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Simple Summary: Prostate carcinoma is the most common visceral cancer for men and the second
most common cause of death. The early detection of micrometastasis may improve clinical outcome
due to individual treatment approaches like early intensified therapy. Imaging using prostate-specific
membrane antigen-positron emission tomography/computed tomography (PSMA-PET/CT) has a
high potential of detecting even small metastases. Therefore, the present study aimed to analyze
data of 335 men with primary diagnosed prostate cancer and available PSMA-PET/CT with regard
to characteristic PET-parameters and the detection of metastases. We observed that an increased
accumulation of the PET-tracer measured in the primary tumor significantly correlates with the
presence of distant metastases. The current results may be helpful in decision making of individual
treatment escalation for a variety of men with aggressive disease which should improve clinical
outcome.

Abstract: Men diagnosed with aggressive prostate cancer are at high risk of local relapse or systemic
progression after definitive treatment. Treatment intensification is highly needed for that patient
cohort; however, no relevant stratification tool has been implemented into the clinical work routine
so far. Therefore, the aim of the current study was to analyze the role of initial PSMA-PET/CT
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as a prediction tool for metastases. In total, 335 men with biopsy-proven prostate carcinoma and
PSMA-PET/CT for primary staging were enrolled in the present, retrospective study. The number
and site of metastases were analyzed and correlated with the maximum standardized uptake value
(SUVmax) of the intraprostatic, malignant lesion. Receiver operating characteristic (ROC) curves
were used to determine sensitivity and specificity and a model was created using multiple logistic
regression. PSMA-PET/CT detected 171 metastases with PSMA-uptake in 82 patients. A statistically
significant higher SUVmax was found for men with metastatic disease than for the cohort without
distant metastases (median 16.1 vs. 11.2; p < 0.001). The area under the curve (AUC) in regard to
predicting the presence of any metastases was 0.65. Choosing a cut-off value of 11.9 for SUVmax, a
sensitivity and specificity (factor 1:1) of 76.0% and 58.4% was obtained. The current study confirms,
that initial PSMA-PET/CT is able to detect a relatively high number of treatment-naïve men with
metastatic prostate carcinoma. Intraprostatic SUVmax seems to be a promising parameter for the
prediction of distant disease and could be used for treatment stratification—aspects which should be
verified within prospective trials.

Keywords: prostate cancer; PSMA; PET; metastases; intraprostatic SUV

1. Introduction

With an estimated 1.93 million deaths from cancer in Europe in 2018 [1], the treatment
of patients with tumor diseases is still demanding. For men, carcinoma of the prostate is
the most common visceral cancer with estimated 449,800 new cases in 2018 [1]. Although
many cases of prostate cancer have excellent prognosis or stay indolent for a lifetime,
the malignant tumor remains a heterogeneous disease varying from subclinical to highly
aggressive.

Therefore risk-adopted diagnosis and treatment of prostate cancer is challenging to
avoid overtreatment for indolent disease and insufficient therapy for carcinomas with
a high risk for local or systemic progression. By current estimates, high-risk disease is
diagnosed in up to 20% of patients undergoing definitive treatment [2–5]. Active and
highly effective therapy is of utmost necessity for this patient cohort. However, for high-
risk prostate cancer local progression and/or distant metastases were observed in 11–40%
after definitive radiotherapy or radical prostatectomy, respectively [6–8]. These patients
are candidates for treatment intensification to prolong survival.

The RTOG 0521 trial included 612 men with high risk prostate cancer undergoing
definitive radiotherapy with long-term androgen deprivation therapy (ADT). The trial
resulted in improved overall survival (OS), disease-free survival (DFS) and reduction in
the rate of distant metastasis for the cohort with intensified systemic therapy with adjuvant
docetaxel after a median follow-up of 5.7 years [8]. In contrast, two Scandinavian trials did
not observe any relevant, clinical benefit by adding chemotherapy. Both, the Scandinavian
Prostate Cancer Group (SPCG)-12 and -13, were not able to show a significant benefit
in DFS by adding adjuvant chemotherapy [9,10]. These differences clearly demonstrate,
that there is an urgent need for an appropriate risk classification which is able to identify
candidates for treatment intensification.

Nowadays, prostate-specific membrane antigen (PSMA)-positron emission tomog-
raphy/computed tomography (PET/CT) is an important element of prostate carcinoma
imaging. PSMA is an extracellular, membrane-bound antigen that is not secreted, but is
overexpressed on almost all prostate tumors [11–14]. In only about 5–10% of all prostate
carcinomas there is no PSMA expression [15,16]. By using radioactively labeled substances
that specifically bind to PSMA, malignant prostate cells which excessively express PSMA
can be detected with a sensitivity of 76.6–84% and a specificity of 82–100% [17–20]. The
majority of the low molecular weight PSMA ligands are based on a glutamate-urea-lysine
structure and two other units [17]. The radioactive unit is used for imaging and consists of
a chelator molecule, which forms a covalent bond with a radioactive molecule (as in 68Ga)
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or from a group of fluorinated molecules (as in 18F) [18]. A chelator serves to stabilize
the radioactive molecule via a covalent bond by fixing it [19]. The radioactive unit in turn
is coupled via a connector to a binding group which can bind in the active center of the
PSMA molecule. The binding motif best described in science consists of the combination
glutamate-urea-lysine (Glu-urea-Lys) [18].

Currently, two groups of 68Ga-coupled PSMA ligands (such as 68Ga-PSMA-11, 68Ga-
PSMA-I + T and 68Ga-PSMA-617) and 18F-coupled ligands (such as 18F-DCPyL, 18F-PSMA-
1007) are used world wide. While PSMA-PET/CT imaging was mainly used for patients
with biochemical recurrence for a long time, the number of PET/CTs using PSMA-ligands
as a primary imaging probe rapidly increased. Results of a recently published, randomized
prospective study clearly underlined its importance also for first-line staging of prostate
cancer patients before curative-intent surgery or radiotherapy [20]. Therefore, the current
study aimed to evaluate the role of PSMA-PET/CT for the prediction of metastases.

2. Materials and Methods
2.1. Study Design

This monocentric and retrospective study, which was approved by the local ethics
committee (S-093/2019) and conducted in accordance with the Helsinki Declaration and its
amendments. This present study enhances and analysis new aspects of a patient cohort
partially previously reported [21]. In total, 335 men with histologically proven, treatment-
naïve prostate cancer met the inclusion criteria (age of 18 or older, sufficient clinical data,
no previous therapy like ADT, high-intensity focused ultrasound (HIFU) or transurethral
resection of the prostate (TURP)) and were included in the current trial.

2.2. Prostate-Specific Membrane Antigen-Positron Emission Tomography/Computed Tomography
(PSMA PET/CT) Imaging and Image Evaluation

All patients were hydrated with 500 mL water two hours before imaging. Imaging
was performed by Siemens mCT flow, Siemens Biograph 6 and Siemens Biograph 20 mCT
scanners. Low-dose CTs without contrast were performed for all patients (5 mm slices).
For 68Ga-PSMA-11, two to three MBq per kilogram body weight were applied and the
images were taken according to the first clinical description one hour after application [22].
The median uptake time was 60 min between application and acquisition. For 18F-PSMA-
1007, an effective dose of approximately 4.4–5.5 mSv per 200–250 MBq examination was
applied [23]. The median dose of 68Ga-PSMA-11 was 223 MBq and 254 MBq for 18F-PSMA-
1007, respectively. Imaging acquisition was performed after 60 min for 68Ga-PSMA-11 and
90–120 min for 18F-PSMA-1007 after application [24].

Image evaluation was done using the “syngo TrueD” software (Siemens Healthineers,
Erlangen, Germany). The subsequent determination of the maximum standardized uptake
values (SUVmax) was performed via a semi-automatic region of interest (ROI). All scans
were evaluated by two certified nuclear physicians as well as one certified radiooncolo-
gist. Any tracer accumulation larger than 3 mm diameter that did not correspond to a
physiological uptake and was observed outside the prostate was considered primarily
tumor. All these findings were collected in a common consensus. Due to several publica-
tions [18,21,24,25] a direct correlation of histopathology and PSMA-imaging findings has
been assumed in this study.

2.3. Statistical Analysis

Statistical analysis was performed using Microsoft Excel and SPSS Statistics version 26
(IBM, Armonk, NY, USA). The descriptive analysis of the SUVmax values between patients
with and without distant metastases was displayed using box plots. Univariable and
multivariable binary logistic regression models were calculated. The dependent variable in
all cases was: metastasis occurred yes or no. Univariable models were calculated for four
variables, SUVmax (continuous), initial prostate-specific-antigen (PSA) (continuous), World
Health Organization (WHO) grading (categorical, 5 classes) and d’Amico classification
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(categorical, 3 classes). The multivariable model includes all four variables [25]. Results
are expressed as odds ratios with 95% confidence intervals for each variable, as well as
the area under the curve (AUC) statistic for the whole model. These receiver operating
characteristic (ROC) curves were used to determine sensitivity and specificity as a function
of the association between the binary characteristic “any metastasis occurred” and the
quantitative characteristic “SUVmax”. From the variables of the multiple logistic regression
model, the variable “probability of occurrence p” could be determined by transforming the
regression equation. The resulting variable “probability of occurrence p” could again be
examined in terms of a ROC curve (Receiver Operating Characteristic) in relation to the
binary variable of “metastasis that has occurred”. The area under the curve (AUC) values
were again determined on the basis of the curve thus calculated.

3. Results
3.1. Cohort Characteristics

The cohort included 335 men with histologically confirmed prostate carcinoma after
biopsy. All patients had no previous therapy. Median age of the entire cohort was 67 years
(range 38–84 years) and a median PSA of 11 ng/mL (range 1.2–511 ng/mL) was found at
initial diagnosis. Histological examinations resulted in 148 patients (44.2%) with WHO
grading 4 or 5 carcinomas. Most patients (65.4%) were classified as high-risk according to
the d’Amico risk classification [16]. Patient’s characteristics are summarized in Table 1.

Table 1. Patient’s characteristics.

Total Number of Patients n = 335

age at PSMA-PET/CT (years), median (range) 67 (38–84)
WHO grading, n = 326

1 36 (10.7%)
2 85 (25.4%)
3 57 (17.0%)
4 58 (17.3%)
5 90 (26.9%)

PSA at initial diagnosis (ng/mL), median (range), n = 331 11 (1.2–511)
<10 153 (45.7%)

10–20 84 (25.1%)
>20 94 (28.1%)

risk classification according d’Amico, n = 335
low risk 15 (4.5%)

intermediate risk 101 (30.1%)
high risk 219 (65.4%)

PSMA-PET/CT tracer
68Ga-PSMA-11 272 (81.2%)
18F-PSMA-1007 63 (18.8%)

N staging according to PSMA-PET/CT, n = 335
cN0 254 (75.8%)
cN1 81 (24.2%)

M staging according to PSMA-PET/CT, n = 335
cM0 253 (75.5%)
cM1a 18 (5.4%)
cM1b 39 (11.6%)
cM1c 25(7.5%)

3.2. Imaging Evaluation

PSMA imaging detected 81 patients (24.2%) with regional nodal metastases. In total, 82
patients (24.7%) with 171 distant, PSMA-positive lesions were diagnosed. Most metastases
were located in extrapelvic nodes (n = 60) and bone (n = 103), the rate of visceral metastases
was low with eight lesions with tracer uptake (Table 2). Median SUVmax of malignant
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intraprostatic lesions was 12.5 (range 3–109) for the entire cohort. 48 out of 82 patients with
distant metastases also had regional, nodal metastases with PSMA-uptake.

Table 2. Overview of site of metastases detected by PSMA-PET/CT.

Total Number of Distant Metastases with PSMA-Uptake n = 173

extrapelvic nodal metastases
total lesions 60 (35.1%)
abdominal 42 (70.0%)
Thoracic 15 (25.0%)
Cervical 1 (1.7%)
others 2 (3.3%)

bone metastases
total lesions 103 (60.2%)

Pelvic 43 (41.7%)
abdominal/thoracic 49 (47.6%)

Extremities 8 (7.8%)
head/cervical 3 (2.9%)

organ metastases
total lesions 10 (5.7%)
Intrahepatic 4 (40.0%)

Pulmonal 4 (40.0%)
others 2 (20.0%)

3.3. Association between PSMA-PET/CT and the Presence of Metastases

Correlating the presence of metastases and intraprostatic SUVmax in PSMA imaging,
a higher SUVmax was observed for men with metastatic disease than for those without
metastases (median 11.2 vs. 16.1; p < 0.001) (Figure 1).
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Figure 1. Boxplot of intraprostatic maximum standardized uptake values (SUVmax) according to
M-stage.

The AUC in regard to predicting the presence of metastases was 0.65. In subgroup
analyses, the best AUC was obtained for patients with intermediate-risk prostate cancer
(0.71; low-risk: 0.29; high-risk: 0.56) and after exclusion of International Society of Urologi-
cal Pathology (ISUP) grade group 5 (0.66). Moreover, the AUC was significantly better for
PET scans using 18F-PSMA ligands compared to those with 68Ga-PSMA ligands (0.71 vs.
0.63—Supplementary File 1 and Supplementary File 2).

Comparing different combinations of intraprostatic SUVmax, PSA, WHO grading
and d’Amico risk classification in a multiple binary logistic regression model, all variables
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showed a high, statistical significance with regard to distant metastases (p < 0.001). Multiple
logistic regression model calculations of all parameters lead to a slightly better AUC of 0.69
(Table 3). The multiple logistic regression showed a highly significant (p = 0.004) influence
of SUVmax on the occurrence of distant metastasis.

Table 3. Multiple logistic regression.

Variables - Regression
Coefficient B

Standard
Error p-Value Odds Ratio 95% Confidence Intervals for

Odds Ratio

- - - - - - Lower value Upper value

SUVMax - 0.026 0.009 0.004 1.026 1.006 1.046
initial PSA - 0.008 0.004 0.051 1.008 1.000 1.016

WHO 1 - - - 0.264 - - -
- WHO (1) −1.374 0.819 0.093 0.253 0.054 1.344
- WHO (2) −0.798 0.456 0.316 0.639 0.200 1.191
- WHO (3) −0.448 0.446 0.316 0.639 0.252 1.479
- WHO (4) −0.510 0.383 0.183 0.601 0.288 1.292

d’Amico 1 - - - 0.476 - - -
- d’Amico (1) −0,332 0.064 0.800 0.717 0.054 9.094
- d’Amico (2) −0.559 0.459 0.224 0.572 0.204 1.280

1 Reference categories have been “WHO5” and “d’Amico high-risk.

The maximum for the sum of sensitivity and specificity (weight factor 1:1) was ob-
served using a cut-off value of 11.9 for SUVmax of malignant intraprostatic lesions, resulting
in a sensitivity and specificity of 76.0% and 58.4%, respectively. Assuming a prevalence of
24.5% for metastases, the negative predictive value (NPV) and positive predictive value
(PPV) could be stated as 85.3% and 33.1%.

4. Discussion

The present study confirmed, that a relatively large number of men with prostate
cancer are at high risk for metastases. Distant, malignant lesions occurred in almost one in
four patients in the current cohort, even though, considering the “negative” selection of
men undergoing PSMA-PET/CT as primary staging (219 out of 335 with high-risk disease).
However, while 5-year survival rates are excellent for localized prostate cancer, lifespan is
limited for patients with distant tumor burden. Siegel et al. reported on a 5-year relative
survival rate of 31% in men with metastatic disease [26]. Thus, treatment intensification
strategies are of great interest for selected prostate cancer patients.

Until now, the identification of patient subgroups suitable for treatment escalation
leading to improved survival is still challenging. Although numerous pretreatment risk
stratification tools like the Memorial Sloan Kettering Cancer Center (MSKCC) nomogram or
the Cancer of the Prostate Risk Assessment (CAPRA) score are available [27], there is a lack
of evident data with regard to individual therapeutic consequences. Increasing numbers of
PSMA-PET/CTs for primary staging around the globe confirms a great potential to that
molecular imaging methodology. As published a few years ago, SUVmax of intraprostatic,
malignant lesions was highly correlated with several clinical parameters like Gleason Score
(GS) or PSA [28]. The present study observed a statistically significant higher SUVmax for
men with metastatic disease (Figures 2 and 3).
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Figure 3. PSMA-PET/CT in MIP (A) of a 83-years old patient with prostate cancer (GS 8/group
grade 4; PSA 32 ng/mL) and high intraprostatic SUVmax (49.63) and several metastases; Level of
prostate (B) PSMA-PET Dx; (C) PSMA PET/CT Dx; Level of nodal metastases (D) PSMA-PET Dx; (E)
PSMA PET/CT Dx.

Choosing a cut-off value of 11.9, a relatively high sensitivity and specificity can be
reached with regard to the presence of metastases leading to an estimated NPV and PPV of
85.3% and 33.1%, respectively, for the current cohort. Although subgroup analysis demon-
strated a higher correlation for patients undergoing 18F-PSMA-1007 PET/CT compared
with 68Ga-PSMA11-PET/CT, this cut-off value was determined for both tracers considering
the relatively low number of patients who received 18F-PSMA-1007. A collection of two
separate cut-off values did not seem sensible in this context. Nevertheless, the standard-
PSA-blood test for prostate cancer screening provides a NPV and PPV of 15.5% and 25%,
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respectively [29], which is considerably lower compared to the current results. Thus, our
findings suggest a high potential for PSMA-PET/CT predicting metastasis which might
be integrated in clinical decision making for individual treatment escalation. In support
of this hypothesis Komek et al. reported an association between SUV parameters from
PSMA-imaging and survival outcome. In a cohort of 148 men with advanced prostate
cancer undergoing 68Ga-PSMA-PET/CT, several SUV parameters like bone SUV >10.7
were significant in the determination of increased mortality risk [30]. Hence, SUV from
PSMA-PET/CT seems to be a promising parameter for prostate cancer risk stratification in
daily clinical practice.

In this context it is interesting to note, that for the present trial a stronger correlation
was obtained when using 18F-PSMA-1007 compared with 68Ga-PSMA-11 (both ROC curves
are depicted in the Supplementary File 2). Due to the retrospective nature of the current
study including patients who have been investigated over a longer period, the 68Ga-
PSMA-11-tracer was initially more widespread. Over time, the 18F-PSMA-tracer was later
introduced and more frequently utilized at the Department of Nuclear Medicine due to
improved biological properties explaining the analysis of both tracers. This leads to the fact
that both subgroups were not well-balanced. However, similar differences were observed
in literature: a head-to-head comparison of 68Ga-PSMA-11 and 18F-PSMA-1007 resulted in
excellent identification of all dominant factors.

Prostatic lesions for both tracers, however, SUVmax was subject to significant varia-
tions depending on tracer type. For almost all patients, SUVmax obtained by 18F-PSMA-
1007 was significantly higher than by 68Ga-PSMA-11 (factor 1.1–3.9) [31].

Even though to the best of our knowledge the present study is the first to evaluate the
correlation of SUVmax of intraprostatic malignant lesion and the prediction of metastases,
some limitations need to be highlighted. Although the number of patients included in the
current study was relatively high, the trial had a retrospective design and was performed
at only one institution. This makes it prone for patient selection biases only to be overcome
by prospective trials. Moreover, the size of the individual metastases was not explicitly
recorded and confounders like inflammation of the prostate may influence measurements
of SUVmax affecting the interpretation of hybrid imaging results [32]. Although the current
study did not include a correlation with histopathological data, the conclusions seem to be
legitimate. Many analyses have already focused on the correlation of PSMA-PET/CT and
histopathological data. In a cohort of 319 men who underwent 68Ga-PSMA-11 PET/CT after
PSA relapse, PSMA-imaging demonstrated excellent histopathological correlation [33].
Moreover, a sensitivity of 94.7% for nodal disease using 18F-PSMA-1007 for primary
staging was also observed [23]. Several other trials confirmed these observations after
correlation of data obtained by PSMA-PET/CT and results from surgery [34,35]. Sensitivity
and specificity ranged from 75–99% for both. Due to strong published results, a direct
correlation of histopathology and PSMA-imaging findings was assumed in the current
analysis.

In summary, the present study demonstrated promising results and provides an
excellent basis for prospective trials evaluating the integration of PSMA-PET/CT as a
stratification tool for prostate cancer patients with a high risk for systemic disease. Further
research is required to assess the role of different tracers and evaluate the impact on survival
outcome obtained by PSMA-guided treatment intensification.

5. Conclusions

The present study confirms, that there is a high rate of treatment-naïve prostate cancer
patients with distant disease identified by PSMA-PET/CT. Including SUVmax of malignant,
intraprostatic lesions, may be helpful in decision making of individual treatment escalation
for a variety of men with aggressive disease which should improve clinical outcomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/7/1508/s1, File 1: Univariate analysis of binary logistic regression SUVmax, WHO, PSA,
d’Amico-Score; File 2: ROC curves of 68Ga and 18F.
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