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ABSTRACT

The discovery of new tumor subtypes has been aided
by transcriptomics profiling. However, some new
subtypes can be irreproducible due to data artifacts
that arise from disparate experimental handling. To
deal with these artifacts, methods for data normal-
ization and batch-effect correction have been utilized
before performing sample clustering for disease sub-
typing, despite that these methods were primarily de-
veloped for group comparison. It remains to be elu-
cidated whether they are effective for sample clus-
tering. We examined this issue with a re-sampling-
based simulation study that leverages a pair of mi-
croRNA microarray data sets. Our study showed that
(i) normalization generally benefited the discovery of
sample clusters and quantile normalization tended
to be the best performer, (ii) batch-effect correction
was harmful when data artifacts confounded with bi-
ological signals, and (iii) their performance can be in-
fluenced by the choice of clustering method with the
Prediction Around Medoid method based on Pearson
correlation being consistently a best performer. Our
study provides important insights on the use of data
normalization and batch-effect correction in connec-
tion with the design of array-to-sample assignment
and the choice of clustering method for facilitating
accurate and reproducible discovery of tumor sub-
types with microRNAs.

INTRODUCTION

Accurate tumor subtypes are needed to facilitate disease
diagnosis, prognosis and treatment in clinical oncology
(1). Recent decades have witnessed new and improved tu-
mor subtyping afforded by transcriptomics data via clus-
ter analysis (2–5). However, some of the published subtypes
were later found to be not reproducible (6–8). The irrepro-
ducibility can be partly attributed to the ubiquitous arti-

facts in transcriptomics data that arise from disparate ex-
perimental handling (9–11). While such artifacts are typ-
ically managed with between-sample ‘normalization’ and
across-batch ‘correction’ in data preprocessing, it relies on
borrowing normalization and correction methods that were
developed and validated for differential expression analy-
sis comparing two sample groups (12–15). As we recently
showed, these methods behave differently when the analy-
sis goal changes to sample classification and survival predic-
tion (16–19). To date, very limited research has been done
on their behavior when the analysis goal is sample cluster-
ing for tumor subtyping (20). Furthermore, it remains to be
elucidated how data normalization and batch-effect correc-
tion (BEC) impact cluster analysis for microRNAs (miR-
NAs), an important class of small RNAs that regulate gene
expression and are believed to play an important role in tu-
morigenesis (21–23).

We set out to study the role of data normalization and
BEC in sample clustering for miRNA data. Leveraging a
pair of miRNA microarray data sets that were previously
collected for tumor samples of two histological subtypes, we
conducted a simulation study using a re-sampling algorithm
that generated realistically distributed miRNA data under
various levels of biological signals and handling artifacts
(24,25). In this article, we report our findings for three pop-
ular normalization methods and one popular BEC method
as well as their combinations, when used along with seven
clustering methods, to glean important insights for repro-
ducible tumor subtyping.

MATERIALS AND METHODS

Here, we introduce briefly the empirical and simulated data
and describe the methods for normalization, BEC and clus-
tering that we evaluated.

Empirical data collection

A set of 192 untreated primary gynecologic tumor
samples (96 endometrioid endometrial tumors and 96
serous ovarian tumors) were collected at Memorial Sloan
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Kettering Cancer Center from 2000 to 2012. They were pro-
filed using the Agilent Human miRNA Microarray (Release
16.0, Agilent Technologies, Santa Clara, CA), following the
manufacturer’s protocol. This array platform contains 3523
markers (representing 1205 human and 142 human viral
miRNAs) and multiple replicates for each marker (ranging
from 10 to 40). Two datasets were obtained from the same
set of tumor samples using different methods of experimen-
tal handling. The first dataset (hereafter referred to as the
uniformly handled dataset) was handled by one technician
in one batch with the arrays assigned to the samples using
blocked randomization (as the arrays come in eight-plex ar-
ray slides serving as ‘blocks’ of experimental units); its data
quality was further validated using qPCR and also technical
replicate arrays. By contrast, the second dataset (hereafter
referred to as the non-uniformly handled dataset) was col-
lected by two technicians over multiple batches in the order
of sample collection; the first 80 arrays were collected by
one technician in two batches and the last 112 by a second
technician in three batches. More details on data collection
can be found in Qin et al. (24–26).

Re-sampling-based data simulation

Additional data were numerically generated by (i) estimat-
ing biological effects for the tumor samples (that is, the ‘vir-
tual samples’), (ii) estimating handling effects for the arrays
in the non-uniformly handled dataset (that is, the ‘virtual
arrays’) and (iii) virtually assigning and then hybridizing
the virtual arrays and the virtual samples. More specifically,
first, we used the uniformly-handled dataset to approximate
the ‘biological effects’ for each tumor sample; second, for
each sample we used the difference between its two arrays
from the two datasets to approximate the ‘handling effects’
for its array in the non-uniformly-handled dataset; lastly,
data were simulated by assigning virtual arrays to virtual
samples under a study design (either partially confounded
or stratified) and summing the biological effects for a vir-
tual sample and the handling effects for its assigned vir-
tual array. A partially confounded design assigned 90% of
the first 96 arrays and 10% of the last 96 arrays to ovarian
samples and the rest of the arrays to endometrial samples.
A stratified design assigned arrays in each batch to the two
tumor groups in equal proportions. This simulation strat-
egy assumed an additive model on the log scale for biolog-
ical effects and handling effects: the uniformly-handled de-
sign made every effort to minimize handling effects, and its
data was considered to be a best approximation of biolog-
ical signals; on the other hand, the data collected by the
non-uniformly-handled design resembling typical practice
exhibited excessive handling effects, and its difference from
the uniformly-handled data were used to approximate the
noises due to disparate handling.

Simulation scenarios

Varied levels of biological signals. Comparing the two tu-
mor subtypes using the estimated biological effects, 351
(10%) out of the total of 3523 markers were significantly
differentially expressed (P < 0.01). By chance, 35 markers
were expected to have a P-value <0.01. We simulated var-
ious levels of biological signals by varying the proportion

and magnitude of differential expression. The proportion of
differential expression (denoted as �) was varied by remov-
ing a portion of non-differentially expressed markers; the
magnitude of differential expression for significant markers
was varied via amplifying their group mean differences by a
constant (denoted as c). That is, for a marker whose group
means in ovarian and endometrial samples are �1 and �2,
respectively, c*|�1 – �2| was added to the group with the
larger mean.

Varied magnitudes of experimental artifacts. We intro-
duced various levels of data artifacts through amplifying
estimated handling effects by a constant (denoted as d). In
this study, we first examined eight settings of (�, c) for the
biological-effects only data, where � is 10% or 30% and c is
0, 0.8, 1.6 or 2.4. Based on their clustering results, we chose
six settings of (�, c, d)––(10%, 0.8, 1), (10%, 1.6, 1), (10%,
2.4, 1), (30%, 0.8, 1), (30%, 1.6, 1) and (10%, 1.6, 3)––for
generating data with both biological and handling effects.

Preprocessing of the simulated data

The preprocessing of each simulated dataset followed three
steps: (i) median summarization for the replicate probes of
each marker; (ii) data normalization with or without BEC
and (iii) log2 transformation (27). For BEC, we used the
ComBat method, with the batch variable defined as the ar-
ray slide for biological-effects only data and as the array
slide or the handling batch for handling-effects-added data
(28). To our knowledge, ComBat is the most popular BEC
method when the batch variable is known, which is the case
for our data. For normalization, we examined three meth-
ods that are relatively commonly used in the literature (29–
31).

• Median normalization. This method is to shift the data
of each sample by an additive constant so that their me-
dian becomes the same across samples (32).

• Quantile normalization. This method is to equate the
rank statistics across samples (33). We carried out the
computation by the normalize.quantiles() function from
the R package preprocessCore (34).

• Variance stabilizing normalization (VSN). This method
was proposed by Huber et al. (35). The idea is to tackle
the dependence between mean and standard deviation of
the data by parametric transformations. We carried out
the computation by the vsn2() function from the R pack-
age vsn.

Clustering of the preprocessed simulated data

The preprocessed data were inputted to sample cluster-
ing using both algorithm-based methods and model-based
methods. The former included K-means clustering, Sparse
K-means and Partition Around Medoids (PAM); the latter
included Self-Organizing Map (SOM) and the Multivariate
Normal Mixture (MNM) model.

• K-means, proposed by Lloyd and Forgey, is a well-known
clustering algorithm (36,37). The general idea is to sepa-
rate samples into K clusters by assigning them to the near-
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Table 1A. The clustering accuracy (measured by the Adjusted Rand In-
dex, ARI) when (�, c) equaled (10%, 2.4) in data with only biological ef-
fects. No ComBat was used

None Median Quantile VSN

K-means 1.00 1.00 1.00 1.00
Sparse K-means 1.00 1.00 1.00 1.00
PAM Euclidean 1.00 1.00 1.00 0.98
PAM Pearson 1.00 1.00 1.00 1.00
PAM Spearman 1.00 1.00 1.00 0.96
SOM 0.98 0.98 1.00 1.00
MNM 0.01 0.68 0.96 0.94

Table 1B. The clustering accuracy (measured by the Adjusted Rand In-
dex, ARI) when (�, c) equaled (10%, 2.4) in data with only biological
effects. ComBat (with array slides as the batch variable) was used after
normalization

None Median Quantile VSN

K-means 1.00 1.00 1.00 1.00
Sparse K-means 1.00 1.00 1.00 1.00
PAM Euclidean 0.98 1.00 1.00 1.00
PAM Pearson 1.00 1.00 1.00 1.00
PAM Spearman 0.94 0.98 0.98 0.98
SOM 1.00 1.00 1.00 1.00
MNM 0.96 0.96 0.98 0.96

est centroids in an iterative manner. We carried out the
computation by the build-in kmeans() function in R.

• Sparse K-means, proposed by Witten and Tibshirani, uti-
lizes a lasso-type penalty to select a subset of features
adaptively for clustering (38). We carried out the compu-
tation by the KMeansSparseCluster() function from the
R package sparcl (39).

• PAM, a modified version of K-means proposed by Kauf-
man and Rousseeuw, assigns samples to their nearest
medoids instead of centroids (40). We carried out the
computation by the pam() function from the R package
cluster and considered three choices of distance measures
(namely, Euclidean distance, Pearson correlation and
Spearman correlation) (41).

• SOM, an algorithm first proposed by Ritter and Koho-
nen for Artificial Neural Network, organizes features into
spatially organized representations (42,43). We carried
out the computation by the som() function from the R
package som.

• MNM, proposed by Fraley and Raftery, fits a mixture of
multivariate normal model to the data (44). We carried
out the computation by the Mclust() function from the
R package mclust (45).

Clustering performance was assessed using the Adjusted
Rand Index (ARI) in comparison with the ground truth
(that is, the tumor subtype) (46–48). It ranges from 0 (when
the clustering is essentially random) to 1 (when the cluster-
ing agrees perfectly with the ground truth).

All simulations were done using R version 4.1.0.

RESULTS

Clustering of data consisting of biological effects only

Results when there were 10% differentially expressed mark-
ers. When the amplification constant was as great as 2.4,

Table 2A. The clustering accuracy (measured by the Adjusted Rand In-
dex, ARI) when (�, c) equaled (10%, 1.6) in data with only biological ef-
fects. No ComBat was used

None Median Quantile VSN

K-means 0.98 0.98 1.00 1.00
Sparse K-means 1.00 1.00 0.98 1.00
PAM Euclidean 0.98 1.00 1.00 0.96
PAM Pearson 1.00 1.00 1.00 1.00
PAM Spearman 0.96 0.96 0.96 0.94
SOM 0.98 0.98 0.98 0.98
MNM 0.01 0.00 0.88 0.00

Table 2B. The clustering accuracy (measured by the Adjusted Rand In-
dex, ARI) when (�, c) equaled (10%, 1.6) in data with only biological
effects. ComBat (with array slides as the batch variable) was used after
normalization

None Median Quantile VSN

K-means 1.00 0.98 1.00 1.00
Sparse K-means 1.00 1.00 1.00 1.00
PAM Euclidean 0.98 0.98 1.00 0.92
PAM Pearson 1.00 1.00 1.00 0.96
PAM Spearman 0.90 0.92 0.92 0.80
SOM 0.98 0.98 1.00 0.98
MNM 0.00 0.84 0.88 0.76

all clustering methods except MNM performed perfectly or
nearly perfectly (ARI ranging between 0.94 and 1.00), re-
gardless of the normalization method used (Tables 1A and
1B). MNM performed well only when quantile normaliza-
tion or VSN and/or ComBat were used (ARI: 0.94–0.98);
it performed poorly when no normalization (ARI: 0.01) or
median normalization (ARI: 0.68) was used without Com-
Bat.

When the amplification constant lowered to 1.6, the re-
sults stayed similar (Tables 2A and 2B). All clustering meth-
ods except MNM and PAM Spearman performed per-
fectly or nearly perfectly (ARI: 0.92–1.00), regardless of
the use of normalization or ComBat. PAM Spearman per-
formed better than MNM but worse than the other clus-
tering methods when ComBat was used (ARI: 0.80–0.92).
MNM performed fairly well when quantile normalization
and/or ComBat were used (ARI: 0.76–0.88), and poorly
when no normalization (ARI: 0.01), median normaliza-
tion (ARI: 0.00) or VSN (ARI: 0.00) was used without
ComBat.

When the amplification constant decreased to 0.8, clus-
tering accuracy deteriorated across the board, with K-
means (when no or median normalization and no ComBat
were used) being the most affected (ARI having decreased
from 0.98 to <0.02) and PAM Pearson (regardless of nor-
malization) the least (ARI having decreased from 1.00 to
0.94–0.98 when no ComBat was used and from 0.96–1.00 to
0.92–0.96 when ComBat was used) (Tables 3A and 3B). In
this setting, MNM remained the worst clustering method
regardless of the use of normalization or ComBat (ARI:
<0.02). Quantile normalization was the best normaliza-
tion method (ARI: 0.66–0.82 for PAM Spearman and 0.96–
0.98 for K-means, Sparse K-means, PAM Euclidean and
PAM Pearson), while VSN and median normalization had
mixed performance depending on the clustering method
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Table 3A. The clustering accuracy (measured by the Adjusted Rand In-
dex, ARI) when (�, c) equaled (10%, 0.8) in data with only biological ef-
fects. No ComBat was used

None Median Quantile VSN

K-means 0.01 0.02 0.98 0.98
Sparse K-means 0.48 0.50 0.96 1.00
PAM Euclidean 0.64 0.86 0.98 0.88
PAM Pearson 0.94 0.96 0.98 0.96
PAM Spearman 0.75 0.88 0.82 0.54
SOM 0.02 0.07 0.71 0.51
MNM –0.00 0.00 0.01 0.01

Table 3B. The clustering accuracy (measured by the Adjusted Rand In-
dex, ARI) when (�, c) equaled (10%, 0.8) in data with only biological
effects. ComBat (with array slides as the batch variable) was used after
normalization

None Median Quantile VSN

K-means 0.09 0.98 0.98 0.98
Sparse K-means 0.86 0.92 0.96 1.00
PAM Euclidean 0.73 0.96 0.96 0.94
PAM Pearson 0.96 0.92 0.96 0.92
PAM Spearman 0.69 0.73 0.66 0.05
SOM 0.61 0.64 0.96 0.88
MNM 0.00 –0.00 0.02 0.00

Table 4A. The clustering accuracy (measured by the Adjusted Rand In-
dex, ARI) when (�, c) equaled (10%, 0) in data with only biological effects.
No ComBat was used

None Median Quantile VSN

K-means –0.01 0.00 0.01 0.01
Sparse K-means 0.00 0.00 0.01 0.02
PAM Euclidean 0.25 –0.00 0.31 0.24
PAM Pearson 0.02 0.02 0.02 0.01
PAM Spearman 0.02 0.03 0.03 0.02
SOM –0.00 0.00 0.00 0.00
MNM 0.00 0.00 0.02 0.01

Table 4B. The clustering accuracy (measured by the Adjusted Rand
Index, ARI) when (�, c) equaled (10%, 0) in data with only biological
effects. ComBat (with array slides as the batch variable) was used after
normalization

None Median Quantile VSN

K-means 0.02 0.02 0.02 0.02
Sparse K-means 0.02 0.02 0.03 0.02
PAM Euclidean 0.39 0.47 0.46 0.39
PAM Pearson 0.03 0.51 0.02 0.03
PAM Spearman 0.37 0.03 0.03 0.01
SOM 0.00 0.00 0.04 0.01
MNM 0.00 –0.00 0.00 0.00

used. In particular, median normalization improved the
clustering accuracy for PAM Spearman (ARI: 0.88 before
ComBat and 0.73 after) but VSN worsened it (ARI: 0.54
and 0.05), compared with no normalization (ARI: 0.75 and
0.69).

When biological effects were not amplified, clustering ac-
curacy plunged for all combinations of methods for normal-
ization, BEC and clustering (ARI: <0.03) except PAM Eu-
clidean with no ComBat and selected normalization meth-
ods (ARI: 0.24–0.31), PAM Euclidean with ComBat re-
gardless of normalization (ARI: 0.39–0.47), PAM Pearson

Table 5A. The clustering accuracy (measured by the Adjusted Rand In-
dex, ARI) when (�, c) equaled (30%, 2.4) in data with only biological ef-
fects. No ComBat was used

None Median Quantile VSN

K-means 1.00 1.00 1.00 1.00
Sparse K-means 1.00 1.00 1.00 1.00
PAM Euclidean 1.00 1.00 1.00 1.00
PAM Pearson 1.00 1.00 1.00 1.00
PAM Spearman 1.00 1.00 1.00 1.00
SOM 1.00 1.00 1.00 1.00
MNM 1.00 1.00 0.98 1.00

Table 5B. The clustering accuracy (measured by the Adjusted Rand In-
dex, ARI) when (�, c) equaled (30%, 2.4) in data with only biological
effects. ComBat (with array slides as the batch variable) was used after
normalization

None Median Quantile VSN

K-means 1.00 1.00 1.00 1.00
Sparse K-means 1.00 1.00 1.00 1.00
PAM Euclidean 1.00 1.00 1.00 1.00
PAM Pearson 1.00 1.00 1.00 1.00
PAM Spearman 1.00 1.00 1.00 1.00
SOM 1.00 1.00 1.00 1.00
MNM 1.00 1.00 0.98 1.00

with ComBat and median normalization (ARI: 0.51), and
PAM Spearman with ComBat and no normalization (ARI:
0.37) (Tables 4A and 4B).

Results when there were 30% differentially expressed mark-
ers. Increasing the percentage of differentially expressed
markers improved the clustering accuracy. When the am-
plification constant was 2.4, all clustering methods except
MNM performed perfectly (ARI: 1.00), regardless of the
use of normalization or ComBat; MNM performed nearly
perfectly to perfectly (ARI: 0.98–1.00) (Tables 5A and 5B).
When the amplification constant was 1.6, clustering accu-
racy lessened only slightly (ARI: 0.84 for MNM with me-
dian normalization and without ComBat and 0.96–1.00
for the rest) (Tables 6A and 6B). When the amplifica-
tion constant was 0.8, clustering accuracy diminished fur-
ther to an ARI > 0.80 for all methods with a few excep-
tions when ComBat was not used: Sparse K-means with no
normalization (ARI: 0.48) or median normalization (ARI:
0.50) and MNM with no normalization (ARI: 0.04) (Ta-
bles 7A and 7B). When biological effects were not am-
plified, all methods performed poorly except selected uses
of K-means (with ComBat plus quantile normalization),
PAM Euclidean (with ComBat and/or normalization), and
PAM Pearson (with ComBat or VSN) (ARI: 0.36–0.78)
(Tables 8A and 8B).

Clustering of data consisting of both biological effects and
handling effects

Results when there were 10% differentially expressed mark-
ers. Supplementary Tables SX1 and SX7 show the cluster-
ing accuracy measured by the ARI averaged across the sim-
ulation runs, when the proportion of differential expression
was 10% and the amplification constant was 2.4 for biologi-
cal effects and 1 for handling effects, that is (�, c, d) equaled
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Table 6A. The clustering accuracy (measured by the Adjusted Rand In-
dex, ARI) when (�, c) equaled (30%, 1.6) in data with only biological ef-
fects. No ComBat was used

None Median Quantile VSN

K-means 0.98 0.98 1.00 1.00
Sparse K-means 1.00 1.00 0.98 1.00
PAM Euclidean 0.98 1.00 1.00 1.00
PAM Pearson 1.00 1.00 1.00 1.00
PAM Spearman 1.00 1.00 1.00 1.00
SOM 0.98 0.98 1.00 1.00
MNM 0.98 0.84 0.98 0.98

Table 6B. The clustering accuracy (measured by the Adjusted Rand
Index, ARI) when (�, c) equaled (30%, 1.6) in data with only biological
effects. ComBat (with array slides as the batch variable) was used after
normalization

None Median Quantile VSN

K-means 1.00 1.00 1.00 1.00
Sparse K-means 1.00 1.00 1.00 1.00
PAM Euclidean 0.98 0.98 1.00 1.00
PAM Pearson 1.00 1.00 1.00 1.00
PAM Spearman 1.00 0.98 0.96 1.00
SOM 0.98 0.98 1.00 1.00
MNM 0.98 0.98 0.98 1.00

Table 7A. The clustering accuracy (measured by the Adjusted Rand In-
dex, ARI) when (�, c) equaled (30%, 0.8) in data with only biological ef-
fects. No ComBat was used

None Median Quantile VSN

K-means 0.98 0.98 0.98 0.98
Sparse K-means 0.48 0.50 0.96 0.98
PAM Euclidean 0.98 0.94 0.96 0.96
PAM Pearson 0.96 0.96 0.96 0.98
PAM Spearman 0.96 0.96 0.96 0.96
SOM 0.80 0.90 0.98 0.98
MNM 0.04 0.82 0.84 0.90

Table 7B. The clustering accuracy (measured by the Adjusted Rand
Index, ARI) when (�, c) equaled (30%, 0.8) in data with only biological
effects. ComBat (with array slides as the batch variable) was used after
normalization

None Median Quantile VSN

K-means 0.98 0.98 0.98 0.98
Sparse K-means 0.88 0.92 0.96 1.00
PAM Euclidean 0.86 0.92 0.98 0.98
PAM Pearson 0.98 0.90 0.98 0.98
PAM Spearman 0.96 0.96 0.88 0.94
SOM 0.98 0.98 0.98 0.98
MNM 0.82 0.82 0.84 0.94

Table 8A. The clustering accuracy (measured by the Adjusted Rand In-
dex, ARI) when (�, c) equaled (30%, 0) in data with only biological effects.
No ComBat was used

None Median Quantile VSN

K-means 0.01 0.01 0.68 0.71
Sparse K-means 0.21 0.23 0.01 0.02
PAM Euclidean 0.39 0.53 0.82 0.75
PAM Pearson 0.02 0.02 0.05 0.47
PAM Spearman 0.04 0.05 0.05 0.05
SOM 0.01 0.04 0.09 0.13
MNM 0.02 0.01 0.02 0.02

Table 8B. The clustering accuracy (measured by the Adjusted Rand
Index, ARI) when (�, c) equaled (30%, 0) in data with only biological
effects. ComBat (with array slides as the batch variable) was used after
normalization

None Median Quantile VSN

K-means 0.09 0.22 0.78 0.78
Sparse K-means 0.02 0.02 0.02 0.03
PAM Euclidean 0.40 0.37 0.43 0.62
PAM Pearson 0.56 0.03 0.71 0.62
PAM Spearman 0.41 0.04 0.05 0.05
SOM 0.14 0.17 0.22 0.21
MNM 0.03 0.01 0.02 0.02

(10%, 2.4, 1). Figure 1 shows the distribution of the ARI as
the median and the inter-quartile range (IQR).

• When ComBat was not used while biological effects and
handling effects were partially confounded, most of the
clustering methods performed very well with or without
dependence on normalization (Figure 1, panel A). Three
clustering methods (PAM Pearson, PAM Euclidean and
Sparse K-means) performed perfectly or nearly perfectly
(mean ARI ranging from 0.97 to 1.00), with or with-
out normalization. Another three clustering methods
(PAM Spearman, K-means and SOM) performed well
only with normalization regardless of the method used
(mean ARI: 0.09–0.86 before normalization and 0.81–
1.00 after normalization). MNM, relatively the worst
clustering method, performed well when quantile nor-
malization was used (mean ARI: 0.94), moderately well
for median normalization (mean ARI: 0.62), and poorly
for VSN (mean ARI: 0.27) or no normalization (mean
ARI: 0.02).

• While biological effects and handling effects were par-
tially confounded, the use of ComBat led to plunged
performance across the board (Figure 1, panel B).
PAM Pearson was the only method that performed mod-
erately well without normalization (mean ARI: 0.75).
Its performance worsened with the use of normaliza-
tion to various degrees (mean ARI: 0.66 for quantile
normalization, 0.59 for median normalization, and 0.29
for VSN). Although Sparse K-means performed fairly
poorly before normalization (mean ARI: 0.30), its clus-
tering accuracy was improved significantly by quantile
normalization (mean ARI: 0.76) and moderately by me-
dian normalization (mean ARI: 0.31) but worsened by
VSN (mean ARI: 0.18). Similarly, PAM Euclidean per-
formed poorly before normalization (mean ARI: 0.16),
which was improved significantly by quantile normaliza-
tion (mean ARI: 0.71), moderately by VSN (mean ARI:
0.28), and slightly by median normalization (mean ARI:
0.20). K-means and SOM performed poorly (mean ARI:
0.02 and 0.01 for no normalization, 0.05 and 0.02 for me-
dian normalization, and 0.01 and 0.09 for VSN), with
the exception of quantile normalization (mean ARI: 0.79
and 0.74). MNM performed extremely badly regardless
of normalization (mean ARI: 0.00–0.02). The reason for
the negative impact of ComBat in this scenario may be
that biological signals between clusters have been unin-
tentionally removed when adjusting the data with a Com-
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Figure 1. Plots of the clustering accuracy (measured by the Adjusted Rand Index, ARI) when the proportion of differential expression was 10% and the
amplification constant was 2.4 for biological effects and 1 for handling effects, that is (�, c, d) equaled (10%, 2.4, 1). The inter-quartile range of the ARI
among 30 simulation runs are represented by a vertical bar and the median by the symbol in each bar. Left panels show the results when there was partial
confounding between handling effects and biological effects; right panels show the results when there was balance via stratification between biological effects
and handling effects. Top panels show the results without ComBat; bottom panels show results with ComBat (with array slides as the batch variable) after
normalization.

Bat regression model that includes not a cluster variable
(as it is not known at the time of data preprocessing) but
only a batch variable that confounds with the underlying
clustering (Supplementary Figures SW1–SW6).

• When biological effects and handling effects were bal-
anced via stratification, regardless of the use of Com-
Bat, clustering methods and normalization methods per-
formed similarly well to the scenario with confounding
and no ComBat (Figure 1, panels C and D). Here the use
of ComBat not only did not harm but rather improved
the performance of selected methods that previously per-
formed poorly (that is, SOM when combined with no
normalization or VSN, and MNM when combined with
VSN). In other words, the benefit of balanced biological
effects and handling effects was mainly in providing im-
munity to potential negative impacts of ComBat.

• Across all four panels and all seven clustering meth-
ods, quantile normalization was consistently the best per-
former compared with median normalization and VSN.

Supplementary Tables SX2 and SX8 present the
mean ARI when (�, c, d) was (10%, 1.6, 1); Figure 2
presents the median ARI and the IQR. With a smaller

increase of the magnitude of differential expression, as
expected, the clustering accuracy decreased for some of the
methods. Notably, K-means, SOM and MNM performed
well only with quantile normalization (mean ARI: 0.85–
0.98) and quite poorly otherwise (mean ARI: 0.01–0.41);
PAM Spearman worsened moderately across normaliza-
tion methods (mean ARI: 0.63–0.82); PAM Euclidean
worsened slightly when used with no normalization (mean
ARI: 0.74) or VSN (mean ARI: 0.87). Nevertheless, the
relative performance of clustering methods and normal-
ization methods and the impact of ComBat and balanced
design remained similar to those in Figure 1. That is,
PAM Pearson was the best clustering method regardless
of the use of normalization; quantile normalization was
the best performer and for selected clustering methods the
only well-performer; ComBat was harmful when biological
effects and handling effects were confounded; balanced
design brought little benefit except immunity to the harm
from ComBat.

Supplementary Tables SX3 and SX9 display the mean
ARI when (�, c, d) was (10%, 0.8, 1); Figure 3 displays the
median ARI and the IQR. With an even smaller increase
of the magnitude of differential expression, clustering accu-



NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 1 7

A C

B D

Figure 2. Plots of the clustering accuracy (measured by the Adjusted Rand Index, ARI) when the proportion of differential expression was 10% and the
amplification constant was 1.6 for biological effects and 1 for handling effects, that is (�, c, d) equaled (10%, 1.6, 1). The inter-quartile range of the ARI
among 30 simulation runs are represented by a vertical bar and the median by the symbol in each bar. Left panels show the results when there was partial
confounding between handling effects and biological effects; right panels show the results when there was balance via stratification between biological effects
and handling effects. Top panels show the results without ComBat; bottom panels show results with ComBat (with array slides as the batch variable) after
normalization.

racy worsened for more methods and to a greater extent.
For example, in addition to K-means, SOM and MNM,
Sparse K-means also performed well only with quantile nor-
malization (mean ARI: 0.89) and quite poorly otherwise
(mean ARI: 0.03–0.22); PAM Euclidean performed rea-
sonably well only with quantile normalization (mean ARI:
0.88) and moderately well to poorly otherwise (mean ARI:
0.58 for VSN, 0.36 for median normalization, and 0.13 for
no normalization); MNM performed very poorly across all
normalization methods (mean ARI: 0.01–0.02). Again, the
relative performance of clustering methods and normaliza-
tion methods and the impact of ComBat and balanced de-
sign remained similar to those in Figure 1.

Supplementary Tables SX4 and SX10 render the mean
ARI when (�, c, d) was (10%, 1.6, 3); Figure 4 renders the
median ARI and the IQR. With the amplified handling ar-
tifacts, the performance of all normalization and cluster-
ing methods deteriorated badly (ARI: near 0), except for
(i) two methods (PAM Euclidean and PAM Pearson) when
they were used with quantile normalization and without
ComBat (mean ARI: 0.45–0.86) for data with confound-
ing handling effects and (ii) five methods (K-means, Sparse
K-means, PAM Euclidean, PAM Pearson and SOM) when

used with quantile normalization plus ComBat for bal-
anced data (ARI: 0.81–0.95). Here balanced design, when
in combination with quantile normalization and Com-
Bat, offered the benefit of effectuating more clustering
methods.

Results when there were 30% differentially expressed mark-
ers. Supplementary Tables SX5 and SX11 depict the mean
ARI when (�, c, d) was (30%, 1.6, 1); Figure 5 depicts
the median ARI and the IQR. When biological signals
were enhanced by increasing the proportion of differen-
tial expression (through removing a portion of the non-
differentially expressed markers), similar findings were seen
as to those when increasing the magnitude of mean differ-
ences among the differentially expressed markers with (�,
c, d) being (10%, 2.4, 1). Limited differences included the
improved performance of MNM with VSN and no Com-
Bat and the worsened performance of all clustering methods
when ComBat was used for data with confounding handling
effects.

Supplementary Tables SX6 and SX12 convey the mean
ARI when (�, c, d) was (30%, 0.8, 1); Figure 6 conveys the
median ARI and the IQR. The clustering accuracy in this
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Figure 3. Plots of the clustering accuracy (measured by the Adjusted Rand Index, ARI) when the proportion of differential expression was 10% and the
amplification constant was 0.8 for biological effects and 1 for handling effects, that is (�, c, d) equaled (10%, 0.8, 1). The inter-quartile range of the ARI
among 30 simulation runs are represented by a vertical bar and the median by the symbol in each bar. Left panels show the results when there was partial
confounding between handling effects and biological effects; right panels show the results when there was balance via stratification between biological effects
and handling effects. Top panels show the results without ComBat; bottom panels show results with ComBat (with array slides as the batch variable) after
normalization.

scenario was in between that for ARI being (10%, 1.6, 1) and
(30%, 1.6, 1). Once again, the relative performance of clus-
tering methods and normalization methods and the impact
of ComBat and balanced design remained similar to those
in Figures 1–3 and 5.

In addition to the above results when Combat was not
used or used (with array slides as the batch variable) after
normalization, we also examined when the order of Com-
Bat and normalization changed and when the choice of the
batch variable became experimental batches. We found that
their results stayed very similar and that it was slightly more
effective to use array slides for defining the batch variable
in ComBat (Supplementary Figures SX1–SX6 and Tables
SX1–SX12).

Clustering when the two clusters had unequal sample sizes

To evaluate the robustness of our findings when the two
clusters had unequal sample sizes, we conducted further
simulations when one cluster kept the 96 sample and the
other had 48 samples randomly selected out of the 96
samples. In these simulations, we observed similar perfor-
mance of normalization and ComBat for the four better-

performing clustering methods (namely, PAM Pearson,
PAM Euclidean, K-means and Sparse K-means), in the
range of signal to noise ratios examined in our study, com-
pared with the results when the two clusters had equal sam-
ple sizes; in addition, we saw much worse performance of
some to all normalization methods for the three worse-
performing clustering methods (namely, PAM Spearman,
SOM and MNM). Results for these simulations are pre-
sented in Supplementary Figures SY1-SY6 and Supplemen-
tary Tables SY1-SY6.

Take the scenario of (�, c, d) of (10%, 2.4, 1) as an ex-
ample (Supplementary Figure SY1). When biological ef-
fects and handling effects were partially confounded while
ComBat was not used (panel A), or when biological ef-
fects and handling effects were balanced (panels C and
D), PAM Pearson, PAM Euclidean and Sparse K-means
performed perfectly or nearly perfectly with or without
normalization (mean ARI: 0.65–1.00); K-means performed
well if median or quantile normalization was used (mean
ARI: 0.87–1.00); PAM Spearman and MNM performed
badly despite the use of normalization (mean ARI: 0.01–
0.40). When biological effects and handling effects were par-
tially confounded while ComBat was used (panel B), all
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Figure 4. Plots of the clustering accuracy (measured by the Adjusted Rand Index, ARI) when the proportion of differential expression was 10% and the
amplification constant was 1.6 for biological effects and 3 for handling effects, that is (�, c, d) equaled (10%, 1.6, 3). The inter-quartile range of the ARI
among 30 simulation runs are represented by a vertical bar and the median by the symbol in each bar. Left panels show the results when there was partial
confounding between handling effects and biological effects; right panels show the results when there was balance via stratification between biological effects
and handling effects. Top panels show the results without ComBat; bottom panels show results with ComBat (with array slides as the batch variable) after
normalization.

combinations of clustering and normalization methods per-
formed badly (mean ARI: 0.00–0.29), except quantile nor-
malization (when not used with PAM Spearman or MNM)
(mean ARI: 0.66–0.89) and PAM Pearson (when not used
with VSN) (mean ARI: 0.53–0.71).

Clustering when the number of clusters was mis-specified

In practice, the number of clusters is often unknown a
priori and can be mis-specified when applying a cluster-
ing algorithm. As such we conducted additional simula-
tions when the number of clusters was mis-specified to be
three while the underlying number of clusters was two.
Here we observed similar relative performance but mod-
erately reduced absolute performance across the meth-
ods for normalization, BEC and clustering in the six
signal-to-noise ratio scenarios we examined. Results for
these simulations are presented in Supplementary Materi-
als (Supplementary Figures SZ1–SZ6 and Supplementary
Tables SZ1-SZ6). Generally speaking, PAM Pearson re-
mained the best clustering method and quantile normal-
ization the best normalization method; the use of Com-
Bat was still detrimental when handling effects were con-
founding with biological effects; PAM Spearman and

MNM again tended to be the worst performing cluster-
ing methods and VSN the worst performing normalization
method.

DISCUSSION

Large-scale genomic studies such as The Cancer Genome
Atlas have provided a deeper understanding of the molec-
ular alterations involved in carcinogenesis and confirmed
the view that cancer represents a wide variety of diseases
that can be divided into molecular subtypes (5,49). The dis-
covery of new molecular subtypes has been shown to be in-
fluenced by data normalization in the context of two-color
cDNA arrays (20). Here, we studied this issue in miRNA ar-
rays using in silico data that were generated by re-sampling
from a pair of data sets to mimic real data distribution
characteristics and create a range of scenarios of differen-
tial expression signals and experimental handling artifacts.
This simulation algorithm makes the additivity assumption,
which has been deemed reasonable for microarray data and
has been adopted in published methods for microarray data
normalization and analysis (50,51).

Our study showed that the effectiveness of discovering
sample clusters depends extensively on the choice of method
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Figure 5. Plots of the clustering accuracy (measured by the Adjusted Rand Index, ARI) when the proportion of differential expression was 30% and the
amplification constant was 1.6 for biological effects and 1 for handling effects, that is (�, c, d) equaled (30%, 1.6, 1). The inter-quartile range of the ARI
among 30 simulation runs are represented by a vertical bar and the median by the symbol in each bar. Left panels show the results when there was partial
confounding between handling effects and biological effects; right panels show the results when there was balance via stratification between biological effects
and handling effects. Top panels show the results without ComBat; bottom panels show results with ComBat (with array slides as the batch variable) after
normalization.

for sample clustering, data normalization and BEC, the
latter of which further depends on the study design for
the sample assignment process. Among the methods we
examined, quantile normalization was the best performer
for data normalization, while VSN was largely the worst;
PAM Pearson was the best method for clustering, while
PAM Spearman and MNM were the worst; the use of
BEC (that is, ComBat in our study) was detrimental for ac-
curately discovering the subgrouping structure when han-
dling effects and biological signals were confounded, and
it brought very limited benefits when they were balanced.
When applying ComBat, it was slightly more effective to
use array slides for defining batches. Of note, to make the
clustering more objective and comparable across methods,
no extra feature selection step was taken except what was
allowed by the tuning parameter in Sparse K-means; addi-
tion of such a step may improve the performance of certain
clustering methods such as MNM, which warrants further
research and is beyond the scope of this article.

In our previous studies, we found that normalization can
lead to biased estimation of the classification error rate in
the optimistic direction for cross-validation and that quan-
tile normalization is detrimental for identifying prognostic

biomarkers and building outcome predictors. Unlike these
findings, we found in this study that normalization is gen-
erally beneficial for sample clustering and quantile normal-
ization is the best performer. This finding is similar to how
normalization behaves for differential expression analysis,
where it helps remove the bias in the estimation of group
means for each marker and hence the distributional sepa-
ration of the two sample clusters (Supplementary Figures
SW1–SW6) (52). Our findings are robust to whether the
clusters are of comparable sizes and whether the number of
clusters is correctly specified when applying the clustering
algorithms.

In conclusion, our study shed lights on the operating
characteristics of normalization and BEC for the discovery
of tumor subtypes and encourage the use of quantile nor-
malization in combination with a well-performing cluster-
ing method.
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Figure 6. Plots of the clustering accuracy (measured by the Adjusted Rand Index, ARI) when the proportion of differential expression was 30% and the
amplification constant was 0.8 for biological effects and 1 for handling effects, that is (�, c, d) equaled (30%, 0.8, 1). The inter-quartile range of the ARI
among 30 simulation runs are represented by a vertical bar and the median by the symbol in each bar. Left panels show the results when there was partial
confounding between handling effects and biological effects; right panels show the results when there was balance via stratification between biological effects
and handling effects. Top panels show the results without ComBat; bottom panels show results with ComBat (with array slides as the batch variable) after
normalization.

containing the data and code used for the simulations can
be downloaded at https://doi.org/10.5281/zenodo.7314352
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