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1  |  INTRODUCTION

Research on human disease pathogenesis is critical for progress in 
therapeutic medicine. Insufficient sample acquisition, environmental 
conditions, and ethics often impede studies to examine human dis-
ease directly, and therefore animal models are crucial for gaining in 
vivo insight into disease etiology and pathogenesis. Mice and other 
small rodents have long been important model animals for basic re-
search, and have contributed greatly to our understanding of human 
disease pathogenesis. However, the limitations of rodent models are 
many. For example, metabolic rate is influenced by body size, and 
their small size leads to difficulties in performing surgery and using 
organs (Table  1). Considerable differences exist between rodents 
and humans in the regulatory networks controlling the activity of 

the immune system, metabolic functions, and responses to stress.1,2 
For example, age-associated fasting blood glucose exhibits differen-
tial trends between mice and monkeys/humans.3 Importantly, more 
than 80% of potential therapeutics fail in human trials despite show-
ing safety and efficacy in mice.4

Pigs are one of the most common domestic animals in the world. 
Compared to other livestock and primates, pigs have a rapid growth 
rate, short generation intervals, large litter sizes, and standardized 
breeding techniques. These advantages, combined with comparable 
human and pig body sizes, anatomical and physiological character-
istics, diets, and genome (Table 1),5 have driven a gradual rise in the 
use of pigs as animal models for human diseases.

Similar body and organ sizes between pigs and humans will likely 
hasten the translation of pig studies (in comparison to mouse studies) 
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Abstract
Animal models of human diseases play a critical role in medical research. Pigs are ana-
tomically and physiologically more like humans than are small rodents such as mice, 
making pigs an attractive option for modeling human diseases. Advances in recent 
years in genetic engineering have facilitated the rapid rise of pig models for use in 
studies of human disease. In the present review, we summarize the current status 
of pig models for human cardiovascular, metabolic, neurodegenerative, and various 
genetic diseases. We also discuss areas that need to be improved. Animal models of 
human diseases play a critical role in medical research. Advances in recent years in 
genetic engineering have facilitated the rapid rise of pig models for use in studies of 
human disease. In the present review, we summarize the current status of pig models 
for human cardiovascular, metabolic, neurodegenerative, various genetic diseases and 
xenotransplantation.
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to the clinic. Even before the advent of transgenic and gene-editing 
technology, pig models enabled important advances in human heart, 
bone, metabolism, and even genetic diseases, to name a few. For ex-
ample, pig models of acute myocardial infarction (MI) were generated 
by permanently ligating the trunk near one-third of the apex after 
the first branch or by inflating an angioplasty balloon in the mid-left 
anterior descending artery,12-16facilitating testing, and development 
of MI therapies for use in humans. Similarly, bone and cartilage mod-
els have been generated through surgically-induced lesions in pigs 
for the development of biomaterials.17,18 As both humans and pigs 
are monogastric omnivores, diet modification has been a fruitful ap-
proach for creating pig models of human metabolic disease. A high-
fat diet (HFD) induces obesity and metabolic syndrome and has been 
used in pigs to research the renal disease and nonalcoholic fatty 
liver disease.19,20 To obtain genetic disease models, ENU chemical 

mutagenesis has been used to induce a set of point mutations that 
frequently mimic the subtlety and heterogeneity of human genetic 
lesions.21 For example, microphthalmia-associated transcription 
factor (MITF+/l247s) mutants mimic Waardenburg’s syndrome type II, 
dual oxidase 2 (DUOX 2D409G/D409G) mutants mimic congenital hypo-
thyroidism, SRY-box transcription factor 10 (SOX 10+/R109W) mutants 
mimic Mondini dysplasia, and mutants with a 2 bp CC insertion in the 
melanocortin receptor 1 (MC1R) mimic albinism.22-25 These genetic 
models are heritable and require no special diet or surgical interven-
tion to obtain experimental animals (Table 2).

With the development of transgenic and gene-editing technol-
ogy, genetically engineered pig models are greatly expanding our 
understanding of human disease pathogenesis while aiding the de-
velopment of novel treatments. Existing pig models comprise a wide 
range of human diseases, including cardiovascular diseases, diabetes, 

TABLE  1 General features of experimental animals6-11

Species
Average body 
length (cm)

Average body 
weight (kg)

Average age 
(year)

Pregnancy 
length (day)

Offspring 
per litter

Heart as % of 
body weight

Brain as % of 
body weight

Homo sapiens 170 40–100 72 280 1–2 0.5 2.1

Mus musculus 8–10 0.03–0.05 1–2 18–21 3–12 0.5 1.42

Rattus norvegicus 17 0.2–0.6 1–2 20–23 6–12 0.38 0.29

Oryctolagus 
cuniculus

48 3.5–7.5 5–12 23–34 3–9 0.3 0.4

Sus scrofa 125 40–120 20 114 10 0.6 0.5

Ovis aries 90 80–100 10–15 142–155 1–2 0.27 0.12

Bos taurus 220 500–900 20–23 270 1 0.03 0.08

Canis familiaris 75 10–25 12–15 58–67 5–6 0.85 0.59

Rhesus monkey 50 8–10 20 150 1–2 0.36 0.9

TABLE  2 Pig models by surgery, HFD and ENU mutagenesis

Human disease Method Phenotype References

Myocardial infarction Permanent ligation of the trunk near one-
third of the apex after the first branch

Mir-590-3p suppresses proliferation and 
migration of cardiac fibroblasts

13

Myocardial infarction Inflated angioplasty balloon in the mid-
left anterior descending artery for 
90-min

Reduction of apoptosis by Cortical bone stem 
cells

16

Myocardial infarction 90-min occlusion of the left anterior 
coronary artery

Improvement of cardiomyocyte proliferation 
by microrna-199a

48

Meniscal lesions 4 mm defect created in the medial 
meniscus by surgery

Reduced the chondral lesions by tissue-
engineered construct

17

Cartilage lesions 6 mm created on the femoral condyles of 
stifle joints by surgery

Repaired by living hyaline cartilaginous graft 18

Renal disease High-fat diet Diabetic changes and glomerulomegaly 20

Nonalcoholic fatty liver disease High-fat diet Selenoproteins against damage induced by 
high-fat diet

19

Waardenburg’s syndrome type II ENU mutagenesis Hearing loss, white coat color and MITF+/L247S 22

Congenital hypothyroidism ENU mutagenesis Anemia, immunodeficiency and DUOX 
2D409G/D409G

23

Mondini dysplasia ENU mutagenesis Inner ear mondini malformation and SOX 
10+/R109W

22

Albinism ENU mutagenesis White coat color and 2 bp CC insertion in the 
MC1R

25
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neurodegenerative diseases, genetic diseases, and cancer. Our review 
will focus on important genetically engineered pig models of human 
diseases in current use, generated using novel approaches, such as 
the combined technologies of microinjection (MI), somatic cell nuclear 
transfer (SCNT), and embryo transfer. We include helpful references 
for the construction of pig models and the research of human diseases.

2  |  CURRENT PIG MODELS OF HUMAN 
DISEASE

2.1  | Metabolic diseases

Metabolic diseases are diseases that disrupt the normal metabolic 
process and are generally affected by both genetics and environ-
ments. Common metabolic diseases include obesity, hyperglycemia, 
hyperlipidemia, hypertension, hyperuricemia, fatty liver, cardiovas-
cular disease, and cerebrovascular disease.

2.1.1  |  Diabetes

Diabetes mellitus (DM) is a group of metabolic disorders character-
ized by high blood sugar. Prolonged high blood glucose can damage 
the kidneys, heart, eyes, and nervous system. The three main classi-
fications of DM are type I, type II, and gestational diabetes, although 
rarer forms of diabetes caused by mutations in specific genes also 
occur. Although type I and type II diabetes can appear in individuals 
without any family history of diabetes, they still show a highly herit-
able and generally involve insulin (INS) deficiency (type I) or insulin 
resistance (type II).26 As insulin is secreted by the pancreatic islet 
cells, pigs—with a pancreas similar in size, shape, and blood circu-
lation to the human pancreas—have become an attractive diabetes 
model. INS is believed to play a central role in insulin-dependent 
diabetes, permanent neonatal diabetes, type 10 juvenile mature 
diabetes, and hyperinsulinemia. Mutations27 and deletions28 of INS 
were achieved in pigs using transgenic and gene editing techniques, 
providing invaluable models for studying the onset of diabetes and 
insulin supplement therapy. These pig models are often improved 
by insulin treatment and can be used for the research of insulin sup-
plementation and islet transplantation. Type II diabetes is mainly 
caused by insufficient insulin secretion and excessive insulin resist-
ance. In 2010, Renner et al.29 generated transgenic pigs expressing 
a dominant-negative GIP (glucose-dependent insulinotropic poly-
peptide) receptor (GIPR[dn]) in pancreatic islets, demonstrating an 
essential role of GIP30 for insulin secretion, the proliferation of β-
cells, and physiological expansion of β-cell mass. As patients with 
type II diabetes show significant insulin resistance to exogenous GIP, 
these pigs are good models to study the role of GIP in glucose ho-
meostasis and pancreatic development. IAPP can induce oxidative 
stress and further promote the production of amyloid deposits. Its 
deposition is considered to be one of the major causes of type II dia-
betes. Zou et al.31 successfully established an IAPP gene humanized 

pig model, which exhibited symptoms of human type II diabetes, 
such as increased glucose tolerance. These pigs are suitable models 
for research into islet amyloid deposits in type II diabetes. In addi-
tion to the two main types of diabetes, Umeyama et al.32 generated 
cloned pigs with a mutation in human hepatocyte nuclear factor 1α 
(HNF-1α), which has been reported to cause type III maturity-onset 
diabetes of the young (MODY3).33 Although the majority of cloned 
MODY3 pigs died two weeks after birth, the viable pigs, showed 
high blood glucose levels and proved useful for studying the disease.

Following the development of gene-editing technology, research-
ers also pay attention to models with multiple gene modifications. In 
2015, Kong et al.34 developed knock-in pigs using the polycistronic 
system, which contains an expression cassette of 11-β-hydroxysteroid 
dehydrogenase 1 (11β-HSD1) and another expression cassette of 
human islet amyloid polypeptide (HIAPP) and C/EBP homologous 
protein (CHOP). 11β-HSD1 is important in insulin resistance when 
hIAPP and CHOP can induce β cell apoptosis in the pancreas. These 
pigs showed diabetic phenotypes such as hepatic insulin resistance 
and pancreatic cell apoptosis, which modeled type II diabetes bet-
ter than some pigs with single-gene modifications. Similarly, Zhang 
et al.35 engineered pigs to carry three knock-in risk genes, glucose-
dependent insulinotropic polypeptide receptor (GIPRdn), human islet 
amyloid polypeptide (hIAPP), and Patatin-like phospholipase domain-
containing three variant rs738409 C>G p.I148M (PNPLA3I148M), 
resulting in glucose and lipid metabolism disorders, abnormal fat 
development and liver necrosis, ideal for research on non-alcoholic 
fatty liver disease (NAFLD) and type II diabetes.

2.1.2  |  Atherosclerosis

Atherosclerosis promotes cardiovascular disease, and lipid metabo-
lism disorder is the pathological basis of atherosclerosis. Therefore, 
understanding abnormal lipid metabolism, such as high blood lipid, 
high cholesterol, and obesity, is vital.36,37 Atherosclerosis is usually 
characterized by the deposition of lipids, cholesterol, and sugar com-
plexes beginning from the intima and histiocytosis, leading to cal-
cification.38 Low-density lipoprotein and apolipoprotein are closely 
related to blood lipid levels and have therefore been a focus of ath-
erosclerosis research. In 2013, al-Mashhadi et al.39 generated pro-
protein convertase subtilisin/kexin type 9 (PCSK 9) mutation pigs, 
which exhibited reduced low-density lipoprotein receptor (LDLR) 
levels and developed severe hypercholesterolemia and spontaneous 
atherosclerosis. Similarly, in 2014, Davis et al.40 inserted a neomycin-
resistance cassette (NeoR) into the pig LDLR gene, disrupting its nor-
mal expression. In addition to spontaneous development of certain 
features of human atherosclerosis, atherosclerosis in LDLR mutant 
pig models could be accelerated by placing pigs on high-fat and high-
cholesterol diets. The PCSK 9 transgenic pigs and the LDLR knock-
out pigs both focus on the regulation of low-density lipoprotein to 
model human hypercholesterolemia. However, there is currently no 
evidence to prove that PCSK 9(D374Y) is functionally important in 
pigs. Compared to the PCSK 9 transgenic pigs, the LDLR−/− pigs have 
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a shortened time to development of atherosclerosis. Focusing on 
apolipoprotein, a pig model of hypertriglyceridemia was developed 
in 2012 by Wei et al.,41 who targeted apolipoprotein (Apo) CIII, a 
key apolipoprotein in triglyceride metabolism. The pigs expressed 
human ApoCIII in the liver and intestinal tract. However, human 
ApoCIII transgenic pigs are still the preferred tools for studying the 
mechanisms of hypertriglyceridemia-associated diseases and for 
potential drug development, and it was unclear whether these pigs 
developed atherosclerosis. In 2018, Fang et al.42 generated apolipo-
protein E (ApoE) knockout pigs in which severe hypercholesterolemia 
and human-like atherosclerotic lesions could be induced by a high-
fat, high-cholesterol diet. The rate of cholesterol elevation under a 
high-fat diet in ApoE−/− pigs is higher than in the PCSK9 transgenic 
pigs and the LDLR−/− pigs, and the hypertriglyceridemia phenotype 
was found in ApoE−/− pigs but not the PCSK 9 transgenic pigs or the 
LDLR−/− pigs, suggesting that ApoE−/− pigs may be a better model to 
simulate human atherosclerosis. Advances in gene-editing technol-
ogy led Huang et al.43 to create ApoE and LDLR double gene knock-
out pigs in 2017. These pigs had significantly increased serum levels 
of low-density lipoprotein cholesterol (LDL-C) and total cholesterol 
(TC) and enriched the available models. Besides LDL, some choles-
terol absorption relevant genes also influence the development of 
atherosclerosis. In 2015, Wang et al.44 generated a pig model with 
InDels of NPC1L1, an important gene in cholesterol absorption.

In addition to abnormal lipid metabolism, atherosclerosis can 
be caused by abnormal glucose metabolism.45 In 2017, Yang et al.46 
used zinc finger nuclease technology to create PPARγ mono-allelic 
knockout pigs, which proved to be a good model for both atheroscle-
rosis and type 2 diabetes. These pig models provide new research 
opportunities for early asymptomatic human atherosclerosis and 
other cardiovascular diseases that are difficult to study and treat.

2.1.3  |  Myocardial infarction

Myocardial infarction (MI) is a major cause of morbidity and mortal-
ity worldwide. Atherosclerosis is a risk factor for MI, as the rupture 
of atherosclerotic plaques leads to thrombus and sudden obstruc-
tion of the coronary artery, further resulting in myocardial ischemic 
necrosis. Various pig models of cardiovascular disease have been 
widely used in the development of treatments. In 2019, Hobby 
et al.16 guided an angioplasty balloon through the femoral artery 
to the mid-LAD past the first diagonal branch. The MI model gen-
erated by inflation of the balloon led to the discovery that cortical 
bone stem cells (CBSCs) influence cardiomyocyte and noncardio-
myocyte cell death and immune cell recruitment in the heart follow-
ing MI.47 MicroRNAs have proven to be another rewarding avenue 
for MI research. MiR-590-3p was shown to suppress proliferation, 
migration, and differentiation of cardiac fibroblasts, whereas13 MiR-
144-3p and microRNA-199a appear to induce these cardiac fibro-
blast programs.12,48 At present, most research models of myocardial 
infarction are disposable models prepared by surgery, which have 
limitations for long-term use. If a stable genetic model can be de-
veloped in the future, the research on myocardial infarction will be 
greatly accelerated (Table 3).

2.2  | Neurodegenerative diseases

Neurodegenerative diseases are functional disorders caused by the 
loss of neurons and/or their myelin sheaths in the brain and spinal 
cord. The most common diseases include Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Huntington’s disease (HD), and amyo-
trophic lateral sclerosis (ALS).

TABLE  3 Pig models of metabolic diseases

Human disease Gene Modification References

Mody3 HGF Mutation 32

Type 2 diabetes GIPR Mutation 29

Diabetes, coronary heart disease PPARγ Knockout 46

Permanent neonatal diabetes mellitus INS Mutation 27

Type 2 diabetes 11β-HSD 1, HIAPP, CHOP Knock-in 34

Diabetes INS Knock-in 28

Type 2 diabetes hIAPP Knockout 31

NAFLD GIPRdn, hIAPP, PNPLA3I148M Knock-in 35

Hypertriglyceridemia ApoCIII Knock-in 41

Hypercholesterolemia, atherosclerosis PCSK9 Mutation 39

Hypercholesterolemia, atherosclerosis LDLR Knock-in 40

Disorder of cholesterol absorption NPC1L1 Knockout 44

Serum LDL-C and TC levels increase ApoE and LDLR Knockout 43

Hypercholesterolemia, atherosclerosis ApoE Knockout 42
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2.2.1  |  Alzheimer’s disease

Alzheimer’s disease, accounting for approximately 50%~80% of 
human dementia cases,49 is a neurodegenerative disease with hid-
den onset, characterized by general dementia such as memory 
impairment, aphasia, executive dysfunction, and personality be-
havior changes. Patients usually exhibit accumulation of extracel-
lular amyloid-beta (Aβ) to form senile plaques and intracellular 
neurofibrillary tangles of microtubule-binding protein Tau in the 
gray matter of the brain. At present, amyloid precursor protein 
(APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) are considered 
to be pathogenic genes of familial AD. In 2009, Kragh et al.50 gen-
erated an AD pig model of transgenic human APP695sw. Although 
high expression of the transgene was detected in different brain re-
gions of this pig model, there was no elevated Aβ level in tissues or 
memory impairment in 1-year-old pigs.51 In 2013, Jakobsen et al.52 
used recombinase-mediated cassette exchange (RMCE) technology 
to generate a PSEN1M146I mutant pig model. AD pigs carrying both 
APP695sw and PSEN 1M146I mutations were subsequently generated in 
2016. These pigs were found to accumulate Aβ-42 in their brains53 
at around 10–18 months. Several known pathogenic genes of familial 
AD have been modified in pig models. Also, AD pigs carrying triple 
mutations of hAPP (K670N/M671L, I716V, and V717I), hTau (P301L), 
and hPS1 (M146V and L286P) were generated using the polycistronic 
vector system. These pigs were similarly found to accumulate Aβ-40 
and Aβ-42 in their brain,54 a significant phenotype of AD patients.

2.2.2  |  Parkinson’s disease

Parkinson’s disease, also known as paralysis tremors, is a neurode-
generative disease caused by the degeneration of dopamine neu-
rons in the substantia nigra and the presence of Lewy bodies in the 
neurons.55,56 In 2014, Yao et al.57 generated DJ-1 gene knockout 
pigs using TALEN. Although the expression of DJ-1 was inhibited at 
the protein level, defective cloning led to the early death of these 
animals. In 2014, Zhou et al.58 generated a PARK2 and PINK1 double 
knockout pig with deficient protein levels of both gene products, 
and in 2016, Wang et al.59 generated pigs with triple gene knockouts 

of DJ-1, Parkin, and PINK1 using CRISPR/Cas9. In 2018, Zhu et al.60 
developed SCNA knock-in pigs carrying three missense mutations 
(E46K, H50Q, and G51D) known to cause Parkinson’s disease. No 
typical symptoms of PD have been observed in any of these pig 
models, possibly because PD is a progressive disease that occurs 
mostly in the elderly.

2.2.3  |  Huntington’s disease

Huntington’s disease is a rare autosomal dominant genetic disorder. 
Due to variations in Huntington protein (HTT), patients typically de-
velop motor symptoms, cognitive dysfunction, and mental disorders. 
In 2010, Yang et al.61 generated HD pigs with HTT mutations that 
suffered significant involuntary movements. In 2018, Yan et al.62 
found that endogenous expression of full-length HTT mutants in 
pigs elicited significant neuronal degeneration, which effectively 
mimics human Huntington’s disease. This single gene mutation has 
resulted in the current pig models that simulate Huntington’s disease 
well. Future use of these models to search for effective treatments 
will be an important application of these pig models (Table 4).

2.3  | Genetic diseases

Genetic diseases generally refer to diseases caused by changes in 
genetic material or disease genes. In addition to the metabolic dis-
eases and neurodegenerative diseases discussed above, pig models 
of cystic fibrosis, Duchenne muscular dystrophy, hemophilia, and 
various cancers have also been developed for medical research.

2.3.1  |  Cystic fibrosis

Cystic fibrosis (CF), a recessive genetic disease with a single gene 
mutation, is caused by dysfunction of the CF transmembrane con-
ductance regulator (CFTR). The disease starts in early childhood and 
affects many tissues and organs, including the respiratory tract, 
lungs, gastrointestinal tract, pancreas, liver, reproductive tract, 

Human disease Gene Modification References

Alzheimer APP695sw Knock-in 50

Alzheimer PSEN1MI46I Mutation 52

Alzheimer APPSW, PSEN1MI46I Mutation 53

Alzheimer hAPP, hTau, hPS1 Mutation 54

Huntington HTT Mutation 61

Huntington HTT Knock-in 62

Parkinson Parkin, DJ-1 Knockout 57

Parkinson PARK2, DJ-1, PINK1 Knockout 59

Parkinson SNCA Knock-in 60

Parkinson PARK2, PINK1 Knockout 58

TABLE  4 Pig models of 
neurodegenerative diseases
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and sweat glands. Due to defective chloride ion channels in CF 
patients, respiratory mucus gland secretions become dehydrated 
and viscous, resulting in respiratory tract infection, airway obstruc-
tion, and meconium obstruction. Viscous secretions can addition-
ally block the reproductive system, leading to male infertility.63,64 
The pig model of cystic fibrosis is an outstanding example of a ge-
netically engineered pig as a model of human disease. In 2008, a 
pig model with the CFTR allele deletion and another with the most 
common mutation (ΔF508) were generated by Rogers et al., using 
a recombinant adeno-associated virus (RAAV) delivery system.65 
While approximately 15% of CF patients are born with meconium 
blocking, meconium blocking rates were 100% in CFTR−/− pigs, and 
a little bit less in CFTR+/ΔF508 pigs. Subsequent studies have shown 
that CFTRΔF508/ΔF508 pigs develop meconium blocking, abnormal 
pancreatic and bile secretion,66 and lung diseases similar to those 
of CF patients, which develop spontaneously within a few weeks 
of birth.67 Based on studies of the CFTR−/− pigs, Stoltz et al.68 es-
tablished a corrected model for intestinal expression in 2013, which 
successfully alleviated meconium obstruction. Thus, the CFTR−/− pig 
models replicate most of the features of human CF and have shown 
tremendous promise for translational therapies.69

2.3.2  |  Duchenne muscular dystrophy

Muscular dystrophy is a genetic disorder characterized by progres-
sive muscle weakness, wasting, and muscle degeneration. These 
diseases mainly include Duchenne muscular dystrophy (DMD), 
Becker muscular dystrophy (BMD), limb-girdle muscular dystrophy 
(LGMD), congenital muscular dystrophy (CMD), and Emery-Dreifuss 
Muscular dystrophy (EDMD).70,71 DMD is an incurable X-linked 
genetic disease caused by deletion, point mutation, or duplication 
of the DMD gene.72 Patients tend to die in their 20s or 30s due to 
weaknesses in the muscles of the heart and lungs. In 2013, Klymiuk 
et al.73 used gene targeting and SCNT to generate a pig model with 
a deletion of Exon 52 of DMD. This pig model developed symptoms 
similar to human DMD patients, for instance, elevated serum cre-
atine kinase activity, myofibrosis, and loss of myotrophin. However, 
use of the DMD pig model has been greatly restricted by the con-
siderable rates of pig neonatal death. Yu et al.74 used CRISPR/Cas9 
gene-editing technology to accurately edit exon 27 of DMD, gener-
ating another DMD pig model in 2016. This model also displayed a 
phenotype similar to human DMD with loss of myotrophic protein 
and myocardial damage. However, similar to the previous model, 
these pigs are prone to premature death. Moretti et al.75 found that 
a truncated DMDΔ51–52 pig model improved skeletal muscle function 
and heart rhythm as well as reducing neonatal death, and recent 
studies by Chiappalupi et al.76 found that injection of porcine Sertoli 
cells can eliminate the inflammatory response and the expression of 
dystrophin. Overall, DMD is a disease with single gene mutations. 
Pig DMD models hold great promise in the development of drugs 
and treatments for DMD.

2.3.3  |  Cancer

Carcinoma is the most common type of malignant tumor originating 
from epithelial tissue. In 2010, Luo et al.77 reported a pig model with 
a knockout of the breast cancer-associated gene (BRCA1) mediated 
by adenovirus. Although the BRCA1+/∆11 pigs were able to develop 
to term, they had high perinatal mortality. No one pig survived more 
than 18  days, leading the model to be adjusted further. In 2012, 
Flisikowska et al.78 produced abnormal lesions and adenomas in 
large intestines of pigs by mutating adenomatous polyposis coli (APC) 
at sites 1311 and 1016. In these pigs, a single allele mutation of APC 
was sufficient to initiate the well-characterized precancer sequence 
leading to growths similar to those in patients with familial adeno-
matous polyposis in human colorectal lesions, which has not been 
possible in the mouse models. RUNX 3 is considered to be a tumor 
suppressor gene associated with gastric adenocarcinoma. In 2016, 
Kang et al.79 established a pig model with a RUNX 3 knockout, pro-
viding opportunities for gastric cancer research. In 2016, Saalfrank 
et al.80 generated a targeted TP53 knockout pig, which developed 
osteosarcoma in the long bone, skull, and mandible. Some genes 
tend to cause more than one type of cancer. In 2014, Sieren et al.81 
generated pigs with a mutant TP53 gene that developed multiple 
tissue lesions such as lymphoma, Wilm’s neuroblastoma, and bone-
derived tumor. In 2015, Schook et al.82 constructed a pig model that 
could be conditionally induced to express various tumor types via 
mutation of KRASG12D and TP53R167H via Cre recombinase expres-
sion. In 2017, Wang et al.83 used TALEN and SCNT techniques to 
produce pigs simulating human non-small cell lung cancer (NSCLC). 
These pigs achieved time–space and site-specific expression of the 
mutant proteins by Cre induction of rearrangement of echinoderm 
microtubule-associated protein 4 (EML4) and anaplastic lymphoma 
kinase (ALK) genes. This inducible system may be used to study 
many other cancers.

2.3.4  |  Other genetic diseases

Additional pig models have been developed to recapitulate various 
other genetic diseases over the years. Von Willebrand disease is an 
inherited hemorrhagic disorder generally caused by an autosomal 
dominant plasma vWF deficiency. In 2014, Hai et al.84 generated a 
vWF knockout pig model of von Willebrand disease, which showed 
significant prolonged bleeding and defective coagulation.

Hemophilia comprises a group of recessive X-linked inher-
ited clotting disorders in patients lacking various clotting factors. 
Hemophilia B is caused by lack of factor IX (F9) gene. In 2020, Chen 
et al.85 reported that targeted pig knockouts lacking a functional F9 
gene showed obvious symptoms of hemophilia B, such as cruor dis-
order, synovitis, and cartilage destruction. Moreover, the symptoms 
were significantly rescued by knocking the human F9 gene into the 
knockout pigs. This research suggests new ways to correct hemo-
philia B in the future by genome editing.
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Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic 
disorder that often causes premature aging and cardiovascular com-
plications. Introducing heterozygous mutations of the LMNA gene 
into pigs induced growth retardation, lipodystrophy, skin and bone 
changes, cardiovascular disease, and death in adolescence.86 The 
mean lifespan of these pigs is just about 6  months, making them 
good models for longevity studies in clinics.

Loss-of-function mutations in the COL2A1 gene are the etiology 
of type II collagenopathy. COL2A1 mutant pigs exhibit bone dys-
plasia and tracheal collapse, modeling aspects of human spondy-
loepiphyseal dysplasia and stickler syndrome type I.87

Waardenburg’s disease is a syndrome of deafness, white hair, and 
eye disease. Wang et al.88 generated MITF mutant pigs using CRISPR/
Cas9, which also developed white fur and hearing impairments. Then 
in 2021, Yao et al.89 successfully rescued anophthalmia and hearing 
loss in the cloned pigs using single-stranded oligodeoxynucleotide 
(ssODN) and long donor plasmid DNA as the repair template.

Another epidermal disorder, oculocutaneous albinism type I was 
modeled in pigs by either TYR gene fragment knockout or point mu-
tation.58,90 The pigs completely lost dark pigment in skin, hair, and 
eyes, showing visible signs of the disease, but this model is still worth 
further analysis.

Unlike mice, pigs have a high cone density and dense photore-
ceptor retinal area, similar to humans. Cloned pigs with a rhodopsin 

(Rho) mutation showed reduced light sensitivity, similar to patients 
with inherited retinal degeneration91-93; ELOVL4 mutant pigs, which 
simulate Stargardt disease type 3, showed photoreceptor loss and 
reduced retinal response.94

Hereditary tyrosinemia type I (HT1) is caused by a defi-
ciency of fumaryl acetoacetic acid hydrolase (FAH), which leads 
to liver failure. Hickey et al.95 generated FAH+/− cloned pigs with 
an adeno-associated virus-mediated gene targeting strategy. The 
FAH−/− offspring showed severe liver damage, but unlike humans, 
FAH-deficiency in pigs causes a lethal defect in utero, and interest-
ingly the defect of FAH could be cured by 2-(2-nitro-4-trifluorometh
ylbenzoyl)-1,3 cyclohexanedione (NTBC).

Phenylketonuria, caused by a deficiency of phenylalanine hy-
droxylase (PAH), can lead to neurocognitive impairment, behav-
ioral problems, eczema, and hypopigmentation. Koppes et al.96 
generated a pig model of phenylketonuria with symptoms in-
cluding hyperphenylalaninemia, growth retardation, hypoplasia, 
ventricular dilation, and decreased gray matter volume. But they 
did not show devastating neurocognitive and neurological clinical 
characteristics.

In summary, pig models have been widely used to simulate 
human diseases, and most genetic diseases can be studied by pre-
paring pig models. Especially when the causal gene in humans is 
known (Table 5).

Human disease Gene Modification References

Cystic fibrosis CFTR Knockout, mutation 64

Cystic fibrosis CFTR Knockout 67

Cystic fibrosis CFTR Knockout 68

Duchenne muscular dystrophy DMD Knockout 73

Duchenne muscular dystrophy DMD Knockout 74

Breast cancer BRCA1 Knockout 77

Colorectal cancer APC1311, APC1016 Mutation 78

Lymphoma, wilm-blastoma, and bone 
tumors

TP53R167H Mutation 81

Cancer KRASG12D, TP53R167H Mutation 82

Gastric cancer RUNX3 Knockout 79

Osteosarcoma TP53 Knockout 80

Lung cancer EML4, ALK Knock-in 83

Von Willebrand disease vWF Knockout 84

Hemophilia B hF9 Knock-in 85

Hutchinson-Gilford progeria syndrome LMNA Mutation 86

Waardenburg’s MITF Knockout 88

Ocular skin albinism type 1 TYR Knockout 58

Retinitis pigmentosa Rho Mutation 91

Retinitis pigmentosa Rho Mutation 92

Retinitis pigmentosa Rho Mutation 93

Stargardt disease type 3 (STGD 3) ELOVL4 Knockout, mutation 94

Tyrosinemia type I FAH Knockout 95

Phenylketonuria PAH Knockout 96

TABLE  5 Pig models of genetic 
diseases
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2.4  |  Xenotransplantation

One of the most important roles of pigs in the biomedical field is 
as tissue and organ donors. There is currently a serious shortage 
of life-saving tissues and organs for human clinical transplantation. 
The structure and function of organs are similar between pigs and 
humans. Because of this, pigs have attracted great interest in the 
field of xenotransplantation. Corneas, hearts, kidneys, livers, lungs, 
nerve cells, and islets of pigs have been studied as candidates for 
xenotransplantation.

One of the key problems in xenotransplantation is immune re-
jection. The presence of α-1,3-galactose (α-Gal) epitopes on pig cells 
is a major obstacle to successful xenotransplantation. α-galactosyl 
transferase 1 (GGTA 1) is an important gene involved in the bio-
synthesis of α-1,3-galactose. Researchers have established GGTA 1 
knockout or mutant pig models.97-101 Similarly, N-glycolylneuraminic 
acid (NeuGc) is a non-Gal xenoantigen in pigs which can compro-
mise successful transplantation to human hosts. This challenge was 
met by the establishment of a CMP-Neu5Ac hydroxylase (CMAH) 
knockout pig model.102,103 Since immune rejection is often not con-
trolled by a single gene, researchers have also generated a combined 
knockout of GGTA 1 and CMAH, as well as some other xenoantigen 
genes such as iGb3S and β4 GalNT2.104-107 In addition to xenoanti-
gens, major histocompatibility complex class I (MHC I)108-110 and NK 
cells111 are important factors in host immunity, for which pig models 
have been established to address potential problems. Furthermore, 
the establishment of several pig models with severe combined im-
munodeficiency and inactivation of porcine endogenous retrovi-
ruses has reduced concerns about the spread of zoonotic diseases 
and has provided important materials for the advancement of 
xenotransplantation.112-117

Solid organ xenotransplantation between pig and non-human 
primates is also a key research priority before human clinical tri-
als. In recent years, with the development of xenotransplantation, 
several types of solid organ xenotransplantation have been tested 

in non-human primates with some success, including heart,118,119 
kidney,120 lung,121 and liver.122 Even more exciting, the world’s first 
gene-edited pig heart transplant into a human was carried out in 
January 2022. Although the patient died unfortunately after two 
months, this is still a milestone in the search for a solution to the 
shortage of human organs. Almost at the same time, the world’s first 
pig kidney transplant into a human was reported.123 We expect that 
in the future, gene-modified pigs will certainly provide new oppor-
tunities for the shortage of human organs (Table 6).

3  |  CONCLUSION

Currently, there are pig models for a variety of human diseases in-
cluding cardiovascular, metabolic, neurodegenerative, and other 
genetic diseases, which have provided considerable support for the 
analysis and treatment of human diseases. Recently, the COVID-19 
pandemic caused by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) has led to a serious global public health crisis. The 
analysis of the pathogenesis of infection, the development of diag-
nostic and therapeutic methods, and the validation of vaccine and 
drug products all require large animal models similar to human clini-
cal pathogenesis. Du et al.124 replaced pig angiotensin-converting 
enzyme 2 (ACE2) by site-specific knock-in of human hACE2 and 
found that primary epithelial cells isolated from the lungs and kid-
neys of this humanized pig model were highly sensitive to SARS-
CoV-2 infection. In conclusion, pig models have great potential to 
advance the study of human diseases, from the study of pathogen-
esis to the development and utilization of drugs, and even as tissue 
and organ donors.

In addition, there is much that needs improving in pig gene ed-
iting, in vitro embryo culture, and assisted reproduction. In recent 
years, research on pig pluripotent stem cells has also provided new 
opportunities for the production of cloned pigs. Although the emer-
gence of gene-editing technology has greatly accelerated progress 

TABLE  6 Pig models of xenotransplantation

Human disease Gene Modification References

Immunological rejection (αGal) GGTA1 Knockout, mutation 97-101

Immunological rejection (non-Gal) CMAH Knockout 102,103

Immunological rejection GGTA1, CMAH Knockout 105,106

Immunological rejection GGTA1, CMAH, iGb3S Knockout 104

Immunological rejection GGTA1, β4GalNT22, CMAH Knockout 107

Immunological rejection (MHC I) SLA Knockout 110

Immunological rejection (MHC I) B2M Knockout 108,109

Immunological rejection (NK cell) ULBP1 Knockout 111

Severe combined immunodeficiency RAG2 Knockout 117

Severe combined immunodeficiency RAG1/2 Knockout 116

Severe combined immunodeficiency RAG2, IL2RG Knockout 113

Severe combined immunodeficiency IL2RG Knockout 112,114

Inactivation of porcine endogenous retroviruses PERV Knockout 115
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in pig models for studying genetic background and for testing drugs, 
therapeutics, and methods of delivery, safety, and ethical issues can-
not be ignored. On the one hand, humans and pigs are different in 
many ways, and drugs and treatments developed in pig models must 
be determined to be safe before clinical tests. On the other hand, be-
cause of the existence of zoonosis, care must be taken at every stage 
of the experiment to avoid cross-contamination and the spread of 
disease. Apart from safety and ethical issues, animal welfare also af-
fects society’s willingness to condone animal research. The health of 
the animal used as a model is not only critical to obtaining reliable 
results but is also a responsibility for every researcher. Improving 
the nutrition, physical environment, health, behavioral interactions, 
and mental state of pigs will promote the development and social 
acceptance of pig models.125 By addressing the importance of these 
issues, pig models will continue to be an important source of support 
for the advancement of human medicine in the future.
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