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Abstract

Background: While the continued development of high-throughput sequencing has facilitated studies of entire
transcriptomes in non-model organisms, the incorporation of an increasing amount of RNA-Seq libraries has made de
novo transcriptome assembly difficult. Although algorithms that can assemble a large amount of RNA-Seq data are
available, they are generally very memory-intensive and can only be used to construct small assemblies.

Results: We develop a divide-and-conquer strategy that allows these algorithms to be utilized, by subdividing a large
RNA-Seq data set into small libraries. Each individual library is assembled independently by an existing algorithm, and
a merging algorithm is developed to combine these assemblies by picking a subset of high quality transcripts to form

a large transcriptome. When compared to existing algorithms that return a single assembly directly, this strategy
achieves comparable or increased accuracy as memory-efficient algorithms that can be used to process a large
amount of RNA-Seq data, and comparable or decreased accuracy as memory-intensive algorithms that can only be

used to construct small assemblies.

Conclusions: Our divide-and-conquer strategy allows memory-intensive de novo transcriptome assembly algorithms

to be utilized to construct large assemblies.
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Background

While high-throughput sequencing has made it possible
to perform studies of entire transcriptomes in non-model
organisms, applying de novo transcriptome assembly algo-
rithms has been increasingly difficult due to an increasing
amount of RNA-Seq libraries that include many experi-
mental conditions or developmental stages with replicated
experiments.
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Although transcriptome assembly algorithms such as
SOAPdenovo-Trans [1] and Trans-ABySS [2] can be used
to process a large amount of RNA-Seq data, algorithms
such as Oases [3] and Trinity [4] that have higher accu-
racy are generally very memory-intensive, thus they can
only be used to construct small assemblies. We develop a
divide-and-conquer strategy that allows these algorithms
to be utilized. A large RNA-Seq data set is subdivided
into small libraries. Each individual library is assembled
independently, and a merging algorithm is employed to
combine the small assemblies into a large transcriptome
(Fig. 1).

The merging algorithm picks a subset of high quality
transcripts to form a transcriptome by preferring longer
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Fig. 1 lllustration of the divide-and-conquer strategy. A large
RNA-Seq data set is subdivided into small libraries. Each individual
library is assembled independently, and a merging algorithm is
employed to combine the small assemblies into a large transcriptome

transcripts, which are more highly expressed and better
assembled. A de Bruijn graph is constructed to extend
some of these transcripts at the left end and at the right
end when there are no ambiguities. To reduce redun-
dancy, lower ranked transcripts with all their correspond-
ing nodes in the de Bruijn graph covered by higher ranked
transcripts are removed.

We validate our algorithm by performing Schizosaccha-
romyces pombe, Drosophila melanogaster and Arabidopsis
thaliana transcriptome assemblies using publicly avail-
able RNA-Seq libraries. We demonstrate our algorithm by
assembling a large set of 93 Cochliomyia macellaria RNA-
Seq libraries that we have constructed, which is about
298 G in size.

Methods

De Bruijn graph construction

Given a set of reads and a parameter k that denotes the
k-mer length, a de Bruijn graph is defined by taking each
k-mer that appears in the reads as a vertex, and connecting
two k-mers s153 - - - S and sy - - - SgSk+1 by a directed edge
if the (k — 1)-suffix of the first k-mer is the same as the
(k — 1)-prefix of the second k-mer and the (k + 1)-mer
5182 - - - SgSk+1 appears in the reads.

Since the de Bruijn graph implicitly represents an
assembly of the reads, it is employed by short read assem-
bly algorithms [5, 6]. To reduce noise, a k-mer coverage
cutoff ¢ is imposed to remove k-mers that appear less than
¢ times. Each maximal non-branching linear path is col-
lapsed into a single node, thus each node can contain a
longer string that is formed from concatenating succes-
sive k-mers that overlap by k — 1 letters between each
adjacent pair. After each individual library is assembled
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independently using an existing algorithm, our algorithm
constructs a de Bruijn graph from the set of all pre-
dicted transcripts. Note that the k-mer coverage cutoff ¢ is
only applied during individual library assemblies and not
during the merging step.

To construct the de Bruijn graph, we follow the iterative
one-letter extension strategy in [7] to identify all k-mers.
Given a sorted array that contains all # k’-mers in either
the forward or the reverse complementary direction for
k' < k, an array of size 4n is created that contains four
slots for each k’-mer. For each (K’ + 1)-mer, binary search
is applied to locate its k’-prefix within the array and one
of the four slots that corresponds to its last nucleotide
is updated. Slots with zero counts are removed to obtain
all (" + 1)-mers. Edges in the de Bruijn graph are con-
structed by locating the corresponding k-mers through
binary search. Since this step is performed on the tran-
scripts and not on the reads, it is not time consuming and
the memory requirement has a multiplicative constant of
four per k-mer.

Picking high quality transcripts
Since each transcript corresponds to a path in the de
Bruijn graph and there may be extra bases at the begin-
ning node and the ending node of the path that are not
included within the transcript, these bases form unam-
biguous extensions of the transcript and are added to
the transcript. To reduce noise, we only retain a tran-
script if its length divided by the number of nodes in
its path is above the average length cutoff ¢;, where ¢;
is a given parameter. To form the transcriptome from
these extended transcripts, our algorithm picks a sub-
set of high quality transcripts while preferring longer
transcripts.

Since the longest transcripts are not always correct and
may have translocations, and we have to make sure that
redundant subsequences of a transcript are not included

Table 1 Data sets used in the evaluation, with organism
denoting the organism, type denoting whether the organism is
model or non-model, libraries denoting the total number of
libraries with the number in parentheses denoting the number of
libraries after combining the biological replicates for
independent assembly in our algorithm, size denoting the total
number of bases in all the reads after quality trimming, and
reference denoting the publication that describes the libraries

Organism Type Libraries  Size Reference
Schizosaccharomyces pombe  Model 32 169G [4]
Drosophila melanogaster Model 13 294G [18]
Arabidopsis thaliana Model 5 16.1G [19]
Drosophila melanogaster Model 245 (34) 158G [20]
Cochliomyia macellaria Non-model 93(31) 298G New data
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Table 2 Comparisons of Schizosaccharomyces pombe transcriptome assemblies of Qases, Trinity and kCombine with k = 25 over
different values of k-mer coverage cutoff ¢, with transcripts denoting the number of predicted transcripts, n50 denoting the N50 value
of the length of predicted transcripts, blast denoting the number of hits from nucleotide BLAST search of predicted transcripts to
different transcripts of the known transcriptome with e-value below 10719, full denoting the number of predicted transcripts that are
full length transcripts in which an entire coding region is included in a BLAST alignment, spec denoting the percentage of positions in
the predicted transcripts that are included in a BLAST alignment, unique denoting the number of predicted transcripts that are
uniquely mapped as reported by GMAP with the percentage in parentheses, transloc denoting the number of predicted transcripts
that are translocated as reported by GMAP with the percentage in parentheses, and memory denoting the physical memory
requirement as a power of 2 with Trinity using 32 CPU

c Transcripts n50 Blast Full Spec Unique Transloc Memory
Oases

10 8244 6520 6515 5623 91.9% 7268 (88.2%) 1084 (13.1%) 128 GB
20 6509 5412 6458 4597 93.1% 5959 (91.6%) 672 (10.3%) 128 GB
kCombine(Oases)

5 8585 2705 6227 5223 94.8% 8019 (93.4%) 646 (7.5%) 8GB
10 6603 2620 5767 4443 95.2% 6173 (93.5%) 472 (7.1%) 8GB
Trinity

5 8568 3368 6490 5279 93.7% 8228 (96.0%) 150 (1.8%) 512GB
10 7313 2604 6415 4271 95.1% 7064 (96.6%) 156 (2.1%) 512GB
kCombine(Trinity)

3 6862 2319 6152 3858 96.5% 6628 (96.6%) 262 (3.8%) 8GB

5 6618 1938 5898 3182 97.1% 6415 (96.9%) 166 (2.5%) 8GB

multiple times, we rank the transcripts in decreasing order
of the number of nodes that form each transcript in the
de Bruijn graph. Since transcripts that are formed from
a larger number of nodes in the de Bruijn graph tend to
be longer, this strategy has a preference towards longer
transcripts while at the same time reduces the number of
translocated transcripts.

To remove redundant transcripts, we consider long
nodes in the de Bruijn graph that contain a string of

length above the node length cutoff ¢, where c; is another
given parameter. We only retain a lower ranked tran-
script when it contains a long node that is not cov-
ered by higher ranked transcripts. We group transcripts
into a locus when they share at least one long node.
This condition is applied transitively to collect all related
transcripts so that each transcript in a locus shares
at least one long node with another transcript in the
same locus.

Table 3 Comparisons of small Drosophila melanogaster transcriptome assemblies of Oases, Trinity and kCombine with k = 25 over

different values of k-mer coverage cutoff ¢

c Transcripts n50 Blast Full Spec Unique Transloc Memory
Oases

10 41867 1743 24187 8444 91.6% 36080 (86.2%) 7026 (16.8%) 128 GB
20 38377 1164 21606 4922 88.1% 34926 (91.0%) 3830 (10.0%) 128 GB
kCombine(Oases)

5 52282 1144 23573 7152 89.9% 44118 (84.4%) 9938 (19.0%) 8GB
10 36813 939 20389 4430 88.3% 32591 (88.5%) 5272 (14.3%) 8GB
Trinity

5 35190 1313 24434 6177 95.7% 32481 (92.3%) 2664 (7.6%) 512GB
10 29237 970 22388 3986 96.9% 27883 (95.4%) 978 (3.3%) 512GB
kCombine(Trinity)

3 34150 884 22746 4097 96.0% 31540 (92.4%) 2558 (7.5%) 8GB

5 26535 753 20525 2932 96.4% 24994 (94.2%) 1214 (4.6%) 8GB

Notations are the same as in Table 2
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Table 4 Comparisons of Arabidopsis thaliana transcriptome assemblies of SOAPdenovo-Trans, Trans-ABySS and kCombine with k = 25

over different values of k-mer coverage cutoff ¢

c Transcripts n50 Blast Full Spec Unique Transloc Memory
SOAPdenovo-Trans

20 88808 841 27325 1583 78.7% 76542 (86.2%) 44 (0.0%) 4GB
50 59638 887 24554 1302 82.9% 51402 (86.2%) 38(0.1%) 4GB
kCombine(SOAPdenovo-Trans)

3 88611 1103 29057 2666 81.7% 81576 (92.1%) 1324 (1.5%) 4GB
5 70854 1125 28020 2354 84.1% 65574 (92.5%) 972 (1.4%) 4GB
Trans-ABySS

20 124125 830 28414 4372 88.0% 119120 (96.0%) 1574 (1.3%) 2GB
50 62093 1006 25533 3109 91.9% 59420 (95.7%) 1010 (1.6%) 2GB
kCombine(Trans-ABySS)

3 90109 1147 30333 3261 82.2% 83037 (92.2%) 4242 (4.7%) 4GB
5 59411 1315 29266 3303 88.0% 54903 (92.4%) 3464 (5.8%) 4GB

Notations are the same as in Table 2

Results and discussion

Data sets

We applied our algorithm kCombine to perform tran-
scriptome assemblies using publicly available RNA-Seq
libraries from the sequence read archive [8], including one
set of Schizosaccharomyces pombe libraries, two sets of
Drosophila melanogaster libraries with one small set and
one large set, and one set of Arabidopsis thaliana libraries
(Table 1).

We compare the performance of our algorithm that uti-
lizes an existing algorithm to assemble each individual
library independently to the same algorithm that returns
a single assembly directly from all libraries, with each
library corresponding to one sequencing run of a biolog-
ical sample and all biological replicates combined into a

single library for independent assembly in our algorithm.
We trimmed each read by removing bases starting from
the first position that has a quality score of less than 15.
We applied Oases and Trinity to the small data sets, and
SOAPdenovo-Trans and Trans-ABySS to the large data
sets.

We fixed the k-mer length to 25 and varied the k-mer
coverage cutoff ¢ when applying each algorithm. We used
the same value of k to construct the de Bruijn graph in our
algorithm, and set the average length cutoff ¢; to 25 and
the node length cutoff ¢y to 50. These parameters were
determined by trying a few combinations and choosing
the values that give satisfactory performance. Since the
performance of each algorithm is highly dependent on the
k-mer coverage cutoff ¢ and different values are needed

Table 5 Comparisons of large Drosophila melanogaster transcriptome assemblies of SOAPdenovo-Trans, Trans-ABySS and kCombine

with k = 25 over different values of k-mer coverage cutoff ¢

c Transcripts n50 Blast Full Spec Unique Transloc Memory
SOAPdenovo-Trans

20 92193 1272 27258 6926 72.1% 81426 (88.3%) 186 (0.2%) 16GB
50 65273 1422 26671 6832 81.8% 58101 (89.0%) 90 (0.1%) 16GB
kCombine(SOAPdenovo-Trans)

3 84307 1944 27391 12269 79.6% 77649 (92.1%) 1222 (1.4%) 4GB
5 66098 2037 27153 11710 84.0% 61227 (92.6%) 976 (1.5%) 4GB
Trans-ABySS

20 99492 1581 27631 11103 75.7% 90854 (91.3%) 5118 (5.1%) 8GB
50 62731 1980 27262 12151 86.0% 57508 (91.7%) 2786 (4.4%) 8GB
kCombine(Trans-ABySS)

3 119772 2628 27612 22113 79.3% 99021 (82.7%) 22638 (18.9%) 4GB
5 80966 3009 27612 23110 84.5% 64161 (79.2%) 22012 (27.2%) 4GB

Notations are the same as in Table 2
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Fig. 2 Comparisons of the cumulative distribution of the FPKM expression estimates of predicted transcripts that are full length transcripts in
Schizosaccharomyces pombe transcriptome assemblies of Oases, Trinity and their respective applications of kCombine, with k = 25 over different
values of k-mer coverage cutoff ¢ and the range of FPKM values in each assembly divided into 20 intervals of equal width

when applying an existing algorithm during the divide-
and-conquer strategy as opposed to obtaining a single
assembly directly, we report the results that give the most
comparable performance.

To assess the extent of translocations in predicted tran-
scripts, we applied GMAP [9] to map the predicted tran-
scripts to the known genome. To investigate whether
our algorithm may systematically remove certain types of
RNA, we applied eXpress [10] to the reads in each data
set with respect to all the predicted transcripts that are
full length transcripts in each assembly to obtain FPKM
expression estimates.

Model organisms

Tables 2 and 3 show that kCombine generally had
decreased performance when compared to obtaining sin-
gle assemblies directly from Oases or Trinity. When
compared to Oases, kCombine was able to obtain less
translocated transcripts in Schizosaccharomyces pombe
and comparable percentages of translocated transcripts
in Drosophila melanogaster. When compared to Trin-
ity, kCombine had decreased performance when the

percentage of translocated transcripts is about the same,
and kCombine had a higher percentage of translocated
transcripts when the other performance is about the
same. Tables 4 and 5 show that kCombine had improved
performance when compared to SOAPdenovo-Trans and
Trans-ABySS at the expense of having more translocated
transcripts.

In terms of memory requirement, while Oases and Trin-
ity required much more memory than kCombine, the
memory requirement of SOAPdenovo-Trans and Trans-
ABySS was comparable to kCombine. More memory was
needed during the merging step by kCombine than the
independent assembly of each individual library by each
algorithm.

Figures 2 and 3 show that kCombine recovered com-
parable proportion of full length transcripts with low
expression levels as Oases and Trinity, with slightly
higher proportion than Oases in Schizosaccharomyces
pombe and lower proportion than Trinity in Drosophila
melanogaster. Figures 4 and 5 show that kCombine recov-
ered comparable proportion of full length transcripts
with low expression levels as SOAPdenovo-Trans and
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Fig. 3 Comparisons of the cumulative distribution of the FPKM expression estimates of predicted transcripts that are full length transcripts in small
Drosophila melanogaster transcriptome assemblies of Oases, Trinity and their respective applications of kCombine, with k = 25 over different values
of k-mer coverage cutoff ¢ and the range of FPKM values in each assembly divided into 20 intervals of equal width
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Fig. 4 Comparisons of the cumulative distribution of the FPKM expression estimates of predicted transcripts that are full length transcripts in
Arabidopsis thaliana transcriptome assemblies of SOAPdenovo-Trans, Trans-ABySS and their respective applications of kCombine, with k = 25 over
different values of k-mer coverage cutoff ¢ and the range of FPKM values in each assembly divided into 20 intervals of equal width

Trans-ABySS, with slightly lower proportion than
SOAPdenovo-Trans and higher proportion than
Trans-ABySS in Arabidopsis thaliana.

Non-model organism
We applied our algorithm to assemble the transcriptome
of the blow fly Cochliomyia macellaria from a set of
RNA-Seq libraries that we have constructed (Table 1), in
which the full transcriptome was not available before. The
blow fly Cochliomyia macellaria is a primary colonizer
of human and animal remains, and is important in nutri-
ent cycling [11, 12] and forensic investigations of deaths
[13, 14]. As an agent of myiasis [15, 16] and as a filth
feeding fly, this species can be a veterinary and medical
pest by causing direct damage to hosts and by spreading
pathogenic bacteria [17]. Genomic tools for this blow fly
can be expected to improve the benefits of Cochliomyia
macellaria biology and to ameliorate the negative aspect.
Three biological replicates were generated for each
combination of one of four temperatures (20 °C, 25 °C,
30 °C, and fluctuated) and one of seven developmental

stages (feeding instar, early post feeding, late post feed-
ing, early pupae, early middle pupae, late middle pupae,
and late pupae). We also include additional libraries that
were selected for fast and slow development and a control
sample.

Since our goal is to obtain a transcriptome that is as
accurate and complete as possible, we applied kCombine
based on Oases and Trinity due to their generally higher
accuracy in terms of specificity. Table 6 shows that the
assemblies were of high quality. In both cases of kCom-
bine based on Oases and Trinity, the assembly based on
the middle value of the k-mer coverage cutoff ¢ pro-
vides a balanced result between sensitivity and correct-
ness. In terms of memory requirement, Oases and Trinity
required a large amount of memory during the indepen-
dent assembly of each individual library. Since the total
size of libraries is very large, the assembly of each indi-
vidual library is difficult even when the data set is divided
into 31 libraries after combining the biological replicates.
The merging step by kCombine required comparably little
memory.
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Fig. 5 Comparisons of the cumulative distribution of the FPKM expression estimates of predicted transcripts that are full length transcripts in large
Drosophila melanogaster transcriptome assemblies of SOAPdenovo-Trans, Trans-ABySS and their respective applications of kCombine, with k = 25
over different values of k-mer coverage cutoff ¢ and the range of FPKM values in each assembly divided into 20 intervals of equal width
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Table 6 Transcriptome assemblies of kCombine based on Oases and Trinity in Cochliomyia macellaria with k = 25 over different values
of k-mer coverage cutoff ¢, with locus denoting the number of predicted locus, transcripts denoting the number of predicted
transcripts, n50 denoting the N50 value of the length of predicted transcripts, blastx denoting the number of hits from translated
BLAST search of predicted transcripts to different transcripts of the known Drosophila melanogaster transcriptome with e-value below
10729, and memory denoting the physical memory requirement as a power of 2, with the value to the left of “+” indicating the
memory requirement of the independent assembly of each individual library by Oases and Trinity, and the value to the right of “+"
indicating the memory requirement of the merging step by kCombine

c Locus Transcripts n50 Blastx Memory
kCombine(Oases)

10 60477 140681 2502 20385 256 GB+4GB
20 42334 101421 2349 20579 256 GB + 4GB
50 30858 67217 1924 20101 256 GB + 4GB
kCombine(Trinity)

5 46342 153790 1961 22996 512GB+16GB
10 34614 111379 1934 22874 512GB+16GB
20 28756 85093 1567 22595 512GB+16GB
Conclusions Funding

We have developed a divide-and-conquer strategy that
allows memory-intensive de novo transcriptome assem-
bly algorithms to be utilized to construct large assemblies.
After the individual libraries are assembled independently,
the merging algorithm consumes little computational
time and memory. In all our tests, the independent assem-
bly of each individual library can be completed in a few
days when performed in parallel on a computing clus-
ter. The merging step then takes up to a few days for the
largest data sets.

The choice of which algorithm to use depends on
the goal of the assembly. While the memory require-
ment can still be high even after applying the divide-
and-conquer strategy on memory-intensive algorithms for
very large data sets, they are generally more accurate, with
Oases returning more and longer transcripts and Trin-
ity returning more transcripts with low expression levels
and with less translocations. Among the memory-efficient
algorithms, SOAPdenovo-Trans returns transcripts with
less translocations while Trans-ABySS returns more and
longer transcripts with higher specificity.

Since there is a decrease in performance in the divide-
and-conquer strategy as the number of libraries increases,
it is better to subdivide into smaller number of libraries
as long as there are enough computational resources to
assemble them independently. To optimize the perfor-
mance, different values of the k-mer coverage cutoff ¢ can
be used on libraries of different sizes.

Acknowledgements

We thank the reviewers for invaluable comments that significantly improve
the paper. Sequencing was performed at the Genomics and Bioinformatics
Services at Texas A&M University. Computations were performed on the Texas
A&M Institute for Genome Sciences and Society High-Performance
Computing Cluster and the Brazos Cluster at Texas A&M University.

AMT is supported by start-up funds from the College of Agriculture and Life
Sciences at Texas A&M University and Texas AgriLife Research. This work was
supported by the National Institute of Justice grants 2012-DN-BX-K024 and
2015-DN-BX-K020. Points of view in this document are those of the authors
and do not necessarily represent the official position or policies of the U.S.
Department of Justice. Publication costs for this work were funded by the
Open Access to Knowledge (OAK) Fund at the Texas A&M University Libraries.

Availability of data and materials
A software program that implements our algorithm (kCombine) is available at
http://faculty.cse.tamu.edu/shsze/kcombine.

About this supplement

This article has been published as part of BMC Genomics Volume 18
Supplement 10, 2017: Selected articles from the 6th IEEE International
Conference on Computational Advances in Bio and Medical Sciences
(ICCABS): genomics. The full contents of the supplement are available online
at https://bmcgenomics.biomedcentral.com/articles/supplements/volume-
18-supplement-10.

Authors’ contributions

S-HS and AMT designed the computational work. JJP and AMT designed the
molecular experiments. JJP performed the molecular experiments. All authors
read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

! Department of Computer Science and Engineering, Texas A&M University,
College Station, Mexico, TX, 77843 USA. 2Departmem‘[ of Biochemistry &
Biophysics, Texas A&M University, College Station, Mexico, TX, 77843 USA.
3Depar‘[men‘[ of Entomology, Texas A&M University, College Station, Mexico,
TX, 77843 USA.

Published: 6 December 2017


http://faculty.cse.tamu.edu/shsze/kcombine

Sze et al. BMC Genomics 2017, 18(Suppl 10):895

References

1.

20.

XieY, Wu G, Tang J, Luo R, Patterson J, LiuS, Huang W, He G, Gu S, LiS,
Zhou X, Lam TW, LiY, Xu X, Wong GK-S, Wang J. SOAPdenovo-Trans: de
novo transcriptome assembly with short RNA-Seq reads. Bioinformatics.
2014;30:1660-6.

Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K,
Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T,
Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL,
Tam A, ZhaoY, Moore RA, Hirst M, Marra MA, Jones SJM, Hoodless PA,
Birol I. De novo assembly and analysis of RNA-seq data. Nat Methods.
2010;7:909-12.

Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo
RNA-seq assembly across the dynamic range of expression levels.
Bioinformatics. 2012;28:1086-92.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit |,
Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E,
Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C,
Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome
assembly from RNA-Seq data without a reference genome. Nat
Biotechnol. 2011;29:644-52.

Pevzner PA. I-tuple DNA sequencing: computer analysis. J Biomol Struct
Dyn. 1989;7:63-73.

Idury RM, Waterman MS. A new algorithm for DNA sequence assembly.

J Comput Biol. 1995,2:291-306.

Sze SH, Pimsler ML, Tomberlin JK, Jones CD, Tarone AM. A scalable and
memory-efficient algorithm for de novo transcriptome assembly of
non-model organisms. BMC Genomics. 2017;18(Suppl 4):387.

Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K,
Chetvernin V, Church DM, DiCuccio M, Federhen'S, Feolo M, Geer LY,
Helmberg W, Kapustin'Y, Landsman D, Lipman DJ, Lu Z, Madden TL,
Madej T, Maglott DR, Marchler-Bauer A, MillerV, Mizrachil, Ostell J,
Panchenko A, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M,
Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L,
Wang Y, Wilbur WJ, Yaschenko E, Ye J. Database resources of the National
Center for Biotechnology Information. Nucleic Acids Res. 2010;38:5-16.
Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment
program for mRNA and EST sequences. Bioinformatics. 2005;21:1859-75.
Roberts A, Pachter L. Streaming fragment assignment for real-time
analysis of sequencing experiments. Nat Methods. 2013;10:71-3.

. Owings CG, Spiegelman C, Tarone AM, Tomberlin JK. Developmental

variation among Cochliomyia macellaria Fabricius (Diptera: Calliphoridae)
populations from three ecoregions of Texas, USA. Int J Legal Med.
2014;128:709-17.

Mohr RM, Tomberlin JK. Development and validation of a new technique
for estimating a minimum postmortem interval using adult blow fly
(Diptera: Calliphoridae) carcass attendance. Int J Legal Med. 2015;129:851-9.
Byrd JH, Butler JF. Effects of temperature on Cochliomyia macellaria
(Diptera: Calliphoridae) development. J Med Entomol. 1996;33:901-5.
Boatright SA, Tomberlin JK. Effects of temperature and tissue type on the
development of Cochliomyia macellaria (Diptera: Calliphoridae). J Med
Entomol. 2010;47:917-23.

Scott HG. Human myiasis in North America (1952-1962 inclusive). Fla
Entomol. 1964;47:255-61.

Stevens JR. The evolution of myiasis in blowflies (Calliphoridae). Int J
Parasitol. 2003;33:1105-13.

Greenberg B. Flies and Disease. Princeton: Princeton University Press; 1971.
Daines B, Wang H, Wang L, LiY, HanY, Emmert D, Gelbart W, Wang X,
Li W, Gibbs R, Chen R. The Drosophila melanogaster transcriptome by
paired-end RNA sequencing. Genome Res. 2011;21:315-24.

Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M. Transcriptome
survey reveals increased complexity of the alternative splicing landscape
in Arabidopsis. Genome Res. 2012,22:1184-95.

Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L,
Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L,
Davis CA, Dobin A, LiR, Lin W, Malone JH, Mattiuzzo NR, Miller D,
Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B,
Green RE, Hammonds A, Jiang L, Kapranov P, Langton L, Perrimon N,
Sandler JE, Wan KH, Willingham A, Zhang Y, Zou 'Y, Andrews J, Bickel PJ,
Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hoskins RA, Kaufman TC,
Oliver B, Celniker SE. The developmental transcriptome of Drosophila
melanogaster. Nature. 2011;471:473-9.

Page 50 of 88

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
e We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	De Bruijn graph construction
	Picking high quality transcripts

	Results and discussion
	Data sets
	Model organisms
	Non-model organism

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

