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Abstract

Motivation: MicroRNAs (miRNAs) are important non-coding post-transcriptional regulators that

are involved in many biological processes and human diseases. Individual miRNAs may regulate

hundreds of genes, giving rise to a complex gene regulatory network in which transcripts carrying

miRNA binding sites act as competing endogenous RNAs (ceRNAs). Several methods for the ana-

lysis of ceRNA interactions exist, but these do often not adjust for statistical confounders or ad-

dress the problem that more than one miRNA interacts with a target transcript.

Results: We present SPONGE, a method for the fast construction of ceRNA networks. SPONGE

uses ’multiple sensitivity correlation’, a newly defined measure for which we can estimate a distri-

bution under a null hypothesis. SPONGE can accurately quantify the contribution of multiple

miRNAs to a ceRNA interaction with a probabilistic model that addresses previously neglected con-

founding factors and allows fast P-value calculation, thus outperforming existing approaches. We

applied SPONGE to paired miRNA and gene expression data from The Cancer Genome Atlas for

studying global effects of miRNA-mediated cross-talk. Our results highlight already established

and novel protein-coding and non-coding ceRNAs which could serve as biomarkers in cancer.

Availability and implementation: SPONGE is available as an R/Bioconductor package (doi:

10.18129/B9.bioc.SPONGE).

Contact: markus.list@wzw.tum.de or marcel.schulz@em.uni-frankfurt.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MicroRNAs (miRNAs) are �23 nt long RNAs that play an import-

ant role in the regulation of transcript abundance in mammalian

cells. They are estimated to regulate at least half of the genes in the

human genome (Friedman et al., 2009) and thus affect important

biological processes and show deregulation in many diseases (Jiang

et al., 2009). miRNAs regulate their target mRNAs by either degrad-

ing them or by preventing their translation (Bartel, 2009). Target

recognition is initiated by sequence complementarity of the target

transcripts to the seed sequence of the miRNA at position 2–8.

To predict miRNA target interactions, a number of sequence-based

approaches have been proposed (e.g. Agarwal et al., 2015; John

et al., 2004). However, a large fraction of these predictions are false

positives, since condition-specific attributes of the cell, such as

miRNA abundance, number of miRNA targets and their expression,

are not known (Pinzón et al., 2017). Although experimental techni-

ques exist that measure condition-specific miRNA–gene interactions

(e.g. Jaskiewicz et al., 2012), these experiments are laborious and

costly and often not available for the condition of interest. This

motivates the development of computational methods that quantify
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condition-specific miRNA–gene interaction potential using widely

available gene and miRNA expression datasets, reviewed by

Muniategui et al. (2013).

Notably, genes sharing binding sites for the same miRNA(s)

compete over a limited pool of miRNA molecules, giving rise to a

complex gene-regulatory network of competing endogenous RNAs

(ceRNAs) (Tsang et al., 2010). A number of cancer-associated genes

have been shown to act as ceRNAs (Arvey et al., 2010; Salmena

et al., 2011; Tay et al., 2014), including PTEN (Poliseno et al.,

2010), CD44 (Jeyapalan et al., 2011), ESR1 (Chiu et al., 2015),

BRAF (Karreth et al., 2015), KRAS (Poliseno et al., 2010), MYCN

(Powers et al., 2016) and HULC (Wang et al., 2010). These findings

motivated the development of computational methods for inferring

ceRNA interactions systematically from gene and miRNA expres-

sion data, reviewed by Le et al. (2016).

The different methods can be broadly categorized into methods

that use (i) only static information, such as the number of miRNA

binding sites or binding energy or (ii) methods that use condition-

specific information in addition such as expression or Clip-data.

One of the most commonly used methods in category (i) is based on

the idea to assess the probability that two mRNAs share miRNAs

and their binding sites, and to then highlight cases where this prob-

ability is much higher than expected by chance, for example by

using the hypergeometric test (Li et al., 2014).

With the emergence of large-scale studies providing gene and

miRNA expression data for hundreds of samples, a number of meth-

ods of category (ii) have been developed (Le et al., 2016). Sumazin

et al. (2011) proposed the use of conditional mutual information

(CMI) for estimating the effect of a miRNA on a gene–gene inter-

action in their method HERMES. The advantage of this approach is

that it measures non-linear associations, but estimation of significance

is done using permutations, later implemented as part of the CUPID

software (CUPID step III) (Chiu et al., 2015). Recently the JAMI soft-

ware has improved the runtime of the extensive CMI computation

compared to CUPID (Hornakova et al., 2018), but runtime is still a

limiting factor for this approach in applications to very large datasets.

This issue has motivated the use of conceptually simpler and fast

linear correlation-based methods, for instance, restricting to only

gene–gene correlation values (Du et al., 2016; Xu et al., 2015),

gene–miRNA correlation (Zhang et al., 2017) or correlations within

triplets of two genes and one miRNA (Liu et al., 2017; Wang et al.,

2015). However, in contrast to CUPID, these approaches do not

quantify the contribution of the miRNA to the ceRNA interaction in

a unified model.

Paci et al. (2014) overcame this issue with the definition of sensi-

tivity correlation (scor), which has similarities to the CMI-based ap-

proach. Linear partial correlation can be used to quantify the

remaining correlation between two genes after accounting for the ef-

fect of one miRNA. scor is then defined as the difference between

gene–gene correlation and partial correlation and thus quantifies the

contribution of the miRNA in the regulation of two genes. Similar

to CMI, scor considers the impact of miRNA regulation on both

genes in a single mathematical model and is thus more powerful

than the methods proposed in Wang et al. (2015), Zhang et al.

(2017), Du et al. (2016), Xu et al. (2015) and Liu et al. (2017).

Unlike CMI, however, scor computation is based on efficient estima-

tors of covariance matrices for computing partial correlation and

thus allows large-scale ceRNA network inference as demonstrated

by Zhang et al. (2016), who inferred lncRNA–mRNA related

ceRNA networks for 12 different cancer types.

While the estimation of the scor coefficients is efficient, no the-

ory for the computation of the null distribution of these values

exists. Therefore, previous work relied on ad hoc approaches. Paci

et al. (2014) selected the top 5% of scor coefficients for downstream

analysis, disregarding significance testing. Zhang et al. (2016)

addressed this issue by generating a null distribution using permuta-

tions based on randomly selected lncRNA–miRNA–mRNA triplets.

This null distribution was then used to obtain empirical P-values.

We have identified a number of issues with the current

approaches that use scor. First, current correlation-based

approaches assume independence between scor values and the gene–

gene correlation. However, as we show in this work, the distribution

of scor coefficients is strongly affected by gene–gene correlation

(Fig. 1A and Supplementary Fig. S1). Thus, previous studies that

have used scor values have been biased.

Second, we note that many ceRNAs are regulated by several

miRNAs. Neglecting joint contributions, many significant ceRNA

interactions may be missed. The CUPID approach considers that

ceRNA interactions may be mediated by several miRNAs in con-

junction. To accommodate this, CUPID pools P-values obtained

from individual ceRNA triplets (Chiu et al., 2015). We propose that

the contributions of multiple miRNAs should be part of the ceRNA

inference model to optimally account for miRNA covariance effects.

Here we present a unified mathematical approach that addresses

the above issues. We have developed a Bioconductor/R package

called Sparse Partial correlation ON Gene Expression (SPONGE).

At the core of SPONGE is a new mathematical framework that is a

generalization of scor values for more than one miRNA, which we

call multiple miRNA sensitivity correlation (mscor). Assessing the

significance of mscor coefficients is difficult due to biases of gene–

gene correlation, number of samples and the number of miRNAs.

Therefore, we have developed a novel strategy for simulating back-

ground distributions that accommodate the aforementioned factors

and for inferring P-values for mscor coefficients efficiently. Due to

SPONGE’s efficiency, we were able to perform an analysis of the

complete human transcriptome across 31 different cancer types

combining over 10 000 paired gene and miRNA expression samples

using data from The Cancer Genome Atlas (TCGA). Our analysis

highlights the potential of ceRNA network inference for hypothesis

generation by revealing extensive ceRNA cross-talk. Some of the

key regulators have already been reported as ceRNAs while others

potentially represent novel biomarkers and drug target candidates.

2 Materials and methods

2.1 SPONGE overview
The objective of SPONGE is to infer a ceRNA interaction network

from gene and miRNA expression data of paired samples. In theory,

inferring a genome-wide ceRNA network with n genes entails con-

sidering
n
2

� �
interactions for all pairwise combinations. In practice,

only gene pairs with shared miRNAs need to be considered. First,

SPONGE identifies for each gene those miRNAs that are likely to

have a regulatory effect (Fig. 1A). Second, we filter for gene pairs

with shared miRNAs and determine their ceRNA interaction scores

(Fig. 1B). Third, we assess the significance of each ceRNA inter-

action using a series of null models (Fig. 1C) adjusting for confound-

ers. Finally, significant interactions are retained for constructing a

ceRNA interaction network (Fig. 1D). In the following, we describe

each of these steps in detail.

Step 1: Identifying relevant miRNA–gene interactions
SPONGE identifies relevant gene–miRNA interactions in two

stages. First, we retain only miRNA–gene pairs for which we have
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general evidence from external predictive or experimental sources.

SPONGE allows for an arbitrary number of data sources to be

combined.

Second, we test if the gene and miRNA expression data provides

support for these interactions, since we expect many of the putative

miRNA–gene interactions in particular to be false positives (Pinzón

et al., 2017). Negative correlation of gene and miRNA expression

can provide evidence for a miRNA–gene regulation. However, many

miRNAs might target a single gene. To take this into account, and

to identify the most likely miRNA regulators of each gene, we use

regularized regression.

We build an Elastic net regularized linear regression model with

the expression of gene g as the dependent variable and the expres-

sion of miRNAs Z0 2 Z as explanatory variables, where Z0 are

miRNAs predicted or experimentally shown to target g. Elastic net

balances lasso (L1) and ridge (L2) penalties using a linear combin-

ation of both denoted as a weight factor a. We build a range of

Elastic net models to optimize the parameters for a¼0.1, 0.2, . . .,

1.0 and the optimal shrinkage parameter k via 10-fold cross valid-

ation using the glmnet package (Friedman et al., 2010). We select

the best model based on the residual sum of squares. Since miRNAs

with positive coefficients are likely caused by effects other than

miRNA repression, we retain only miRNAs with negative coeffi-

cients, which was previously shown to work well (Muniategui et al.,

2012; Schulz et al., 2013). Moreover, SPONGE offers a

user-definable coefficient threshold for discarding miRNAs with

negligible impact on gene expression (default < �0.05).

In summary, we identify for each gene condition-specific miRNA

regulators. This leads to a dramatic reduction of gene pairs that share

miRNAs (Fig. 1B) compared to using all predicted miRNA–gene inter-

actions and reduces the runtime of SPONGE. In the next step, we de-

termine the effect strength of ceRNA interactions.

Step 2: Computing sensitivity correlation coefficients
In general, the partial correlation pcorx;yjZ describes to what extent

two variables x and y are correlated when controlling for one or up

to i additional variables Z ¼ z1; . . . ; zi. Paci et al. (2014) proposed

to quantify the regulatory contribution of a miRNA in a ceRNA

interaction between two genes g1 and g2 by subtracting the partial

correlation achieved when controlling for a single miRNA m and

refered to this as sensitivity correlation (scor):

scorðg1; g2;mÞ ¼ corðg1; g2Þ � pcorðg1; g2jmÞ: (1)

Note that this approach does not account for a combinatorial effect

of several miRNAs. Consequently, strong ceRNA interactions medi-

ated by several moderate miRNA regulators cannot be detected.

We thus propose to extend the definition of sensitivity correl-

ation considering the effect of multiple miRNAs M for the computa-

tion of the partial correlation. In this way, we implicitly incorporate

Fig. 1. Overview of the SPONGE workflow. (A) Predicted and/or experimentally validated gene–miRNA interactions are subjected to regularized regression on

gene and miRNA expression data. Interactions with negative coefficients are retained since they indicate miRNA induced inhibition of gene expression. (B) We

compute sensitivity correlation coefficients for gene pairs based on shared miRNAs identified in (A). (C) Given the sample number, we compute empirical null

models for various gene–gene correlation coefficients (k) and number of miRNAs (m). Sensitivity correlations coefficients are assigned to the best matching null

model and a P-value is inferred. (D) After multiple testing correction, significant ceRNA interactions can be used to construct a genome-wide, disease or dataset-

specific ceRNA interaction network

i598 M.List et al.



the effect of miRNA-miRNA cross-correlation. We call this multiple

miRNAs sensitivity correlation (mscor):

mscorðg1; g2;MÞ ¼ corðg1; g2Þ � pcorðg1; g2jMÞ; (2)

where M ¼ m1; . . . ;mi and i is the number of shared miRNAs be-

tween g1 and g2.We compute mscor coefficients efficiently using the

R package ppcor (Kim, 2015). In the next step, we establish the sig-

nificance of each mscor coefficient.

Step 3: Sampling from the mscor null distribution with

respect to important parameters
Zhang et al. (2016) proposed to establish the significance of scor

coefficients by means of sampling a background distribution from

random triplets. This approach, however, disregards that correlation

coefficients have smaller variance when the coefficient is high

(Fisher, 1915). Moreover, it can be expected that the significance of

sensitivity correlation values is linked to the number of samples and

the number of miRNAs involved.

To accommodate these biases, we propose a novel algorithm to

study the null distribution of mscor coefficients. Our null hypothesis

is that the shared miRNAs M do not affect the correlation of two

genes g1 and g2. Hence,

mscorðg1; g2;MÞ ¼ corðg1; g2Þ � pcorðg1; g2jMÞ (3)

0 ¼ corðg1; g2Þ � pcorðg1; g2jMÞ: (4)

To be able to sample random mscor coefficients under this null hy-

pothesis, we first need to construct random covariance matrices that

fulfill these conditions. Briefly, we consider a partitioned expression

vector Z ¼ g1; g2;m1; . . . ;mi with m1; . . . ;mi 2M. The correlation

matrix of Z can be expressed as:

R ¼ R11 R12

R21 R22

� �
(5)

where

R11 ¼
1 r12

r21 1

� �
(6)

is the correlation matrix between the first two entries of Z. In order

to compute the conditional covariance between the first two entries

(g1, g2) of Z given ðm1; . . . ;miÞ 2 Z, we compute the Schur comple-

ment of R/R22 as follows:

R=R22 ¼ R11 � R12R�1
22 RT

12 ¼
1� a r12 � b

r12 � b 1� c

� �
: (7)

where

a ¼ vT
1 R�1

22 v1

b ¼ vT
1 R�1

22 v2

c ¼ vT
2 R�1

22 v2

(8)

We can obtain the partial correlation r12:m from the conditional

covariance as follows:

r12:m ¼ ðr12 � bÞð1� aÞ�1=2ð1� cÞ�1=2: (9)

Our null hypothesis is that r12:m ¼ r12. Thus

0 ¼ ðr12 � bÞð1� aÞ�1=2ð1� cÞ�1=2: (10)

We have devised sampling strategies that enable us to find values a,

b and c such that these conditions are fulfilled, allowing us to con-

struct random covariance matrices under the null.

Most importantly, we can control the gene–gene correlation r12

and the number of miRNAs (via the dimensions of R22) to construct

a series of covariance matrices with respect to these important

parameters. SPONGE uses these covariance matrices to draw ran-

dom samples which are subsequently used to estimate empirical P-

values for mscor values computed on experimental data. The details

of this approach and of our sampling strategy can be found in the

Supplementary Material.

The SPONGE R package provides precomputed covariance

matrices for a range of gene–gene correlations and number of

miRNAs. Given the number of samples in the expression data,

SPONGE can efficiently construct a series of null distributions from

these covariance matrices. Next, we assign each mscor coefficient to

the closest matching null model and infer its P-value via its rank in

the random distribution (Fig. 1D). The number of data points

sampled for the null distribution determines the maximal precision

of this P-value (P > 1e� 6 by default). Finally, P-values are adjusted

for multiple testing within each null model using the method by

Benjamini and Hochberg (1995).

Step 4: Constructing a ceRNA network
We filter ceRNA interactions returned by SPONGE by a user-

defined significance threshold (FDR < 0.01 by default) and subse-

quently construct a ceRNA interaction network N ¼ (V, E), where

nodes V correspond to genes participating in significant ceRNA

interactions and edges correspond to significant ceRNA interactions

between two genes.

2.2 Using SPONGE to construct a pan-cancer ceRNA

network
We downloaded reprocessed TCGA pan-cancer data from the TOIL

project (Vivian et al., 2017) via the UCSC Xena Browser (Goldman

et al., 2018). We identified 10 019 samples for which both gene and

miRNA expression data were available. Next, we performed log2

transformation and discarded genes and miRNAs not expressed in

more than 80% of samples as well as genes and miRNAs with ex-

pression variance <0.5.

To consider both coding and non-coding miRNA–gene interac-

tions, we downloaded sequence-based predictions of two methods,

namely TargetScan (Agarwal et al., 2015) (v.7.1, downloaded 10/

03/2017) and miRcode (Jeggari et al., 2012) (v.11, downloaded 10/

03/2017). We included the latter since it also considers non-coding

RNAs which have been shown to act as ceRNAs.

TargetScan and miRcode predict target genes for miRNA fami-

lies. We thus downloaded suitable miRNA family definitions for

both datasets (available at the TargetScan website http://www.

TargetScan.org/). Note that miRcode uses the miRNA family defini-

tions corresponding to TargetScan v.6. After mapping family ids to

miRBase mature miRNA ids (MIMATs) we generated integer matri-

ces in which genes are listed as rows and miRNAs are listed as col-

umns. Each entry of the matrix represents the number of binding

sites for the corresponding interaction.

To consider experimental evidence for miRNA–gene interac-

tions, we obtained datasets from miRTarBase (v.6, downloaded 13/

03/2017) (Chou et al., 2016) for coding and lncBase (v.2, down-

loaded 13/03/2017) (Paraskevopoulou et al., 2016) for non-coding

genes and generated input matrices as described above.

Matrices, for gene and miRNA expression and miRNA–gene

interactions were analyzed with SPONGE. Significant ceRNA inter-

actions were used to construct the pan-cancer ceRNA network.
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2.3 Runtime analysis
In order to compare against the runtime of the CMI-based approach

of CUPID (Chiu et al., 2015), which similarly uses paired gene and

miRNA expression to estimate gene–miRNA–gene triplets, we used

the JAMI software (Hornakova et al., 2018). JAMI is a fast reimple-

mentation of CUPID step III that leverages parallelization. We com-

pared the runtime of JAMI to that of SPONGE (without step1: the

regression filter) for a fair comparison. We used a subset of the pan-

cancer dataset with 200 genes, which form ca. 80 000 gene–miRNA–

gene triplets. We ran both tools with default parameters in parallel

mode with 16 cores with varying number of samples and genes.

2.4 Survival analysis
For assessing the impact of gene or miRNA expression on the survival

probability, we downloaded right-censored TCGA survival data of

TCGA patients from the UCSC Xena Browser (Goldman et al.,

2018). We divided patients into two groups based on the 50% quan-

tile of the expression vector. Survival probability was computed in R

using the survfit function in the R package survival (Therneau and

Grambsch, 2000). P-values were computed using the function survdiff

in the same package. survdiff tests for significant differences of sur-

vival curves using the v2 statistic. Kaplan Meier plots were generated

using the ggsurv function of package survminer.

To test for the enrichment of survival genes in a list of top candi-

dates ranked by degree, we used the following strategy. First, we

computed survival P-values based on expression data for all genes as

outlined above using the survdiff function. Second, we classified

genes into survival-associated and -unassociated (background) genes

(FDR < 0.001; Benjamini and Hochberg, 1995) for the purpose of

enrichment analysis. Third, we computed enrichment of the candi-

date gene set in survival-associated compared to background using

the hypergeometric test in R.

3 Results

We have devised a method for the statistical evaluation of

condition-specific ceRNA interactions from paired miRNA and

gene expression data considering contributions for multiple

miRNAs: called multiple miRNA sensitivity correlation (mscor).

mscor is a generalization of scor previously defined for one miRNA

by (Paci et al., 2014) (see Section 2 for details).

3.1 Simulated data reveals dependency of sensitivity

correlation on several factors
As mentioned above, no theory existed to describe the distribution of

sensitivity correlation values (Paci et al., 2014). However, we wanted

to understand how the mscor measure is influenced by confounding

factors present in ceRNA relationships: (i) the correlation of two

genes, (ii) the number of miRNAs involved in the ceRNA interaction

and (iii) the number of samples that are available for estimation. We

developed an efficient simulation approach to explore null models in

which miRNAs have no effect on the correlation of two genes, hence

mscor is zero (see Section 2 and Supplementary Material for details).

Our method is able to compute random covariance matrices that fulfill

this null hypothesis. This allowed us to simulate datasets for a range

of gene–gene correlation coefficients (0.2–0.9 in steps of 0.1), shared

miRNAs (1–8) and number of samples (50, 200, 800) and thus to ap-

proximate the random distribution of the mscor coefficients under the

null hypothesis that mscor is zero.

Figure 1 and Supplementary Figure S1 show our simulation results,

which reveal that the null distribution is strongly affected by all three

tested parameters. Our findings indicate that large mscor coefficients

are more likely to occur by chance when the gene–gene correlation is

low and when the number of miRNAs increases. As expected, it is

more difficult to obtain significant mscor coefficients with few samples

as higher mscor values are obtained with smaller samples sizes by

chance. Thus, comparing mscor values without proper adjustment for

these parameters would prioritize low gene–gene correlation pairs,

interactions with many miRNAs and lead to a bias when tests between

studies with different sample numbers are compared.

The above insights led us to develop SPONGE, an R/

Bioconductor package to infer ceRNA interactions between pairs of

genes. We briefly outline how SPONGE facilitates this in two steps

(see Section 2 and Fig. 1). First, we estimate condition-specific

miRNA–gene associations from a large set of putative miRNA–gene

interactions. This is done using sparse regression of paired gene and

miRNA expression data obtained from many samples. Second,

ceRNA interactions are predicted using mscor values estimated for

all gene–gene pairs that share at least one miRNA from the first

step. Statistical significance of mscor values is efficiently computed

using the simulation approach described above.

3.2 Considering multiple miRNAs leads to information

gain
To demonstrate the advantages of mscor measure over scor, we

selected a subset of the TCGA data with 364 liver cancer samples

and 1000 randomly selected genes. mscor allows us to incorporate

multiple miRNAs in the model and thus to detect ceRNA interac-

tions that only become significant when several miRNAs act in con-

cert. Figure 2A shows that considering all miRNAs lead in most but

not all cases to a higher mscor coefficient compared to the individual

miRNA with highest scor. However, when also considering signifi-

cance (FDR < 0.01), the signal to noise ratio increased and led to a

clear gain in information, namely consistently higher mscor coeffi-

cients for multiple miRNAs. Consequently, SPONGE is able to as-

sess the joint regulatory effect of several miRNAs in a ceRNA

relationship in a condition-specific way.

Our approach correctly adjusts the P-value to the number of

miRNAs involved (see Fig. 1C). As CUPID uses a meta-analysis

strategy on individual gene–miRNA–gene triplets (Chiu et al., 2015)

to obtain one P-value for a set of miRNAs per gene–gene inter-

action, we sought to compare to such an approach for our measure.

We used Fisher’s popular meta-analysis approach to combine P-val-

ues (Fischer, 1925) of individual miRNA triplets. Figure 2B shows

that aggregated P-values tend to be considerably higher in meta-ana-

lysis, illustrating the loss of information and sensitivity compared to

assessing significance in a joint model via mscor.

Our simulation suggested that ranking ceRNA interactions by the

scor or mscor values would introduce a bias towards interactions with

low gene–gene correlation (see Fig. 1C). In Figure 2C, we compared

the gene–gene correlation values of the top 5% ceRNA interactions

sorted according to mscor with our FDR corrected set of ceRNA inter-

actions. Paci et al. (2014) used 5% as an arbitrary cutoff. We observed

that SPONGE selected ceRNA interactions showed significantly higher

gene–gene correlation values on average (t-test P-value < 2.2e–16)

underlining that sorting without proper correction leads to a bias.

3.3 Runtime comparison with a conditional mutual

information-based approach
CMI is an alternative to partial correlation for estimating the effect

and significance of a gene–miRNA–gene interaction. We compared

the performance of JAMI (Hornakova et al., 2018), a fast
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implementation of the CMI-based approach of CUPID (Chiu et al.,

2015), and SPONGE on a subset of the pan-cancer dataset. Figure 3

illustrates that the SPONGE workflow can be computed fast even

for large sample numbers and large number of triplets, while the

runtime of JAMI increases dramatically due to the need to rank ex-

pression values and due to computationally intensive permutations

that are needed for assessing the significance of CMI values. In add-

ition, SPONGE does normally not evaluate each triplet individually,

but considers all shared miRNAs in a joint model, giving rise to an

additional speedup. SPONGE is thus uniquely suited to infer a

genome-wide ceRNA network even on large-scale datasets such as

the TCGA pan-cancer data.

3.4 The empirical null model allows strict control over

the false positive rate
To study ceRNA interactions in a pan-cancer setting, we applied

SPONGE to paired miRNA and gene expression data for 10 019

samples from TCGA (see Section 2) combining data from 31 cancer

types. A comprehensive set of putative miRNA–gene interactions

was obtained by combining several sources: sequence-based predic-

tions from TargetScan (Agarwal et al., 2015) and miRcode (Jeggari

et al., 2012) as well as experimentally validated miRNA–gene inter-

actions from mirTarBase (Chou et al., 2016) and LncBase

(Paraskevopoulou et al., 2016).

Considering all possible pairwise combinations of genes, ca. 109

putative ceRNA interactions can be formed. Figure 4 shows how the

three-step approach of SPONGE reduces this large set of putative

interactions. In the first step, condition-specific gene–miRNA inter-

actions are inferred, which reduces the set of considered ceRNA

interactions to 108. However, many of these denote spurious

ceRNA interactions that do not pass our selected significance thresh-

old (FDR < 1e–5) in the second filter step. Finally, ca. 106 signifi-

cant ceRNA interactions are predicted by SPONGE and used to

construct a pan-cancer ceRNA interaction network.

SPONGE estimates ceRNA interaction significance based on

simulated null distributions. To determine if this estimation is accur-

ate when applied to real data, we devised a random scenario in

which SPONGE should not be able to find significant interactions.

We devised a true-negative setting by using only miRNAs as features

for a particular gene, which do not have a predicted miRNA binding

site in the target gene in any of our considered databases, i.e.

miRNAs that have no seed match in the gene (blue bars, Fig. 4).

Here only 66 interactions remained significant. Thus, our assumed

FDR < 1e–5 appears conservative, which demonstrates the efficacy

of SPONGE in filtering for significant miRNA-mediated interac-

tions between genes.

3.5 Pan-cancer ceRNA network analysis
After demonstrating that most of the ceRNA interactions in the pan-

cancer network are statistically sound, we proceeded with a more

detailed analysis. After processing expression data from 60 498

genes and 2463 mature miRNAs, SPONGE reported 95 541 095

gene–gene interactions after step one from which we retained 914

165 at an FDR threshold of 1e�5 (Fig. 4). 16 935 genes participated

in ceRNA cross-talk with a median of 29 interactions per gene and a

median of six miRNAs per ceRNA interaction with a maximum of

36 miRNAs per interaction. Table 1 shows the number of genes in

different Ensembl gene categories, highlighting that ceRNA inter-

action is not limited to protein-coding genes with a 3’ UTR.

Interestingly, we found a large number of pseudogenes in this pan-

cancer analysis, including the two previously reported pseudogenes

PTENP1 and BRAFP1 (Sanchez-Mejias and Tay, 2015).

We further investigated which microRNAs facilitate ceRNA

cross-talk by counting how many interactions they participate in.

These results are shown in Supplementary Figure S2. Our results

highlight that a few miRNAs mediate most of the ceRNA interac-

tions in the network. We observe that these miRNAs have compar-

ably high expression levels, which is in line with what we would

expect since ceRNA competition only plays a role if sufficient

miRNA copies are present in a cell.

Fig. 2. Comparison of sensitivity correlation and SPONGE FDR control on liver

cancer data. (A) mscor values (y-axis) compared to maximal scor values (x-

axis) for the same gene–gene interaction. (B) mscor P-values obtained from

sampling compared to P-value summarization of scor values using Fisher’s

method. (C) Boxplot of gene–gene correlations for gene–miRNA–gene triplets

obtained after selecting the top 5% ceRNA interactions according to the raw

scor values (orange) or based on FDR corrected P-values from SPONGE

(blue). t-test P-value between both distributions is shown on top

A B

Fig. 3. Runtime comparison between SPONGE and JAMI, a fast method for

computing ceRNA interactions based on CMI. (A) Runtime for varying num-

ber of samples on a fixed set of ca. 80 000 triplets. (B) Runtime for varying

number of triplets on a fixed number of samples. Time was measured in CPU

hours (y-axis)

Fig. 4. Analysis of SPONGE ceRNA interactions on the pan-cancer dataset.

Barplots show the number of interactions (y-axis) that are initially analyzed

(grey), obtained after the regression filter (Step 1) and after computing mscor

values and FDR correction of empirical P-values (Step 3). The analysis is

shown for miRNA–gene relationships for which miRNA binding sites (seeds)

have been predicted (orange bars) and for a large set of true-negative

miRNA–gene relationships, investigating miRNAs without seed matches in a

given gene (blue bars)
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The ceRNA network is based on the pan-cancer TCGA dataset

which contains cancer as well as tumor-adjacent samples. To iden-

tify which of the key ceRNA regulators are associated with cancer,

we filtered for genes which showed high mean expression levels

(TPM > 100) and were differentially expressed between cancer and

tumor-adjacent samples [t-test, FDR < 0.01 (Benjamini and

Hochberg, 1995) and log2 fold change > 1]. Our rationale was to

determine genes that are present at sufficient copy numbers to exert

cell-relevant ceRNA effects concentrated on genes that are overex-

pressed in the pan-cancer samples, thus likely mediating oncogenic

effects. A total of 141 unique genes were obtained using these crite-

ria (Supplementary Table S1). The 10 genes with the highest number

of interactions are shown in Table 2 and in Figure 5.

The gene with the largest number of significant ceRNA interac-

tions is VCAN, which is an established ceRNA (Sanchez-Mejias and

Tay, 2015; Tay et al., 2014). In fact, previous work has shown that

overexpression of the VCAN 3’UTR sequence alone is able to induce

cancer growth in liver cancer cells (Fang et al., 2013). Similarly FN1

is a known ceRNA (Sanchez-Mejias and Tay, 2015).

We used clinical data from TCGA to assess if the expression of

the genes identified here is significantly associated with survival

probability. Figure 5B shows that among the top 10 genes, 8 are sig-

nificant (P < 0.05, see Section 2). Among all 141 genes in this ana-

lysis (Supplementary Table S1) we find a significant enrichment for

survival related genes according to a hypergeometric test (P ¼
3.75e�10) comparing against the background of other genes.

An intriguing candidate in this list is the linc-RNA LINC00511,

which has the highest expression of all non-coding genes in this set

and is associated with survival (Fig. 5C). Interestingly, a recent

paper has shown that LINC00511 is an oncogenic ceRNA and regu-

lates VEGFA gene expression in pancreatic adenocarcinoma (Zhao

et al., 2018). Further, it was found that LINC00511 is a ceRNA for

E2F1 and is involved in breast cancer tumourigenesis (Lu et al.,

2018). Also, it was found that LINC00511 drives tumourigenesis in

non-small-cell lung cancer (Sun et al., 2016). This suggests that

LINC00511 is an oncogenic ceRNA that plays an important role in

diverse cancer types, as experimental evidence for LINC00511

mediated ceRNA regulation in two cancers already exists. Thus,

LINC00511 qualifies as an interesting pan-cancer drug target.

4 Discussion

We identified two major obstacles that prevent the efficient infer-

ence of a comprehensive genome-wide ceRNA interaction network.

One of the first approaches, CUPID (Chiu et al., 2015; Hornakova

et al., 2018; Sumazin et al., 2011), does not scale to the genome-

wide level (see Fig.3) due to the use of permutation-based empirical

P-value computation for establishing significance and the complex-

ity of estimating CMI. Partial correlation-based approaches employ-

ing scor (Paci et al., 2014), on the other hand, are fast but do not

accurately determine significance of the estimated effects.

To overcome these two issues, we designed an efficient empirical

P-value computation approach by sampling from null models that

describe the random distribution of mscor values. Moreover, this

approach enabled us to accommodate possible biases introduced by

several parameters, namely the number of samples, the gene–gene

correlation and the number of shared miRNAs. Our results highlight

that the current practice of ranking ceRNA interactions by scor coef-

ficients introduces a bias towards gene pairs with low correlation,

which are also more abundant. Furthermore, it became evident that

scor cannot be directly compared across datasets with different sam-

ple numbers, suggesting that previous studies on unbalanced data-

sets, where ceRNA network comparisons between cancer and

related normal samples were conducted, have likely been biased. We

note that null model-based significance analysis is fast, which entails

that SPONGE can compute P-values at high numerical precision

(P>1e�6) compared to permutation-based approaches that often

limit precision (P>1e�3) due to excessive runtime.

In this work we have presented a statistical approach to jointly

estimate the significance of multiple miRNAs in a ceRNA inter-

action between two genes. Most genes are regulated by several

miRNAs and it can thus be expected that potential ceRNA inter-

action partners share more than one miRNA between them. This

suggests that there is an advantage in considering joint effects of sev-

eral miRNAs. As far as we are aware only CUPID considers such

combinatorial effects when using paired expression data. However,

CUPID integrates these effects at the level of triplets, where P-values

of triplets involving the same genes are pooled (Chiu et al., 2015),

Table 1. Number of genes participating in significant ceRNA pan-

cancer interactions (FDR < 1e�5) divided by Ensembl gene type

Gene type Number of genes

Protein coding 12 776

Pseudogenes 1529

lincRNA 1086

Antisense 1025

Processed transcript 207

Sense intronic 69

Sense overlapping 67

Fig. 5. (A) Degree of ceRNA genes with mean expression (TPM > 100) and dif-

ferential expression between cancer and tumor-adjacent samples (FDR <

0.01 and log fold change > 1). Number of ceRNA interactions (y-axis) is com-

pared to mean expression (x-axis). Differential expression magnitude is

shown as color code in the plot. (B) The 10 genes with highest degree ranked

by their survival analysis P-value. (C) Kaplan Meier survival plot of the non-

coding RNA LINC00511
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which, as we have shown, results in a loss of sensitivity (Fig. 2B). In

contrast, our approach captures the contribution of several miRNAs

and their co-expression in a single mathematical model. To this end,

we extended the concept of sensitivity correlation to multiple

miRNA sensitivity correlation (mscor).

To make this approach broadly available, we developed

SPONGE, a R/Bioconductor package which provides a general

framework for analyzing sensitivity correlation beyond its current

application in ceRNA network inference. SPONGE enabled us to

construct the first pan-cancer ceRNA network that systematically

infers interactions between all genes within a few days on a typical

compute cluster. Notably, close to 16 000 genes are involved in

ceRNA regulation. Roughly 12 000 of these are protein-coding

genes highlighting that this is a genome-wide phenomenon as pro-

posed by Salmena et al. (2011) and not limited to non-coding

RNAs. However, association may not be confused with causation.

We cannot rule out that some of the effects we observe are caused

by the activity of the proteins encoded by the tested ceRNA genes.

For instance, transcription factors or RNA binding proteins may af-

fect the expression of ceRNA interaction partners directly or

indirectly.

To further investigate to what extend our results are biased by

non-miRNA-mediated regulatory effects, we conducted an in silico

control experiment where we observed that almost no significant

ceRNA interactions remained when miRNAs were tested for which

an actual regulation is unlikely as they have no seed match in either

of the genes. This suggests that the majority of SPONGE reported

ceRNA interactions can be attributed to miRNA-based association.

Network analysis in which we focused on genes that show mod-

erate to high average expression and that are differentially expressed

between cancer and tumor-adjacent samples revealed ceRNA genes

with hundreds of interactions, many of which also show a signifi-

cant association with survival probability. Our findings suggest that

many protein-coding genes auch as VCAN and FN1 have an add-

itional regulatory function as a ceRNA. Moreover, SPONGE sug-

gests ceRNA regulation as a potential mechanism to explain why

non-coding RNAs such as LINC00511 have a significant impact on

survival. This straight-forward analysis thus illustrates the potential

of ceRNA networks for hypothesis generation and biomarker

discovery.

We note that results might vary depending on the choice and

quality of miRNA target interaction databases. To alleviate this

issue, we selected datasets based on sequence-based predictions as

well as experimentally validated miRNA target interactions. Most

of the sequence-based prediction methods focus exclusively on the 3’

UTR of protein-coding genes for detecting miRNA binding sites.

Our results indicate that non-coding RNAs make a substantial con-

tribution to miRNA cross-talk such that future miRNA-target anno-

tations should be adapted.

It is important to emphasize that statistical significance does not

equal biological relevance. While we have ensured that the pan-

cancer ceRNA interactions predicted in this work are likely true

associations with respect to our model and its assumptions, under-

standing which of those individual interactions are of physiological

relevance, is another important problem. Large-scale validation of

ceRNA interactions is challenging and new methods are needed.

One interesting approach is the work by Rzepiela et al., in which

miRNA target sensitivity values were estimated using mathematical

modelling of miRNA overexpression coupled to single cell expres-

sion analyses and may provide a way to prioritize ceRNA targets of

functional biological relevance (Rzepiela et al., 2018).

5 Conclusion and outlook

The TCGA pan-cancer analysis performed here provides unique

insights into global ceRNA cross-talk in cancer. However, cancer-

specific networks will be needed to draw a more comprehensive map

of ceRNA regulation where sophisticated network alignment methods

are employed to reveal commonalities and differences between cancer

types. Generating paired gene and miRNA expression data for healthy

tissues in databases like GTEx (Lonsdale et al., 2013) will become cru-

cial for gaining an understanding of tissue-specific ceRNA cross-talk

which will in turn present a baseline for detecting cancer-specific aber-

rations in the network presented here. Recently, single cell protocols

that facilitate measurements of multi-omics have become available

(Macaulay et al., 2017). We envision that a protocol supporting paral-

lel measurement of microRNA and gene expression will particularly

benefit from fast correlation-based approaches like SPONGE for

celltype-specific ceRNA network inference.

In many genes, alternative splicing gives rise to a large number of

transcripts, many of which differ strongly in their expression. Some

of these transcripts are not translated and vary in the miRNA bind-

ing sites they carry. Thus, similar to transcripts originating from

non-coding genes, they have no apparent biological role but may

potentially contribute to ceRNA cross-talk. Considering transcript-

level expression data will improve the quality of ceRNA network

inference and allow for identifying disease-relevant changes in alter-

native splicing that act through ceRNA effects.

Note that, to our knowledge, we have devised the first general-

ized algorithm for sampling covariance matrices in which the partial

correlation is equal to the correlation. We envision that this might

be relevant beyond the inference of ceRNA interaction networks

with possible applications in other scientific disciplines.
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Table 2. Top 10 ceRNA regulating genes with highest node degree

among genes differentially expressed between cancer and tumor-

adjacent samples

Ensembl gene id HGNC gene symbol Degree

1 ENSG00000038427 VCAN 1135

2 ENSG00000113810 SMC4 923

3 ENSG00000166851 PLK1 812

4 ENSG00000115414 FN1 698

5 ENSG00000142945 KIF2C 519

6 ENSG00000134013 LOXL2 513

7 ENSG00000141756 FKBP10 481

8 ENSG00000227036 LINC00511 478

9 ENSG00000258947 TUBB3 433

10 ENSG00000106089 STX1A 391

Note: The full table with 141 differentially expressed genes is shown in

Supplementary Table S1.
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