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Abstract

Perfect bilateral symmetry is the optimal outcome of the development of bilateral traits in the

absence of developmental perturbations. Any random perturbation in this perfect symmetri-

cal state is called Fluctuating Asymmetry (FA). Many studies have been conducted on FA

as an indicator of Developmental Instability (DI) and its possible link with stress and individ-

ual quality in general and with attractiveness, health and level of masculinity or femininity in

humans. Most human studies of facial asymmetry use 2D pictures and a limited number of

landmarks. We developed a protocol to utilize high-density 3D scans of human faces to

measure the level of asymmetry. A completely symmetric spatially dense anthropometric

mask with paired vertices is non-rigidly mapped on target faces using an Iterative Closest

Point (ICP) registration algorithm. A set of 19 manually indicated landmarks were used to

validate the mapping precision. The protocol’s accuracy in FA calculation is assessed, and

results show that a spatially dense approach is more accurate. In addition, it generates an

integrated asymmetry estimate across the entire face. Finally, the automatic nature of the

protocol provides a great advantage by omitting the tedious step of manual landmark indica-

tion on the biological structure of interest.

Introduction

While symmetry is often considered as the optimal morphological state for many bilateral

traits, perfect symmetry hardly ever exists [1, 2, 3]. Causes of asymmetry can be categorized

into three groups: a) Congenital or related to genes, b) developmental and c) acquired (caused

by accidents or diseases) [4]. From a morphological perspective, generally, three types of asym-

metry are distinguished on the basis of the distribution of asymmetries at the population level,

namely Directional Asymmetry (DA), Fluctuating Asymmetry (FA) and Anti-Symmetry (AS)

[5]. DA is referred to a state where one side of the body develops to be bigger than the other

side and it can be defined as the difference between the population level averages of right and

left sides of the body. AS occurs when DA is present in a population, but the direction varies
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between individuals. FA is defined as directionally random perturbations from perfect symme-

try (or DA) and is believed to represent the stochastic nature of development. These three

types of asymmetry are not mutually exclusive and can co-occur in the same population [6].

While DA and AS are considered to be population-level traits, FA has been studied at both the

population and individual level. In theory, FA is considered to reflect the precision of develop-

ment and increasing levels of FA are expected to emerge due to lower Developmental Stabil-

ity–the capacity of an organism to buffer the genetic and environmental stresses that tend to

affect its development [7, 8, 9]. It has therefore been studied extensively in ecology and evolu-

tionary biology and is proposed to be an indicator of environmental and genetic stress [10,11],

or an indicator of individual quality [12, 13, 14] in a variety of organisms. However, this field

of research has seen an enormous heterogeneity in results leading to the conclusion that FA

may reflect stress and quality in some cases, but certainly not consistently so.

A specific property of FA is that it is usually very small and difficult to measure [12]. Not

only does this cause a problem in terms of repeatability and confounding of FA measures with

measurement error (ME), it also makes the measurement of FA a very tedious and time-con-

suming exercise. The aim of this paper is to develop a methodology that provides accurate esti-

mates using an automatic algorithm based on 3D scans. We develop the technique for human

3D face scans, but the approach is applicable to any bilaterally symmetric 3D object. In order

to measure the asymmetry in human faces or bodies, different approaches have been used.

Most often linear measurements on arms and legs or manual landmarking on conventional

2D photographs are applied to capture the biological structure of interest. As such, simple

morphometric measurements like angles and ratios [15], or distances of specific anatomical

landmarks with respect to the estimated sagittal plane [16] are the more conventional methods

of calculating asymmetry. Of course, since the human face and body are 3D structures it is rea-

sonable to assume that representing them by 2D images comes with the cost of losing poten-

tially useful information embedded in the disregarded third dimension [17, 18]. Therefore,

with the emergence of 3D scanning technology, more recent studies have focused on using 3D

techniques to evaluate asymmetry[19, 20, 21]. These studies use a configuration of manually

indicated landmarks, consisting of paired landmarks on each side as well as unpaired land-

marks positioned on the mid-plane of the structure. This configuration is then mirrored with

respect to an arbitrary plane (in most cases the x = 0 plane) and the landmarks are relabeled to

regain their correspondence with the original configuration. By performing a least-squares

rigid transformation (Procrustes alignment) the two set of landmarks are super-imposed and

the asymmetry value is calculated by simply subtracting the mirrored configuration from the

original. So far, this method has been widely accepted by scientists as a well-established

method of FA calculation. However, the magnitude of FA distribution is small and sometimes

within the range of measurement error [22]. Therefore, the human error introduced by manu-

ally indicating the landmarks can cause some inaccuracy in the calculation of FA values. Also

due to the sparse nature of the landmark configuration, there is a possibility of losing some

dominant features of the face or the body [23]. Some other studies have taken an automatic

surface-based approach on analyzing asymmetry, using commercially available software pack-

ages [24, 25, 26]. In these studies, the asymmetry is obtained as the distance between the two

surfaces of a face and its mirror with respect to the sagittal plane. A shortcoming of this

approach is that it only measures the component of asymmetry that is perpendicular to the

surface of the face. This can introduce significant error, especially in case of FA where the mag-

nitude of asymmetry is usually small. Also in such methods there is no possibility for separat-

ing FA and DA from the measured asymmetry in a standardized way for a population.

We overcome these difficulties by extending the method described above to an automated

spatially dense protocol on asymmetry assessment. First, we describe the construction of our
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paired symmetric anthropometric mask, based on the mask used by Claes et al. (2011). The

original mask consisted of points that were sampled in a non-paired and non-symmetric man-

ner, meaning the points on either side did not have an exact replicate on the other side. Having

a symmetrical paired mask enables us to obtain mirrors of the faces by just reflecting and rela-

beling the landmarks [17, 19]. We can also use this mask to simulate asymmetric faces with

known amounts of asymmetry for each vertex. This way we can validate the ability of our algo-

rithm to localize asymmetry in faces. We then describe the different steps of our mapping algo-

rithm used to transfer the faces into a homogenous configuration by non-rigidly mapping our

mask onto each face. Next, we evaluate our mapping algorithm by comparing 19 automatically

obtained anatomically significant landmarks (around the nose, eyes and the lips) with their

manually indicated counterparts. We then perform a simulation study to illustrate the perfor-

mance and benefit of our spatially dense and automated approach in calculating FA over the

traditional use of sparse landmarks. Also, the algorithm’s ability in localizing FA is tested and

discussed.

Materials & methods

Objects in 3D computer graphics are represented using a collection of vertices (coordinates of

points in 3D) and edges (the connections between the vertices). The output surfaces of 3D

scanners may have a different number of vertices, different edge configuration, and in some

cases, parts of the surface of interest might be missing. In order to be able to use a standardized

and homologous asymmetry assessment method on all of the faces, first these faces should all

be represented by the same configuration of vertices and edges. This is achieved through map-

ping a paired symmetrical spatially-dense anthropometric mask onto each one of the faces in

our dataset. Finding the mapping function between two surfaces is called 3D surface registra-

tion. Fig 1 shows the complete flow diagram of the method, displaying the steps starting from

the target and template face and leading to the calculated FA heat-map.

Fig 1. Complete flow diagram of the proposed spatially dense approach for FA calculation.

https://doi.org/10.1371/journal.pone.0207895.g001
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Anthropometric mask

We used the mask developed by Claes (2012) as a base to obtain our paired symmetrical mask.

The original mask covers the facial area of interest, consisting of spatially-dense, uniformly

sampled (equally distanced at ~2 mm) points on an averaged facial form calculated over 400

Western Australian healthy young individuals between the ages of 18–25 years [27].

We cut the mask in the middle into two hemi-faces at the x = 0 plane, which due to explicit

construction resulting from participants sitting upright in their natural head position during

scanning, it roughly equates the sagittal plane. The right hemi-face was then mirrored with

respect to the same plane. The original hemi-face and its mirrored version were then stitched

together by creating amid-line. This was done by merging corresponding vertices that were

located close to each other (the threshold was arbitrarily chosen as 0.3 of the average edge

length) into new vertices on the plane x = 0. The outcome facial mesh was then “cleaned” at

the mid-line by collapsing or splitting the edges based on their length and removing any dupli-

cate or unreferenced vertices. This resulted in a symmetrical facial mask consisting of 7160

quasi-landmarks, with 3527 paired quasi-landmarks on each side and 106 unpaired quasi-

landmarks on the mid-line of the face.

Mapping

The mapping process is comparable to fitting an elastic mask onto a solid face [17]. Based on

the Iterative Closest Point (ICP) method [28] and the work of [29, 30, 31], the algorithm maps

the templatemask M onto the target face T by non-rigidly deformingM according to anatomi-

cal and geometrical features of T.

The different steps of the algorithm are presented in the pseudo-code below:

Start

1. Rough alignment

• Calculate rigid transformation matrix Tmat based on 5 positioning landmarks onM
and T

• Apply Tmat on T to roughly align it withM

2. Rigid ICP

• Select a number of sample vertices fromM and T using a stable sampling method

• Start iteration by finding two-way fuzzy correspondence between sampled vertices on

M and T

• Correct for outliers based on distance and the overlapping area of the meshes

• Calculate the transfer matrix and apply to T

• Re-iterate until convergence

3. Non-rigid registration

• Find two-way fuzzy correspondence between vertices pm onM and vertices qt on T
using K-NN

• Correct for outliers (Distance-based, Normal-based, Holes)

• Calculate displacement matrix FM

• Convolve FM with a Gaussian with variance σ2
1 (Viscous behavior)
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• Update global displacement fieldDg by adding the regularized FM

• Convolve Dg with a Gaussian with variance σ2
2 (Elastic behavior)

• UpdateM by addingDg

• Decrease k and ρ

• Re-iterate until convergence

End

Step 1- Rough alignment: We start by using 5 roughly indicated landmarks onM and T
(the outer corners of the eyes, the tip of the nose and the corners of the mouth) to crudely

align the surfaces using a superimposition of the points (scaling, rotation, and translation).

This superimposition is done by finding the transformation matrix using a least-squares fitting

of the two sets of landmarks [32] and applying the transformation to the whole face.

Step 2- Rigid ICP: In this step, we rigidly align the two surfaces as closely as possible. The

ICP method introduced by Besl & McKay (1992) is probably the most widely used algorithm

for rigid registration of point-clouds. Different survey studies on rigid registration methods

show ICP to be faster and more accurate compared to other common methods, especially in

cases in which the two point-sets have a good rough alignment [33, 34, 35]. We start by sam-

pling each of the faces using a stable sampling method [36]. This method selects the samples

that constrain potentially unstable transformations. Unstable transformations occur when the

sampled points come from feature-less regions and the surfaces can slide over each other with-

out a significant change in the error metric (e.g. aligning two planes). This method tries to

minimize the instability by drawing a set of sample points primarily from stable, i.e. “lock and

key”, areas of the input meshes. In other words, the algorithm favors samples from non-flat

areas of the meshes. Then iterations start by establishing two-way correspondences between

the sampled vertices of both surfaces. The found correspondences are then corrected for outli-

ers by checking the distances between the corresponding vertices. Corresponding vertices with

distances more than one standard deviation away from the mean value are neglected. We also

checked for correspondences at the boundaries of the two surfaces (as explained in step 4), in

order to make sure that the correspondences are limited to the area of overlap between the

faces. The best rigid transformation that maps the sampled vertices on T to the sampled verti-

ces onM is computed using least-squares fitting and applied to T. The algorithm continues

until the average change in T falls below 0.0001 mm or the number of iterations reaches 100.

Step 3- Non-rigid registration: In all cases, T has a significant morphological difference

compared toM. Therefore, a rigid registration will not suffice to completely map the two sur-

faces. In this step we follow an approach similar to the previous step, however this time the

transformation model allows shape changes inM (hence the term non-rigid). Due to the afore-

mentioned morphological difference, simply using a one-way registration will not be able to

properly capture the structure of T in all cases. To overcome this problem, we opt for symmet-
rical correspondence. This means we look for correspondences for bothM and T. By using

symmetric correspondences, we create pull forces from the target, in addition to the usual

push forces from the mask [37]. This can help to capture any possible out-of-reach vertices on

the target, therefore any possible protrusions on the target surface will not be neglected [38].

After finding the two-way correspondences, they are merged into one matrix and used to

obtain the deformation field forM.

The non-rigid registration step starts by finding correspondences for vertices P = {p1,. . .,

pm} onM, chosen from vertices Q = {qt,. . .,qt} on T, and vice versa. We used Distance-

Weighted K-Nearest Neighbors (KNN) method [39, 35] to establish such dense
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correspondences. The basic idea here is to relax the binary correspondence between the two

surfaces to form a continuous correspondence matrix [40]. In this way, instead of a one-on-

one correspondence between the mask and target vertices, each vertex pm gets assigned to a

number (k) of vertices qt on the target, for which the correspondence is weighted based on

their distance.

To correct for possible outliers, the found correspondences are refined by comparing the

surface normals and the Euclidean distance between the corresponding points, as well as the

possibility of presence of holes on T. If there is a relatively high distance between the corre-

sponding vertices or a high angle between their respective normal vectors, the correspondence

is set as an outlier. The threshold for distance is defined as three standard deviations away

from the average distance between the corresponding points. The threshold for normal angle

difference was set empirically as π/12 to avoid correspondences between points that belong to

the regions that are anatomically different. The correction for holes is done by checking the

found correspondences for any vertices on the boundary edges of T. These are the vertices that

the edges (connections) between them are only shared by one triangle on the mesh. If any of

these 3 groups of outlier vertices are present in the correspondences, the respective correspon-

dence weight is set to zero and their displacement is only set by their neighbors.

The correspondences for each surface are obtained by calculating the weighted average of

the corresponding vertices on the other surface. This results in new sets of corresponding ver-

tices S = {s1,. . .,sm} and R = {r1,. . .,rt}, for P and Q respectively. Then the displacement matrix

FM is defined as:

FM ¼
S

Q

" #

�
P

R

" #

ð1Þ

For this step, we used a Visco-Elastic regularization based on Motion Coherence Theory by

Yuille & Grzywacz (1989) and Bro-Nielsen (1997). This theory suggests that points that are

located close to each other should move coherently, therefore the velocity field (in our case the

displacement matrix) should be smoothened and regularized based on a defined energy func-

tion [41, 42]. In a benchmark study with an application similar to ours, Snyders (2014) con-

cludes that using a Visco-Elastic regularization will result in the most accurate mapping

amongst the studied methods [38]. As the name suggests, this method uses a physical model to

regularize the deformations. The algorithm works as below:

In order to maintain the smoothness of the surfaces, the obtained displacement matrix FM
is convolved with a 3D Gaussian kernel with variance σ2

1 decreasing from 30 to 1 (mm2) line-

arly at each iteration. By doing so, the displacement of every point will have an effect on its

neighboring points. In other words, as a point moves towards its corresponding point, it drags

its neighbors along. This ensures that the points that lie in a neighborhood will move coher-

ently and the surface will remain smooth, i.e. the surface shows a viscous behavior. The

smoothened displacement matrix is then added to the global displacement field Dg which is

updated at each iteration. Dg is also smoothened by convolving with the same Gaussian. This

adds the elastic characteristic to the surface which ensures that the surface stays homologous

to its original shape. SurfaceM is then updated by adding the regularized global displacement

field. The process is re-iterated until the error value reaches below 0.001 mm or the number of

iterations exceeds 150.

We also applied the concept of deterministic annealing [43] in our registration algorithm.

In this method, the number K of corresponding vertices for each vertex decreases iteratively

form 25 to 5. Also, the radius of effect of the applied Gaussian is decreased at each iteration, by

changing variance σ2
2 from 3 to 1 (mm2). This causes the search for correspondence and the
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following deformations to start more globally during the initial iterations and move towards

more localized deformations at each iteration. This helps the algorithm to avoid falling into a

local minima as well as increasing the computational efficiency.

By using the above-described method to map the mask face on all of our target faces, the

surface outputs of a 3D scanner are now represented with a standardized and homogenous

configuration.

Parameter sweep

In each of the sections described above, a number of parameters were used as part of the algo-

rithm. These parameters are listed below:

• The number of sampled vertices in step 2

• The number of found correspondences, k, in step 3

• Variance of Gaussian1, σ2
1, in step 3

• Variance of Gaussian2, σ2
2, in step 3

• Distance-based and normal-based outlier thresholds, in step 3

• Convergence thresholds, in steps 2 and 3

The best configuration for the value or the range of these parameters were set by perform-

ing a “parameter sweep”. This means that the value of one parameter is increased or decreased

step by step while all the other parameters are kept constant. The average error, as described in

mapping validation section, is calculated for each step and the parameter is fixed on the value

corresponding to the lowest error. We then move to the next parameters one by one until all of

the parameters are set to their optimal value or range. The results of the parameter sweep are

added as Supporting Information (S1–S12 Figs).

Mirroring and super-imposition

Since we used a template mask with paired landmarks, an approach similar to the method pro-

posed by [19] can be taken here to obtain the mirrored version of the faces. This is done by

reversing the signs of the x-coordinate of each vertex, then relabeling the paired vertices with

their counterpart in order to re-establish the compatibility of the original face and the mir-

rored version. The symmetric consensus -or the average face- is then obtained by simply aver-

aging over all of the original faces and their mirrors. We did this by using a General Procrustes

Analysis, in which the original faces and their mirrors are iteratively superimposed onto the

symmetric consensus and the consensus is updated in each iteration until the algorithm con-

verges. To have a more accurate estimation of asymmetry, the superimposition should be car-

ried out based on the symmetric parts of the face. For this, we applied the robust least-squares

superimposition method [17]. In this method, a statistically meaningful approach is taken to

estimate the points lying on the asymmetric regions of the face (outliers) and relevant weights

are assigned to each point. The faces are then superimposed onto the symmetric consensus in

a weighted least-squares manner.

FA and DA calculation

The asymmetry of the face can be obtained by calculating the difference between the original

and mirrored faces after the superimposition step, or equivalently comparing them with the

average of both. The obtained values constitute a combination of FA as well as DA of the face.

Measuring asymmetry from high density 3D surface scans
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As explained before, DA can be quantified as the signed difference between the average of all

the faces in a population and the average of their reflections. We write this as:

Pn
i¼1
ðOi � RiÞ
n

ð2Þ

where Oi represents the original configuration of face i and Ri represents the reflected version.

By subtracting DA from the vertex-specific signed asymmetries, FA of face i is obtained (2).

FAi ¼ j Oi � Rið Þ �

Pn
i¼1
ðOi � RiÞ
n

j ð3Þ

Mapping validation

In order to validate the precision of our mapping algorithm, we used a dataset of 30 facial scans

of adult females and males between 18 and 30 years old, with different levels of asymmetry and

mixed self-reported ancestries. The scans have been captured at various locations over years by

the Department of Anthropology, Pennsylvania state university, using 3dMDface 2-pod and

3-pod system, of which the precision and repeatability are previously tested and validated to be

sub-millimeter [44]. The Pennsylvania State University Institutional review board (IRB)

approved the collection of data from the participants recruited at the following locations: State

College, PA (IRB 44929 and 4320); New York, NY (IRB 45727); Urbana-Champaign, IL (IRB

13103); Dublin, Ireland; Rome, Italy; Warsaw, Poland; and Porto, Portugal (IRB 32341). All par-

ticipants signed a written consent form before participation. A set of manually indicated land-

marks, consisting of 19 anatomically significant points on the face (7 non-paired, 12 paired) was

used as a basis for mapping validation (Fig 2). The set of manual landmarks were indicated by 2

different users (P1 and P2), who both repeated the indication 3 independent times.

We used the manual landmark indications to automatically obtain the corresponding set of

anatomical landmarks on the template mask. For each face, the average of all of its manually

indicated landmarks was obtained and the barycentric coordinates of these average landmarks

were calculated with respect to the mapped template [45]. In many cases these average land-

marks were not exactly located on the surface, accordingly, their projection on the nearest face

was used instead. Barycentric coordinates define any point inside a triangle by assigning

weights to each of the triangle vertices (corners) in a manner that the weighted average of the

vertices equals the coordinates of that specific point. To find the coordinates of landmark P0

on Face2 which corresponds to landmark P on Face1, we first calculate the barycentric coordi-

nates of P with respect to its surrounding triangle ABC on Face1. The calculated barycentric

weights are then transferred to triangle A0B0C0 on Face2 which structurally corresponds to tri-

angle ABC on Face1, but with different Cartesian coordinates due to the difference in the

shape of the faces. In a sense, by using barycentric coordinates, we are in fact “stitching” a

landmark to the template and transferring it to another face. The Euclidean coordinates of the

corresponding point P0 are then calculated using the barycentric weights and the coordinates

of A0B0C0 (Fig 3). By utilizing this technique in a leave-one-out strategy, the automatically

obtained landmarks for an individual face were calculated as the average of the transferred

barycentric coordinates of (n-1) set of landmarks from all of the other faces. The automatically

obtained landmarks were compared with their corresponding manual indications by means of

Euclidean distance.

The symmetric faces, obtained by averaging each of the original faces and their reflected

instances, were used to validate the FA calculations. Known values of random asymmetry were

added to the symmetric faces. This was done by choosing a random sparse subset of 100 verti-

ces on each face and adding random displacements with normally distributed magnitudes to
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the subset. To maintain the smoothness of the surface, Radial Basis Functions (RBFs) with

small radiuses were applied [31]. For each face, 10 different levels (magnitudes) of asymmetry

were added, resulting in a total of 300 faces. We then mapped our template face onto these

simulated faces using the developed registration algorithm. The remapped simulated asym-

metric faces were then given as input to our FA calculator algorithm and the results were

obtained. We also tested our algorithm’s ability in localizing the asymmetric regions using the

simulated asymmetric faces. The correlation between the actual asymmetry value of each ver-

tex and the calculated asymmetry using our algorithm was examined.

Results

The remapping process of each face took about 2 minutes on a computer with core i7 dual-

core 2.7 GHz processors and 16GB of RAM. The average error for each face was calculated as

the RMSE of all its 19 landmarks. Fig 4 shows the results of our mapping validation test. The

Fig 2. The position of the 19 manual landmarks used for mapping validation.

https://doi.org/10.1371/journal.pone.0207895.g002
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Fig 3. Using barycentric coordinates to transfer a landmark from one face to another. The barycentric coordinates

of point P are calculated with respect to triangle ABC. The obtained weights are then used in combination with the

Euclidean coordinates of triangle A0B0C0 in Face2 to obtain the coordinates of P0.

https://doi.org/10.1371/journal.pone.0207895.g003

Fig 4. Boxplot chart of average landmark error between manual indications and automatic landmarks. The plot

shows the error between the average of manual indications of user 1 and user 2 (P1-P2), the error between the average

of manual indications of user 1 and the algorithm (P1-Auto), the error between the average of manual indications of

user 2 and the algorithm (P1-Auto), and the error between the average of manual indications of both users and the

algorithm (Avg-Auto).

https://doi.org/10.1371/journal.pone.0207895.g004
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boxplot displays the distribution of the average landmark error values between the user indica-

tions (P1-P2), between the users and the automatic landmarks extracted from the mapped

template mask (P1-Auto and P2-Auto) and between the average of all sets (2 times 3) of man-

ual landmarks and the automatic landmarks (Avg-Auto).

The 300 simulated faces with different levels of asymmetry, as described inmapping valida-
tion section, were used to assess our algorithm’s ability in capturing the average facial asymme-

try. Fig 5 shows the comparison between the true average FA values based on all points (True

FA), average FA values calculated by our algorithm based on all points (Algorithm).

We also used the simulated faces to evaluate our algorithm’s ability in localizing asymmetry.

Fig 6 shows the true asymmetry heat-map of one of the simulated faces with high amounts of

Fig 5. Comparison between true simulated FA values (True FA), the FA values using all vertices (Algorithm).

https://doi.org/10.1371/journal.pone.0207895.g005

Fig 6. Asymmetry heat-map of a sample simulated face. (a) and (b) show the true and the calculated respectively.

https://doi.org/10.1371/journal.pone.0207895.g006
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FA (a) and the calculated asymmetry heat-map (b). The correlation between the true and cal-

culated FA values for all of the vertices of a face was calculated for all 300 of the simulated faces

and the R-squared values are represented by the box-plot in Fig 7.

Discussion

In this study, we developed an algorithm to analyze and quantify asymmetry, especially FA, in

3D scans of human faces by taking a spatially dense approach. Conventional methods of asym-

metry analysis mostly use a limited number of landmarks to represent the structure of interest

in normal 2D photographs. This can lead to an inaccurate estimation of the asymmetry present

in the structure, especially in complex structures such as human faces which can show various

amounts of asymmetry in different regions. Representing a 3D structure with 2D images can

also result in wrong calculations of asymmetry due to the loss of information by discarding

one dimension. Also, the landmarks have to be manually selected on the structure, which can

be highly time-consuming and lack precision and repeatability. A few studies that have used

3D scans to calculate asymmetry also used a number of manually assigned landmarks for their

purpose or have only measured the component of asymmetry perpendicular to the surface.

We overcame these problems by taking an automatic and spatially dense approach. First, the

scans needed to be transferred into a standardized and homogeneous setting, where all the

faces are represented using the same setting of vertices and edges. This was done by non-rig-

idly registering an average template face onto each of the faces in our dataset. The template

face used for this study was produced to have paired landmarks on each side and non-paired

landmarks on the mid-line. Using a template with paired vertices enables us to obtain the

reflection of a face by just inverting the vertices with respect to the midline and relabeling

them, whereas in Claes et al. (2011) an additional step of mapping the template on the mir-

rored face was needed. This significantly reduced the computation time and avoids additional

errors introduced by the second mapping required previously. Using a paired template also

enabled us to simulate asymmetric faces with precisely known amounts of added asymmetry

which was used to validate our FA calculation algorithm.

Fig 7. Box-plot of the R2 values of all 300 simulated faces for the precision of the algorithm in localizing the FA

values.

https://doi.org/10.1371/journal.pone.0207895.g007
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We developed a non-rigid registration algorithm based on the work of Yuille & Gryzwacz

(1989) and Bro-Nielsen (1997), where the template face was iteratively mapped onto the target

faces. We then proceeded to develop an algorithm to estimate the asymmetry of the remapped

faces. This was done by superimposing the original and reflected faces using a generalized Pro-

crustes analysis and calculating the difference between each face and its mirrored version. The

asymmetry was then calculated and corrected for possible DA value.

Mapping validation (Fig 4) showed that the average error was low (below 1.3mm) and

somewhat smaller than the error associated with the manual indications. Thus, our algorithm

can detect the anatomy of the face accurately and presents a suitable alternative to manual

landmarking in terms of measurement error. However, it should be noted that the validation

results are only based on 19 landmarks, and validating the mapping for the entire face is practi-

cally impossible. Nevertheless, these 19 landmarks cover the anatomically significant regions

of the face and the rest of the regions consist of mostly ‘flat’ areas which are usually easier to

map. So it is safe to assume that the algorithm shows a similar precision in performance for the

entire face.

A simulation study of the performance of our approach in detecting morphological asym-

metries yielded average asymmetries very close to the simulated asymmetries (Fig 5), while

using conventional methods that measure the asymmetry based on a limited number of land-

marks will definitely result in a weaker correlation. This difference is simply due to the spatially-

dense feature of our algorithm compared to the sparse nature of other methods, which will

result in missing the asymmetry present in some areas of the face. Having a spatially dense

approach can help us overcome this problem by taking into account all of the surface of interest.

Also, the use of a dense mask can result in a more accurate super-imposition of a face and its

mirrored version when calculating FA. This difference in approaches can be more crucial in the

case of small local asymmetries. Following [17], Hill et al. (2017) have also shown in their study

that results of conventional 2D approaches differ significantly from 3D dense approaches [46].

Additionally, taking an automated spatially dense approach will provide us with the oppor-

tunity to analyze the asymmetry of a morphological structure in a multivariate manner. Using

methods such as Principal Components Analysis (PCA) or discriminant analysis allows us to

further investigate the different components and dimensionalities of asymmetry and take a

step forward towards understanding the underlying processes of asymmetry. The spatially

dense 3D approach also allows to separate asymmetry in the three dimensions (horizontal, ver-

tical and depth) to evaluate their relative importance in determining overall asymmetry and

their relationships with, for example, facial attractiveness (S13 Fig).

To test the ability of our algorithm in localizing FA, the true values of asymmetry in the

simulated faces were compared with the values calculated by the algorithm on a vertex basis

(Figs 6 and 7). We can see that overall the algorithm performs remarkably in localizing and cal-

culating the amount of FA, although in a few cases an over-estimation of the asymmetry is visi-

ble (Fig 5). Our inspections showed that these over-estimations are caused by mapping errors

mostly happening at the boundaries of the faces. This error is due to the fact that during the

registration process, the found correspondences on the edges of the mesh are counted as outli-

ers (as part of the hole detection algorithm). Consequently, the vertices located on the bound-

aries of the face are only affected by the push/pull forces exerted by their neighbors from one

side and not all directions. Therefore, in some cases, this will lead to mapping error at the bor-

der areas. Nevertheless, the estimated average asymmetries of such faces do seem to be relevant

(Fig 5). It is interesting to note here that we simulated asymmetry randomly across the face

leading to a patchy distribution. In reality, facial asymmetry usually emerges in a more struc-

tural way, over larger surface areas of the face. However, this does not invalidate our approach

as the algorithm is more likely to capture shape variation over larger surfaces areas more
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accurately compared to very patchy patterns. It can therefore be expected that more natural

patterns of asymmetry will be measured even more accurately.

As we have shown in Fig 4, our algorithm has a mapping accuracy of 1.3 mm and any value

below this threshold will be considered as noise. Therefore, it should also be noted that the

algorithm is unable to detect any asymmetries below the mapping error. This was considered

in our simulated faces, meaning the magnitudes of the added asymmetries were above the

algorithm’s noise level. Moreover, the simulated asymmetries might differ from natural

appearances of FA in real faces. However, the purpose of this part of the study was to evaluate

the strength of our algorithm in localizing asymmetry, therefore the distribution or patterns of

FA should not affect the outcome and we believe that the algorithm would perform the same

when applied on real faces.

In conclusion, we clearly showed the advantages of using an automated high-density asym-

metry analysis over the more conventional methods. More precisely, the spatially-dense nature

of our algorithm obviously captures asymmetry more accurately compared to a sparse set of

landmarks, as well as providing information on locality of the asymmetry. Through validation

tests, our method was proven to be of high accuracy, both in mapping the template on the tar-

get faces and when calculating average FA. This method can also be of great benefit in studies

of a high number of individuals, since the time-consuming step of manually selecting the land-

marks is avoided. Also by removing the manual landmark selection step, we eliminate the

introduced user error from the asymmetry calculations. Although the algorithm did show

some error in localizing FA at the level of individual vertices in few of the cases, it does mea-

sure very localized asymmetry accurately and can be expected to do even better if the asymme-

try occurs over larger surface areas of the face. It is thus a useful tool in studies of asymmetry.

The developed algorithm can especially be advantageous in more complex structures which

cannot be fully represented using a limited number of landmarks, such as body scans or skulls.

Supporting information

S1 Fig. Change of average landmark error with convergence threshold in rigid registration

step.

(TIF)

S2 Fig. Change of average landmark error with number of samples in rigid registration

step.

(TIF)

S3 Fig. Change of average landmark error with maximum number of correspondence in

non-rigid registration step.

(TIF)

S4 Fig. Change of average landmark error with minimum number of correspondence in

non-rigid registration.

(TIF)

S5 Fig. Change of average landmark error with maximum value of variance1 in non-rigid

registration step.

(TIF)

S6 Fig. Change of average landmark error with minimum value of variance1 in non-rigid

registration step.

(TIF)
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S7 Fig. Change of average landmark error with maximum value of variance2 in non-rigid

registration step.

(TIF)

S8 Fig. Change of average landmark error with minimum value of variance2 in non-rigid

registration step.

(TIF)

S9 Fig. Change of average landmark error with average error threshold in non-rigid regis-

tration step.

(TIF)

S10 Fig. Change of average landmark error with maximum number of iterations in non-

rigid registration step.

(TIF)

S11 Fig. Change of average landmark error with distance-based threshold for outlier corre-

spondences.

(TIF)

S12 Fig. Change of average landmark error with outlier threshold based on normal angles.

(TIF)

S13 Fig. The separate heat-map of asymmetry in sample face from Fig 6 for 3 dimensions

(horizontal, vertical and depth).

(TIF)
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