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A B S T R A C T   

Today, 2019 Coronavirus (COVID-19) infections are a major health concern worldwide. Therefore, detecting 
COVID-19 in X-ray images is crucial for diagnosis, evaluation, and treatment. Furthermore, expressing diagnostic 
uncertainty in a report is a challenging duty but unavoidable task for radiologists. This study proposes a novel 
CNN (Convolutional Neural Network) model for automatic COVID-19 identification utilizing chest X-ray images. 
The proposed CNN model is designed to be a reliable diagnostic tool for two-class categorization (COVID and 
Normal). In addition to the proposed model, different architectures, including the pre-trained MobileNetv2 and 
ResNet50 models, are evaluated for this COVID-19 dataset (13,824 X-ray images) and our suggested model is 
compared to these existing COVID-19 detection algorithms in terms of accuracy. Experimental results show that 
our proposed model identifies patients with COVID-19 disease with 96.71 percent accuracy, 91.89 percent F1- 
score. Our proposed approach CNN’s experimental results show that it outperforms the most advanced algo-
rithms currently available. This model can assist clinicians in making informed judgments on how to diagnose 
COVID-19, as well as make test kits more accessible.   

1. Introduction 

The new type of coronavirus (Covid-19) sickness, which has afflicted 
the entire planet in the previous year and a half, first appeared in 
December 2019 in Wuhan, China, and quickly spread throughout the 
world. It is highly contagious and, in severe cases, can result in acute 
respiratory distress or multi-organ failure [1–4]. 

The World Health Organization designated the disease a “public 
health emergency of worldwide significance” on January 30, 2020. 
Reverse transcription polymerase chain reaction (RT-PCR) testing is 
commonly used to detect COVID-19 [5]. According to WHO, nucleic acid 
identification in secretory fluid taken from a throat swab by RT–PCR is 
the most accurate diagnosis of COVID-19 infection. Serial testing may be 
required to rule out the potential for false negative results, and co- 
infection with other viruses can impact the accuracy of RT-PCR tests. 
However, the primary problem with this method is that it suffers from 
low sensitivity and specificity [6]. In addition, due to the scarcity of RT- 
PCR test kits in remote rural areas, doctors recommend using medical 
images for COVID-19 screening [7]. The viral load and virus exposure 
time are related to RT-PCR false negatives. In other words, the chance of 
a false negative for RT-PCR is higher when the test is performed too early 
[8]. These are mistakes that can happen when collecting, transporting, 
and managing RNA samples. Taking care when collecting throat and 
nasal swabs can have a big impact on test accuracy. Sample collection is 

sometimes insufficient, or health personnel do not insert nose swabs far 
enough into the nose to get a sample with an appropriate virus load. 
Finding the best sample type at the right moment during an illness can 
yield the best results with the fewest false negatives [9,10]. Many 
countries, however, are unable to conduct widespread testing due to 
resource restrictions such as testing time (3–4 h per round), basic 
equipment, experienced people, and reagents [11]. 

Despite the advantages of CT scan images, similar features are seen 
between COVID-19 and other lung diseases. Therefore, scanning is not 
an easy task to carry out. Recently, it has become useful to extract and 
detect some features from radiological images using machine learning 
and deep learning techniques [12]. CT can show certain distinctive in-
dications in the lung associated with COVID-19 as a noninvasive imag-
ing method [13,14]. As a result, these approaches may be useful for 
early detection and diagnosis of COVID-19. COVID-19 has been identi-
fied using volumetric CT images in prior studies [5,7]. The expense and 
time involved in adopting the CT technique are the main drawbacks 
[15]. X-ray imaging has been frequently used for COVID-19 screening in 
comparison to CT imaging because it requires less imaging time, which 
is cheaper, and X-ray scanners are generally available even in rural re-
gions [16]. For these reasons, the diagnosis of COVID-19 using X-ray 
images has been carried out in many studies and presented to the 
literature [17–20]. 

Due to its high feature extraction capability, artificial intelligence 
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utilizing deep learning technology has recently demonstrated tremen-
dous success in medical imaging applications and is thus favoured by 
researchers [21,22] are two examples. On pediatric chest radiographs, 
deep learning has been used to detect and differentiate bacterial and 
viral pneumonia [23,24]. Attempts to identify various imaging charac-
teristics of chest CT have also been undertaken in several studies 
[25,26]. 

In general, the CXR approach is one of the first tools for radiologists 
use to discover chest pathology. Numerous studies have been conducted 
to identify the COVID-19, according to the COVID-19 scenario 
[1,13,15,27,28]. As a result, our research is only focused on the use of X- 
ray imaging to potentially detect COVID-19 patients. Computer-Aided 
Diagnosis (CAD) technologies have been enhanced to enable physi-
cians automatically to identify potential disorders of organs on X-ray 
images, overcoming previous limits [29,30]. These systems are pri-
marily powered by fast and powerful computer technology (such as CPU 
and GPU) and used to perform medical vision computing algorithms 
such as image enhancement, classification, segmentation, and tumor 
detection [31–34]. 

Artificial intelligence approaches such as deep neural networks and 
machine learning have become the essence of cutting-edge CAD appli-
cations in a variety of medical sectors. In recent years, deep learning 
approaches have been used to automatically analyze multimodal med-
ical images, with promising results for performing radiological tasks 
[34–36]. Following a review of recent publications in the literature, a 
strategy based on a pre-trained ResNet32 model that employs a transfer 
learning approach to detect COVID-19 disease is proposed. In a sample 
of 852 CT scan images, the researchers employed tests to identify lung 
cancer (413 COVID-19 and 439 normal). They were able to achieve 
training and testing accuracy of up to 96.22 % and 93.01 %, respec-
tively, using the proposed technique in their experimental studies [37]. 
They designed a strategy based on the DenseNet model that was pre- 
trained for COVID-19 identification. Their experiments utilizing the 
COVID-CT dataset, they attained an accuracy of 84.7 % [38]. To extract 
possibly diseased regions from CT scan images, they recommended 
using a pre-trained three-dimensional convolutional neural network 
(CNN). In the experiments, they were able to predict viral pneumonia, 
COVID-19, and healthy patients with an accuracy of 86.7 % [39]. 

In this study, it is aimed to design an artificial intelligence-based 
COVID-19 diagnosis system. Novelty has been added to the study with 
a proposed new CNN model, and this model is compared with the most 
common models available in the literature. On the used dataset, the 

performance of three different deep learning approaches for classifying 
lung X-ray images as COVID-19 and normal patients is evaluated and 
compared. The proposed model consists of fewer convolution layers 
than the MobileNetv2 and ResNet50 architectures. Therefore, the 
number of calculated parameters also decreases. In this direction, high 
performance results are obtained with less processing power and time. 
The following is an overview of the paper’s structure. The data collec-
tion and deep learning models are described in Section 2. The created 
deep learning application models’ parameters and relevant information 
are provided. Section 3 presents deep learning classifier experimental 
work and results as well as evaluation metrics such as accuracy, recall, 
precision, and F1-scores. Section 4 conclusions and suggests areas for 
future investigation. Finally, discussion is given in Section 5. 

2. Material and methods 

2.1. Dataset 

In this study, a open access dataset of X-ray images shared publicly 
by the Kaggle platform is used to classify COVID-19 patients (https: 
//www.kaggle.com/datasets/tawsifurrahman/covid19-radiography 
-database) [40]. This data set obtained from X-ray images of Covid-19 
consists of two categories: COVID-19 positive and negative (normal); 
and our dataset includes 13,824 chest X-ray images. A cross-section of 
the chest X-ray images obtained from this dataset is given in Fig. 1. 

2.2. Deep learning 

Deep learning is a machine learning technique that makes use of 
many nonlinear information processing layers and is used for feature 
extraction, pattern analysis and classification in supervised or unsu-
pervised learning [41]. Deep learning, which is a subset of machine 
learning, is a set of methods based on deep architecture, consisting of 
artificial neural networks with an increased number of hidden layers and 
learning a problem-related feature in each layer. In this architecture, the 
features learned in each layer represent the input data for the next 
deeper layer. As a result, a structure is established in which the most 
basic to the most complex quality is learned from the lowest to the 
highest layer [42,43]. 

Deep learning methods differ from previous machine learning algo-
rithms in that they require a large amount of data and hardware with 
significant computational capacity to analyze these data. Most of these 

Fig. 1. X-ray images a) with positive COVID-19 b) normal cases [40].  
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algorithms used in image classification applications are based on ar-
chitectures called Convolutional Neural Networks (CNN), and their 
structure is shown in Fig. 2 [42]. 

2.2.1. Convolutional neural network models (CNN) 
CNNs have been widely used by researchers in recent years in image 

and video processing, image classification, object detection and seg-
mentation, which are the widest areas of deep learning applications. 
They are also used on other signals containing sequential and interre-
lated data other than the image [44]. CNNs consist of three main layers 
called the convolution layer, pooling layer and fully connected layer 
[45]. CNN layers are given below: 

a. Input layer 
The first layer of the convolutional neural network architecture is the 

input layer. Image data should be included in the CNN input layer. The 
size of the data is critical for the model’s effectiveness in this section. 
The high memory need, the training time, and the test time per image 
may all rise if the input image size is chosen large. In addition, their 
chances of success may improve. The input sizes of used models in the 
application are given in Table 1. 

b. Convolutional layer 
This layer can be defined as feature extraction filters (kernels) on 

images [3]. Each filter represents a particular matrix that performs the 
convolution operation on the input image. An example of convolutional 
layer is given in Fig. 3. The proposed model, which includes 5 convo-
lution layers (detailed in Section 3.3) are the Sequential model of Keras. 

c. The pooling layer 

One of the most common ways in deep learning architectures can be 
to include pooling layers between convolution layers. By decreasing 
parameters and computational effort in the network topology, the 
pooling layer reduces overfitting. This layer’s aim is to reduce the size of 
the feature maps in order to deal with the image’s complexity. The 
proposed model in our study, which includes max pooling layers, is the 
Sequential model of Keras. 

d. Activation layer 
A non-linear layer (or activation layer) is added immediately after 

each convolution layer. This layer’s objective is to add nonlinearity to a 
system that primarily computes linear operations throughout its con-
volutional levels. The function in the activation layer processes the 
systems’ input and decides the value that the system will generate in 
response to it. ReLu activation function which is given in Eq. (1) is used 
in each layer of the proposed model and softmax function is used in the 
last layer. 

Reluf (x) =
{

0, x < 0
x, x ≥ 0 f (x)

′

=

{
0, x < 0
1, x ≥ 0 (1) 

e. Fully Connected layer 
In the CNN models, each neuron in one layer is connected to a neuron 

in another layer through fully connected layers. In principle, fully con-
nected layers act as multi-layer perceptrons (MLPs). The only difference 
is that the data to feed the fully connected layer is in the form created by 
the convolutional layers. In this study, the number of classes (COVID-19, 
and Normal) is 2. For this reason, the output value of the fully connected 
layer 2 of our model is given. 

f. Dropout 
To prevent the network from memorizing, the dropout layer is uti-

lized. The model is capable of memorizing training data and severe 
learning. The learning ability of the network is lost if it engages in an 
excessive learning process. Some network nodes are disabled at random 
throughout the dropout process [46]. In this study, 2 dropout layers are 
used to prevent over-learning, and the area of the first layer is deter-
mined as 108x108x128 and the area of the other dropout layer is 128. 

Fig. 2. The overall architecture of the CNN.  

Table 1 
The input image size of used models.  

Number Network Input Image Size 

1 CNN_Model (Proposed) 224 × 224x3 
1 MobileNetv2 224 × 224x3 
2 ResNet50 224 × 224x3  

Fig. 3. Outline of convolutional layer.  
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2.2.2. Convolutional neural network models 
In order to compare the study’s outcomes, some of the most well- 

known CNN models utilized in previous experiments are presented in 
this section. On the ImageNet dataset, these architectures are deep 
learning models with pre-trained weights. Prediction, feature extraction, 
and classification can all be done with these models. A pre-trained image 
classification model can be utilized as a starting point for learning a new 
task because it has learned to extract powerful and useful features from 
photos. In the image classification part, pre-trained ResNet50 and 
MobileNetv2 architectures are used and analyzed. MobileNetV2 is a 
neural network design that achieves outstanding results when it comes 
to balancing resource constraints and recognition accuracy. Mobile-
NetV2 is a neural network design that achieves outstanding results when 
it comes to balancing resource constraints and recognition accuracy. It is 
also one of the most significant benefits of being useable on mobile 
devices and embedded systems. Deep CNN designs face a number of 
challenges, including network optimization, vanishing gradient con-
cerns, and distortion issues. The ResNet50 design uses residual blocks to 
address all of these issues in the training process, including as saturation 
and accuracy loss [47]. In our study, these models are chosen because 
they are frequently used in deep learning applications [48,49]. Pre- 
trained networks and some features are given in Table 2. 

Table 3 shows the parameter which is explained below: 
True negative: which is the proportion of COVID-19 negative cases 

which are classified correctly? 
Calculated as: tn/tn + fp. 
False Positive: which is the proportion of COVID-19 negative cases 

which are classified incorrectly as positive? Calculated as: fp/tn + fp. 
False Negative: which is the proportion of COVID-19 positive cases 

which are classified incorrectly as negative? 
Calculated as: fn/fn + tp. 
True Positive: proportion of COVID-19 positive cases that are 

correctly classified. 
Calculated as: tp/fn + tp. 
The loss functions are a function that map to a real number to 

represent the error rate of the model as well as its performance. In short, 
it calculates how much the prediction made by the model deviates from 
the true value. In this case, the loss of a good model should be close to 0. 

The loss function should fit the model and the problem. In this study, the 
Binary Cross Entropy loss function, which is used in binary classification 
tasks, is used. The mathematical calculation of the function is given in 
the Eq. (2) [50]. 

L = −
1
N

∑N

i=1
yi*log(ŷi)+ (1 − yi)*log(1 − ŷi)

=

{
− log(1 − p), if y = 0

− log(p), if y = − 1 (2) 

In the equation, N represents the number of samples of the data, yi 
represents the true value of the ith data, and ŷi represents the estimated 
value of the ith data. Loss functions enable the model to learn by 
reducing the error in the estimation with the help of optimization al-
gorithms. In this study, Adam optimization algorithm, one of the sto-
chastic gradient descent algorithms, is used as the optimization 
algorithm. Performance comparisons between classifications are evalu-
ated according to various parameters given below. 

Accuracy: This ratio represents the percentage of samples classified 
as true. It is given in Eq. (3) is a measure of how well the learning model 
is [51,52]; 

Accuracy, ACC =
tn + tp

tn + tp + fn + fp
(3) 

True Positive Rate (Recall, (TPR)): It gives how many of the actually 
correct ones are marked correct in the prediction [51] and is given in Eq. 
(4). 

Recall, TPR =
tp

tp + fp
(4) 

Precision: It gives how much of what is marked as correct in the 
prediction section is actually correct. It is given in Eq. (5) [51]. 

Precision,PPV =
tp

tp + fn
(5) 

F1-Score (F1-Score): It is the harmonic mean of the precision and 
recall. which is shown in Eq. (6). It can be used as a comparison metric 
between two models. For example, if we consider that a model has high 
precision and a very low recall value, and the situation is the opposite in 
the second model, it would be more accurate to choose the F1-score in 
the comparison to be made between these two models. 

F1Score = 2x
PrecisionxRecall

Precision + Recall
(6)  

3. Experimental results 

In this part, the models trained with the training data are then tested 
(evaluated) with the test data. Models are compared according to ac-
curacy and F1-score performance metrics. The model is trained using 
computational resources provided by Google Colaboratory. The block 
diagram of whole study is illustrated in Fig. 4. 

3.1. Pre-processing 

All X-ray pictures were gathered into a single dataset and scaled to a 
standardized size of 224x224 pixels so that they could be used in the 
deep learning pipeline. Image labeling is then used to indicate whether 
each image in the dataset has positive COVID-19. 

Table 2 
Pre-trained networks and some features.  

Number Network Depth Parameter (million) Input Image Size 

1 MobileNetv2 53  3.5 224 × 224 
2 ResNet50 50  25.6 224 × 224  

Table 3 
Parameters.   

Predicted 

Negative Positive 

Actual Cases Negative True Negatives (tn) True Positives (tp) 
Positive False Negatives (fn) False Positives (fp)  
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3.2. Datasets and their application to the model 

CNN models create parameters based on inputs of a fixed size. To 
avoid losing features in the images, the X-ray images in the dataset are 
scaled to 224x224 after reading. The data set is randomly divided into 
80 % training and 20 % testing for testing. The number of images used as 
training and testing sets is given Table 4. The dataset can be accessed via 
the given link (https://www.kaggle.com/datasets/tawsifurrahman 
/covid19-radiography-database). 

3.3. Network architecture 

In this study, a CNN model is proposed for the diagnosis of COVID-19 
from lung radiography X-ray images. The architecture of the model is 
given in Fig. 5. The proposed model, which includes convolution and 
max pooling layers, is the Sequential model of Keras. The CNN model, 
which consists of sequential convolution and pooling layers, is trained 
with the X-ray images dataset and the results are observed. Pre-trained 
and proven MobileNetv2, ResNet50 models with the proposed model 
dataset are trained with the same dataset with 80 % training and 20 % 

testing. The proposed CNN model details are given in Table 5. 
The trainings are carried out in 30 batch sizes and using the Adam 

optimization algorithm. The learning rate is determined as 1e-4. ReLu is 
used as activation function in each layer of the proposed model and 
softmax function is used in the last layer. The models trained with the 

Fig. 4. Block diagram of the designed system.  

Table 4 
The number of images used as training and testing sets.  

Name COVID-19 cases Normal cases 

Train 2919 8140 
Test 707 2058  

Fig. 5. A summary on our proposed CNN model.  

Table 5 
The proposed CNN model details.  

Layer (type) Output Shape Parameter 

Conv2D 222 × 222 × 32 896 
MaxPooling2D 111 × 111 × 32 0 
Conv2D 109 × 109 × 64 18,496 
MaxPooling2D 54 × 54 × 64 0 
Dropout 54 × 54 × 64 0 
Conv2D 52 × 52 × 128 73,856 
MaxPooling2D 26 × 26 × 128 0 
Dropout 26 × 26 × 128 0 
Conv2D 24 × 24 × 128 147,584 
MaxPooling2D 8 × 8 × 128 0 
Dropout 8 × 8 × 128 0 
Conv2D 6 × 6 × 256 295,168 
MaxPooling2D 2 × 2 × 256 0 
Flatten 1024 0 
Dense 128 131,200 
Dropout 128 0 
Dense 2 258 
Total Params: 667.458 

Trainable Params: 667.458 
Non-trainable Params: 0  
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training data are then tested with the test data. Models are compared 
according to accuracy and F1-score performance metrics. As a result of 
the test of the proposed model, an accuracy rate of 96.71 % is obtained. 
The classification report and confusion matrix of the models are given in 
Figs. 6, 7 and 8, respectively. 

Although the MobileNetv2 architecture is generally designed for 
low-computing systems such as mobile devices, it can be used like any 
other architecture. With the model designed using the MobileNetv2 
architecture, a test accuracy rate of 95.73 % is achieved. The ResNet50 
architecture uses residual blocks to pass output from a previous layer to 
the next. This helps alleviate the vanishing gradient problem. With the 
model designed using the ResNet50 architecture, a test accuracy rate of 
91.54 % is achieved. 

The goal of this study is to detect patients with covid-19 and classify 
them as covid-19 possitive or covid-19 negative by using X-ray images. 
These classes are COVID-19 and normal (non-COVID-19). In addition, 
the loss function is extremely important to understand the status of 
predictions in training. The difference between the estimated and actual 
output is measured in losses (i.e. the label). Accuracy and loss are sup-
posed to be inversely proportional based on the definitions in these 
graphs: low loss levels are expected for high accuracy values. The epoch 
is a network designer-defined parameter. The number of epochs chosen 
ensures that the loss is minimal and that it does not worsen in subse-
quent epochs. As a result, the accuracy value attained is the highest and 
does not increase in subsequent epochs, indicating that the network has 
reached stability and that future epochs will not improve performance. 

Fig. 6. Classification Report and Confusion Matrix for the proposed CNN model.  

Fig. 7. Classification Report and Confusion Matrix for the MobileNetv2 model.  

Fig. 8. Classification Report and Confusion Matrix for the ResNet50 model.  
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Because both models find stability with a number of epochs less or equal 
to 20, the number of epochs is set to 20 in Fig. 9. 

In addition to the proposed Convolutional Neural Network model, 
the training is carried out using two pre-trained network architectures, 
MobileNetv2 and ResNet50 models. These three models are evaluated 
by comparing each other according to their performance. The running 
performance of the proposed deep learning frameworks is evaluated on 
the basis of accuracy and F1-score. While the proposed model reaches 
99.08 % training accuracy, other models; MobileNetv2 and ResNet50 
achieved training accuracy of 99.93 % to 98.50 %, respectively. In 
Fig. 10, the accuracy graph of the models over 20 epochs is given. 

The difference in the number of data between the two classes in the 
training data may affect the model performance. The class with more 
numbers can suppress the other class. In the training data used in the 
study, the normal class consists of 8140 and the COVID-19 class consists 
of 2919 samples. In this case, it is not appropriate to only take accuracy 
as a performance metric. Comparisons are made by taking into account 
the F1-score performance metric, which is the harmonic mean of pre-
cision and recall values, apart from accuracy. The models and perfor-
mance metrics used in this study are given in Table 6. 

With the proposed CNN model, 96.71 % test accuracy and 97 % F1- 
score have been achieved, and its usability in the diagnosis of COVID-19 
has been proven. In addition, as a result of testing with Convolutional 
Neural Network architectures that have proven themselves in ImageNet, 

a test accuracy rate of at least 91.54 % is obtained. As can be seen from 
the results, CNNs provide higher accuracy and speed in the diagnosis of 
COVID-19 with X-ray images compared to other medical tests. The 
performances of pretrained models are compared to those of other 
proposed models in Table 6. In convolutional neural networks, some 
methods have been developed to avoid overfitting and underfitting the 
model. The overfitting is not occured in our study due to the use of 
dropout and max pooling layers. Comparisons of with other methods are 
given in Table 7. 

Fig. 9. Loss graph of models.  

Fig. 10. Accuracy graph of models.  

Table 6 
Accuracy comparision our proposed model vs existing models.  

Number Architecture of 
model 

Training 
accuracy (%) 

Test accuracy 
(%) 

F1 score 
(%) 

1 CNN_Model 
(Proposed)  

99.08  96.71 97 

2 MobileNetv2  99.93  95.73 96 
3 ResNet50  98.50  91.54 91  
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Different types of viral pneumonia have similar CXR scan images, 
making it difficult for radiologist to distinguish COVID-19 from other 
viral pneumonia. This limitation can result in misdiagnosis, as well as 
non-COVID-19 viral pneumonia being misdiagnosed as COVID-19 
pneumonia [49,59]. Another disadvantage of this study is that the net-
works are trained on individual slices (images), rather than using all 
available samples for each subject. 

4. Discussion 

The findings show that deep learning with CNNs can have a 
considerable impact on the automatic detection and extraction of 
important information from X-ray images, which is relevant to the 
diagnosis of the COVID-19. Various attempts have been made to develop 
a reliable diagnostic model using deep learning techniques and many 
studies have been recommended in the literature. Also, due to the early 
stage of the disease, the number of labeled data points available is 
limited and most previous methods are evaluated using limited data. 
Extensive experiments are performed on a relatively large dataset, tak-
ing into account several factors, to determine the best-performing model 
for automated COVID-19 screening. 

Our currently proposed work consists of three different models used 
to perform the aforementioned classification tasks. For classification 
tasks, we have considered MobileNetv2, ResNet50, and the proposed 
CNN models. We have achieved different levels of accuracy as shown in 
Table 6. Test accuracy of 96.71 % and F1 score of percent are attained 
using the proposed CNN model, and its applicability in the diagnosis of 
COVID-19 is demonstrated. When the accuracy rate obtained in our 
study is compared to studies published in the literature and cited in the 
paper, it is clear that it is high. 

The proposed work has several restrictions as well. COVID-19 and 
other viral pneumonias exhibit similar CXR scan pictures, making it 
difficult for radiologist to discriminate between them. This limitation 
can lead to misdiagnosis, as well as the misdiagnosis of non-COVID-19 

viral pneumonia as COVID-19 pneumonia. Another flaw in this study 
is that the networks are trained on individual slices (images) rather than 
all of the samples available for each person. Our proposed study does not 
consider the same patient data to classify COVID-19 positive X-ray im-
ages as severe, moderate, and mild. Severity classification would be 
more useful if the same patient data could be obtained that would show 
disease progression and thus classify images into three classes. In 
addition, X-ray machines require less maintenance in terms of their re-
agents compared to RT-PCR and hence the operating cost is relatively 
low. In further studies, other current deep learning-based approaches 
will be investigated, and it is planned to work on popular deep learning 
techniques, hybrid methods and more data. 

More publicly available chest image datasets can be collected and 
produced for future usage. By adding more chest X-ray samples to the 
training dataset, we can achieve higher accuracy with the model ar-
chitecture we used before. In the future, an architecture can be prepared 
that will perform the successful grouping of chest X-rays in aforemen-
tioned classes in one go. The performance of deep learning models 
cannot be enhanced without the availability of high-quality data. Other 
research areas include data construction and annotation, as well as 
metadata information. In the future, our AI-model will help large-scale 
investigations aimed at determining the presence of “invisible cases,” 
such as research aimed at determining how many people without 
noticeable symptoms could be infected by the virus. 

5. Conclusions 

COVID-19 has had a major negative impact on our life, ranging from 
public health to the global economy. Using chest X-ray images from 
COVID-19 patients as both normal and COVID-19 positive, we describe 
in this work a deep learning-based method for automatically identifying 
COVID-19 disease. The most popular models in the literature (Mobile-
Netv2 and ResNet50) are examined with the novel CNN model that has 
been developed for the study. Three alternative deep learning algo-
rithms are tested for accuracy in this study in order to effectively identify 
and classify COVID-19 patients. The proposed CNN model has a test 
accuracy of 96.71 percent and an F1 score of 97 percent, and its appli-
cability in the diagnosis of COVID-19 has been demonstrated. There are 
fewer convolution layers in the proposed CNN model than in the 
MobileNetv2 and ResNet50 designs. As a result, the number of calcu-
lated parameters is reduced. As a result, high-performance results can be 
achieved while using minimal computing power. We expect that using a 
computer-assisted diagnostic tool to diagnose COVID-19 cases will 
considerably increase the speed and accuracy of diagnosis. Furthermore, 
the proposed CNN model can be utilized to extract sensitive information 
from X-ray images in order to identify patients. The development of a 
larger dataset for the evaluation of classification algorithms is another 
contribution to the article. In terms of accuracy, the proposed model has 
been demonstrated to outperform a number of existing strategies. As can 
be observed from the results, the proposed CNN model outperforms 
previous medical tests in terms of accuracy and speed in diagnosing 
COVID-19 using X-ray images. This proposed model can be employed as 
an alternative or helper system to RT-PCR in remote places where 
identification kits and specialist physicians are scarce. Our future goal is 
to get around hardware restrictions that prevent us from using larger 
image sets to train our proposed model and compare its performance 
with a larger number of existing methods. One of the limitations of this 
research is the difficulty of finding a labelled COVID-19 pneumonia 
dataset. Using more images in the training section is thought to assist us 
improve the model’s performance in the future. 
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Table 7 
Comparisons of with other studies  

Class Data Size Reference Methods Result 
(Accuracy) 

COVID-19 and 
non COVID-19 
or pneumonia 

413 COVID-19 
439 Normal or 
Pneumonia (CT 
images) 

[37] ResNet50  93.01 % 

COVID-19 
Pneumonia 

108 COVID-19 
86 Pneumonia 
Totally 1020 
images (CT 
images) 

[53] AlexNet  78.92 % 

COVID-19 
Normal, 
Pneumonia 

358 COVID-19 
(+) 
5538 COVID-19 
(-) 
8066 Healthy 
(Chest X-ray) 

[54] COVID- 
NET  

93.3% 

COVID-19, 
Normal, 
Pneumonia 

127 COVID-19 
(+) 
127 COVID-19 (-) 
(Chest X-ray) 127 
Pneumonia 

[55] ResNet50 
+ SVM  

95.33 % 

COVID-19 
Normal 
Pneumonia 

225 COVID-19 
1583 Normal 
4292 Pneumonia 
(X-ray images) 

[56] CNN  98.50 % 

COVID-19 
Normal 

142 COVID-19 
142 Normal (X- 
ray images) 

[57] nCOVnet  88.1 % 

COVID-19 
Normal, 
Pneumonia 

285 COVID-19 
285 Normal 
285 Pneumonia 
(X-ray images) 

[58] CNN  94.03 %  
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