 1800 
to + 2300 relative to the ATG start codon, is rich in binding 
motifs for various transcription factors (Cong et al. 1999) 
(Fig. 1). In normal human cells pTERT is unmethylated at 
the DNA level, while almost all cancer cells harbour meth-
ylated promoter regions. While promoter methylation com-
monly represses transcription, it results in upregulation of 
TERT expression, possibly by preventing binding of tran-
scriptional repressors to pTERT (Lee et al. 2020).

Several studies have identified two specific promoter point 
mutations (cytosine to thymine substitution), chr5:1,295,228 
C > T and chr5:1,295,250 C > T (also denoted C228T and 
C250T) in cancer cells implicated in the activation of tel-
omerase (Horn et al. 2013; Huang et al. 2013). These two 
mutations are mutually exclusive. Either mutation increases 
TERT expression, and consequently telomerase activity, and 
are thought to contribute to tumourigenesis by overcoming 
cellular senescence and inducing cell immortalisation (Bren-
nan et al. 2013; Huang et al. 2013, 2015). At the molecular 
level, both pTERT mutations create an identical 11 base pair 
sequence (CCC GGA AGGGG). This constitutes a de novo 
binding site (Fig. 1) for members of the E26 transformation 
specific (ETS) family of transcription factors such as the 
GA-binding protein transcription factor (GABPA), likely 
involved in transcriptional activation of TERT (Bell et al. 
2015; Xiao et al. 2002, 2003). GABPA is central to TERT 
expression in glioblastoma as it had been shown that the 
knockdown of GABPA significantly reduced mutant pro-
moter activity without affecting wild-type promoter activity 
(Bell et al. 2015). Furthermore, a tetramer-forming β1L iso-
form of GABPA is required for full activation of the mutant 
pTERT, while GABPA β1L does not act on the wild-type 
pTERT to induce TERT expression in cell culture experi-
ments (Mancini et al. 2018). Additionally, a recent study 
found that in the BRAFV600E mutated glioma cells also car-
rying pTERT mutation, several members of ETS family were 
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hyperactivated: ETS1, GABPA, GABPB, ETV1, ETV4 and 
ETV5 (Gabler et al. 2019).

pTERT rs2853669 single nucleotide 
polymorphism (SNP)

The rs2853669 SNP of pTERT is located within a pre-exist-
ing ETS2 binding site 5′ to the start codon and close to the 
C228T and C250T loci -245 bases 5′ to the transcriptional 
start ATG codon causing a T > C substitution (Fig. 1).

The rs2853669 variant SNP disrupts the endogenous 
ETS2 transcriptional site, repressing transcriptional activa-
tion of TERT (Hsu et al. 2006; Nencha et al. 2016). The 
telomerase activity was observed to be lower in the double 
C/C homozygous variant of rs2853669 than that of wild type 
T/T homozygotes indicating disruption of ETS2 binding site 
and reduced expression of TERT (Hsu et al. 2006).

rs2853669 is associated with poorer prognosis and OS, 
despite lack of association with risk of developing GBM 
(Mosrati et al. 2015; Spiegl-Kreinecker et al. 2015). This 
may be due to the rs2853669 SNP modulating negative 
effects of other oncogenic driver mutation pathways (Mos-
rati et al. 2015; Spiegl-Kreinecker et al. 2015). A study of 
126 GBM patients, showed that the subgroup of patients 
with wild-type TERT promoter who were also carriers 
for rs2853669 had longer median survival than those who 
were non-carriers for rs2853669 (43.5 vs 20.4 months) 

(Spiegl-Kreinecker et al. 2015). However, when the homozy-
gous CC rs2853669 SNP variant was found survival was 
significantly shorter, particularly if coinciding with either 
the C228T or the C250T pTERT mutation, which correlated 
with a very short overall survival median of 8.1 months 
(Spiegl-Kreinecker et al. 2015). These findings were cor-
roborated by another study showing that patients with 
homozygous CC rs2853669 SNP variant in the presence of 
pTERT mutation had a similar short overall survival median 
of 8.2 months (Mosrati et al. 2015). Together these studies 
imply that the homozygous CC rs2853669 genotype acts as 
an independent predictor of short patient survival in pTERT 
mutated patients.

Interestingly, data from other studies are conflicting, 
regarding the survival impact of homozygous, wild type TT 
rs2853669 SNP with or without pTERT mutation (Batista 
et al. 2016; Simon et al. 2014) (Nencha et al. 2016) indicat-
ing further research is required to clarify the impact of this 
SNP on GBM patient survival.

pTERT mutations in cancer

While pTERT mutations are absent in normal human cells 
(Kim et al. 1994), they are common in many cancers includ-
ing in glioblastoma (Kim et al. 1994; Liu et al. 2013) (Table 1). 
pTERT mutations were significantly associated with the higher 
mean age at diagnosis in brain cancers (Vinagre et al. 2013). 

Fig. 1  TERT chromosomal location and regulative motives. Sche-
matic illustration showing the TERT promoter with the novel ETS1 
binding sites and cancer-specific TERT promoter mutations C250T 
and C228T. -146 and -124 indicate the position of the C250T and 

C228T mutations upstream, respectively, in relation to the start of 
the TERT coding sequence ATG, indicated as + 1. WT wild-type MT 
mutation
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Table 1  Prevalence of pTERT mutations and their role in oncogenesis and patient outcomes

Cancer Sample Number of 
patients with 
C228T (%)

Number of 
patients with 
C250T (%)

Number of patients with 
C228T and/or C250T 
(%)

Outcome/conclusion

Brain – Glioma Tissue N/A N/A 93/199 (46.7%) Radiomics may be used to predict 
some molecular subtypes, includ-
ing the pTERT mutation positive 
and IDH1/2 mutation subtype, 
with currently limited accuracy. 
(Arita et al. 2018)

Brain – Glioma Tissue 32/67 (47.8%) 6/67 (9.0%) All 38/67 (56.7%) Patients with pTERT mutation 
demonstrated significantly 
reduced OS and PFS (median 
15 months and 5 months) as com-
pared with those in pTERT wild 
type patients (median 33 months 
and 31 months) (log rank test: 
P = 0.031, and P = 0.008, respec-
tively)

In grade II tumours, MGMT-
unmethylated/pTERT-mutated 
was strongly associated with 
worse prognosis. (Kim et al. 
2018)

Grade II 3/9 (33.3%)
Grade III 8/16 (50%)
Grade IV 27/42 (64.3%)

Brain – Glioma Tissue 24/56 (42.9%) 10/56 (17.9%) 34/56 (60.7%) pTERT mutations are more com-
mon in tumours with high SEL1L 
expression, which is associated 
with unfavourable prognosis 
and worse response to combined 
radiotherapy and adjuvant temo-
zolomide chemotherapy (Mellai 
et al. 2020)

Brain – Glioma Tissue 59/92 (64.1%) 20/92 (21.7%) 72/92 (85.9%) C228T and C250T were sig-
nificantly associated with shorter 
survival in univariate analysis 
(median 11 vs. 20 months 
p = 0.002 and 12 vs. 20 months, 
p = 0.04 for C228T and C250T, 
respectively) compared to wild 
type tumours (Mosrati et al. 
2015)

Brain – Glioma All Tissue 274/887 (30.9%) 84/887 (9.5%) pTERT mutations were detected at 
a low frequency in Astrocytomas 
and high in Oligodendroglio-
mas. pTERT mutations were 
inversely correlated with IDH1/2 
mutation. Patients with C250T 
pTERT mutations tended to have 
longer survival that those with 
the C225T mutation. The rate 
of C250T mutations in newly 
diagnosed gliomas was twice 
that of recurrent gliomas (You 
et al. 2017)

Anaplastic astrocytomas N/A N/A 12/37 (32.4%)
Anaplastic oligoastrocytomas N/A N/A 34/83 (41%)
Anaplastic oligodendrogliomas N/A N/A 10/19 (52.63%)
Oligoastrocytomas N/A N/A 112/225 (54.2%)
Oligodendrogliomas N/A N/A 53/70 (75.7%)
Primary GBMs N/A N/A 89/199 (44.7%)
Secondary GBMs N/A N/A 15/51 (29.4%)

Brain—Glioblastoma Tissue 48/74 (64.86) 14/74 (18.92) 62/74 (83.78) Plays a role in tumourigenesis and 
pathogenesis of glioblastoma 
(Liu et al. 2013)

Brain—Glioblastoma Tissue 17/43 (39.5%) 5/43 (11.6%) 22/43 (51.2%) TERT mRNA expression higher 
in patients with pTERT muta-
tions C228T (P < 0.0001) C250T 
(P = 0.0004) (Huang et al. 2015)
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The C228T mutation is the more prevalent cancer-associated 
pTERT-variant (see Table 1) (Huang et al. 2013; Johanns et al. 
2016; Palsgrove et al. 2019). When 887 gliomas were analysed 
for pTERT mutations, C250T was found in 9.5% and C228T 
in 30.9% of all gliomas, with oligodendrogliomas having the 
highest proportion of mutations (both mutations combined) of 
75.7% (You et al. 2017). pTERT C228T was associated with 
poorer OS compared to patients with C250T gliomas. Further-
more, the study indicated that the pTERT mutation frequency 
increased with age, and younger patients with pTERT mutation 
had longer OS than older patients with pTERT mutation (Aky-
erli et al. 2018). Another study examined 128 GBM samples 
and detected that 86% had pTERT mutations, 75% the C228T 
and 25% the C250T variant. In this cohort, GBM patients 
with pTERT mutations had shorter OS compared to wild-type 
pTERT patients with median OS 11 versus 20 months, respec-
tively (Mosrati et al. 2015). Other studies confirm this key 
prognostic role of pTERT mutational status in GBM. (Table 1). 
Interestingly, an in vitro study has shown that programmable 
base editing of mutated pTERT blocked the binding of mem-
bers of the ETS1 transcription factors to the TERT promoter, 
reduced TERT transcription and TERT protein expression, and 
induced senescence in glioma cell lines, suggesting that target-
ing pTERT mutations could be used as a therapeutic approach 
in cancer management (Li et al. 2020).

pTERT mutations and association with other 
prognostic biomarkers

Table 2 summarizes the correlation of pTERT mutations and 
other key biomarkers in gliomas. One key study examined 
299 patients with diffuse gliomas and defined them into 

four distinct molecular groups: IDH mutation only (33.8%), 
pTERT mutation only (31.4%), IDH-pTERT double mutant 
(21.4%) or both wild type (13.4%) (Akyerli et al. 2018). 
Isocitrate Dehydrogenase (IDH) mutations are a well-
described favourable prognostic marker in glioma (Vuong 
et al. 2017). Patients with the IDH-pTERT double muta-
tions had better overall survival than those with IDH only 
mutations (Akyerli et al. 2018). Moreover, 96.3% of patients 
with the IDH-pTERT double mutations were also positive 
for 1p/19q co-deletions. All patients that had 1p/19q co-
deletions also harboured pTERT mutations. More impor-
tantly, the analysis showed that the pTERT only mutations 
group was associated with older age and poor OS (Akyerli 
et al. 2018). These results are supported by the findings of 
Heidenreich et al., who showed in their cohort of 303 glio-
mas that the patients with only pTERT mutations had worse 
OS, while the patients with both IDH and pTERT mutations 
had the best OS (Heidenreich et al. 2015). Interestingly, one 
study showed that combined analysis of IDH1/2 and pTERT 
mutational status could be used to distinguish if a glial lesion 
is glioma or reactive glioma. The study reported that reactive 
gliosis samples did not contain C228T or C250T mutations 
in the TERT promoter region, while 78% of IDH wild type 
gliomas were found to have pTERT mutation (Hewer et al. 
2020).

A study by You and colleagues analysed the rates and 
clinical outcomes of combined alterations of pTERT muta-
tions and other key markers including IDH1/2, EGFR, 
TP53, PTEN, MGMT and 1p19q, in gliomas. The prognos-
tic impact of pTERT mutations varied between groups, with 
improved prognosis in patients with both pTERT and IDH 
mutations, but the poorest survival in patients with pTERT 
mutation and EGFR amplification (You et al. 2017).

Table 1  (continued)

Cancer Sample Number of 
patients with 
C228T (%)

Number of 
patients with 
C250T (%)

Number of patients with 
C228T and/or C250T 
(%)

Outcome/conclusion

Brain All Tissue N/A N/A 68/124 (54.8%) pTERT mutations correlated with 
telomerase activation and com-
mon in glioblastoma, oligoden-
droglioma, and medulloblastoma 
(Huang et al. 2015)

Glioblastoma N/A N/A 47/56 (83.9%)

Oligodendroglioma N/A N/A 7/10 (70%)

Diffuse Astrocytoma N/A N/A 8/40 (20%)

Anaplastic Astrocytoma N/A N/A 4/12 (33.3%)

Medulloblastoma N/A N/A 2/6 (33.3%)
Brain All 101/166 (60.8%) 20/166 (12.0%) 124/168 (73.8%) pTERT mutations were associated 

with poorer OS in glioblas-
toma (P = 0.003) and anaplastic 
astrocytoma (P = 0.001), but not 
in oligodendroglioma (Lee et al. 
2017)

Glioblastoma 43/65 (66.2%) 11/65 (16.9%) 57/65 (87.7%)
Oligodendroglioma 55/63 (87.3%) 8/63 (12.7%) 63/65 (96.9%)
Anaplastic Astrocytoma 3/38 (7.9%) 1/38 (2.6%) 4/38 (10.5%)

N/Anot available, cfDNA cell-free DNA, PFS progression-free survival
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In contrast, in ALT positive astrocytomas pTERT and 
IDH1 mutations appeared mutually exclusive and pTERT 
mutations were generally associated with IDH1 wild-type 
astrocytoma (Ferreira et al. 2020). This study indicates that 
ALT may be the major telomere maintenance mechanism 
in IDH1 mutation astrocytoma resulting in histidine sub-
stitution at arginine 132  (IDH1R132H) mutated astrocyto-
mas and that  IDH1R132H downregulates ATRX expression 
in vitro resulting in ALT (Ferreira et al. 2020). This poten-
tially contributes to the association of  IDH1R132H muta-
tions, α-thalassemia/mental retardation syndrome X-linked 
(ATRX) loss and ALT (Ferreira et al. 2020). The ATRX gene 
is frequently mutated in gliomas and while its role in gliom-
agenesis is not clear so far, it is thought to be associated with 
ALT (Koschmann et al. 2016; Rizzo et al. 2009). A report 
into the prevalence of ALT mechanism in human cancers 
found 11% of adult glioblastoma rely on ALT, while the 
majority of adult glioblastoma relies on the reactivation of 
telomerase (Heaphy et al. 2011).

As mentioned above, there is a correlation between 
pTERT and SNP variant rs2853669, with SNP alone associ-
ated with improved OS in glioma, while pTERT decreases 
OS and pTERT together with wild-type SNP rs2853669 fur-
ther lowers OS in glioma (Rachakonda et al. 2013).

Suppressor of Lin‐12‐like protein (C. elegans) (SEL1L) is 
recently emerging as a potential biomarker in brain cancer. 
SEL1L expression is associated with glioma proliferation 
and severity, as seen in the human brain glioblastoma cells 
cultured in vitro and in a formalin-fixed paraffin sections 
of glial tumours (Cattaneo et al. 2014). A recent study has 
shown that pTERT mutations are associated with SEL1L 
overexpression in glioblastoma; high SEL1L immunoreac-
tivity correlates with tumour progression, cell proliferation, 
decreased OS and poorer response to therapy (Mellai et al. 
2020). Further, it was proposed that SEL1L could be an 
important biomarker in pTERT mutant/EGFR amplified/IDH 
wild-type subgroup of glioblastoma (Mellai et al. 2020).

Detection of TERT promoter mutations 
in liquid biopsies

Currently brain cancer is diagnosed via magnetic resonance 
imaging (MRI) and, or computerised tomography (CT). 
A definite diagnosis of glioblastoma is obtained by histo-
pathological confirmation at surgery or biopsy. There is an 
expanding role for molecular biomarker tests to aid treat-
ment decisions and prognostication such as IDH1/2 muta-
tion, MGMT promoter methylation, 1p19q co-deletion, 
pTERT (C228T, C250T), H3.3 (K27M and G34R/V), as 
well as Next Generation Sequencing Glioma Panel using 
these tumour tissue samples. Improved biomarker test-
ing is of increasing interest in clinical trials worldwide in 

glioblastoma (such as Visual Study of Molecular Genotype 
in Glioma Evolution, NCT03750890) and other cancers 
(Visual Study of Molecular Genotype in Glioma Evolution).

However, tissue biopsies may poorly reflect tumour het-
erogeneity. Further, these biopsies are invasive and cancer 
patient condition or tumour location may be risky and/or 
prohibitive.

Liquid biopsy is an alternative way of examining molecu-
lar tumour profiles and utilises blood, cerebrospinal fluid 
(CSF), urine and other bodily fluids for detection and iso-
lation of circulating tumour cells (CTCs) and circulating 
tumour DNA (ctDNA) from cancer patients. ctDNA release 
into blood and bodily fluids depend on the location of the 
tumour, size and the vascular infiltration of the tumour 
(Haber and Velculescu 2014). Analysis of ctDNA in real 
time can provide important molecular insights into the 
tumour composition, heterogeneity, prognostic biomarkers 
and their association with other clinically relevant cancer 
biomarkers. Previous studies have shown that the levels 
of ctDNA present in liquid biopsies vary from patient to 
patient, however, the relative levels on repeated sampling 
in a single patient can indicate cancer progression (Diehl 
et al. 2008). Monitoring tumour dynamics via ctDNA before, 
during and post-treatment serves as an important tool. Using 
sensitive techniques such as droplet digital PCR has made 
this much easier as it can detect minute amounts of ctDNA in 
liquid biopsies (Ding et al. 2018). Accordingly, the potential 
of screening for pTERT mutations as biomarkers for future 
individualised therapies for patients should be considered. 
Increasing technological development, in the area of liquid 
biopsies, allow for a more convenient method of biomarker 
detection and are increasingly being adopted in clinical tri-
als worldwide.

In brain cancer, liquid biopsy analysis may be more chal-
lenging due to the blood–brain barrier preventing release 
of tumour derived entities into the blood. Nevertheless, we 
and others have shown that CTCs and ctDNA can be iso-
lated and analysed from brain cancer patients (Lynch 2020; 
Macarthur et al. 2014; Müller et al. 2014; Sareen et al. 2020; 
Sullivan et al. 2014). Further, ctDNA detection could predict 
the recurrence of disease earlier than conventional meth-
ods of monitoring in many cancer types (Ding et al. 2019; 
Gao et al. 2016; McEvoy et al. 2019; Sozzi et al. 2001; Tie 
et al. 2016; Wang et al. 2015). A study analysing the overall 
detection rate of ctDNA in the 419 primary brain tumours, 
including 222 glioblastomas, have shown that the detec-
tion of genomic alteration via ctDNA is achievable, with 
211 patients showing some genomic alteration (Piccioni 
et al. 2019). Another study, looking at the clinical utility of 
plasma cell-free DNA (cfDNA) in adult patients with newly 
diagnosed glioblastoma, have determined that the patients 
had higher plasma cfDNA concentration at baseline (Bagley 
et al. 2020). The high baseline plasma cfDNA is associated 
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with the worse progression-free survival with a median of 
4.9 months vs 9.5 months, inducating that the plasma taken 
at that point may be an informative prognostic tool (Bagley 
et al. 2020). Furthermore, a recent study on diffuse gliomas, 
indicate that the presence of the ctDNA in CSF may serve 
as an early indicator of progression in glioma (Miller et al. 
2019).

Thus, liquid biopsy may play a major role in diagnosis, 
monitoring, assessing disease progression and predicting 
response to brain cancer treatments in the future. Recently, 
ctDNA isolated from plasma has been successfully screened 
for pTERT mutations in various cancers, including meta-
static melanoma, hepatocellular carcinoma, myxoid lipo-
sarcomas and urothelial cancer (Barata et al. 2017; Braig 
et al. 2019; Calapre et al. 2019; Ikeda et al. 2018; McEvoy 
et al. 2017). pTERT mutations can be detected using digital 
droplet PCR assays implying its potential utility in brain can-
cer therapy decision making and in progression monitoring 
(Braig et al. 2019; Calapre et al. 2019; Deniel et al. 2019; 
Hayashi et al. 2019; Wan et al. 2017).

Conclusion

pTERT mutations, C228T and C250T, frequently occur in 
many cancers, including brain cancers such as glioblastoma 
(Arita et al. 2013; Kim et al. 1994; Panebianco et al. 2019; 
Vinagre et al. 2013). These mutations induce the novel ETS1 
binding site, which increases the expression of telomerase 
directly contributing to tumorigenesis, and are associated 
with poorer OS (Bell et al. 2015; Huang et al. 2013). Pres-
ence of pTERT mutations correlates with the presence of 
other biomarkers, such as IDH1, 1p19q, TP53, EGFR. 
Screening for the presence of variants in all of these genes 
may help prognosticate patients which may, in turn, improve 
clinical decision making (Arita et al. 2018, 2016; Heidenre-
ich et al. 2015; Hewer et al. 2020; Kim et al. 2018; Mosrati 
et al. 2015; Pelloski et al. 2007; Spiegl-Kreinecker et al. 
2015; Yuan et al. 2016). Whilst utility of liquid biopsies, as 
a minimally invasive approach, in the brain cancer setting 
is in its infancy, CTC and ctDNA analyses in brain cancer 
are increasingly common (Sareen et al. 2020). This review 
shows the detection of ctDNA and cfDNA in plasma and 
CSF of glioma patients is possible, and hand in hand with 
improved molecular detection techniques may become an 
important tool in determining prognosis and progression-
free survival (Bagley et al. 2020; Miller et al. 2019).

The investigation of the profile of various biomarkers may 
hold clues to better understand tumour biology and may pre-
dict benefit of potential combination therapies. This area 
should therefore be a focus of further studies.
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