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ABSTRACT

The polyglutamine diseases are caused in part by a
gain-of-function mechanism of neuronal toxicity
involving protein conformational changes that
result in the formation and deposition of b-sheet
rich aggregates. Recent evidence suggests that
the misfolding mechanism is context-dependent,
and that properties of the host protein, including
the domain architecture and location of the repeat
tract, can modulate aggregation. In order to allow
the bioinformatic investigation of the context of
polyglutamines, we have constructed a database,
PolyQ (http://pxgrid.med.monash.edu.au/polyq).
We have collected the sequences of all human
proteins containing runs of seven or more glu-
tamine residues and annotated their sequences
with domain information. PolyQ can be interrogated
such that the sequence context of polyglutamine
repeats in disease and non-disease associated
proteins can be investigated.

INTRODUCTION

Polyglutamine (PolyQ) repeats are implicated in several
neurodegenerative diseases, including Huntington’s
disease and several spinocerebellar ataxia’s. It is
commonly thought that a toxic gain-of-function mech-
anism is triggered by the presence of a polyQ tract,
involving a conformational change within the protein
and the formation and deposition of b-sheet rich
amyloid-like fibrils (1–3).
The length of the polyQ repeat is critical to pathogen-

esis; however, there is evidence that other protein factors,
including the location, type and number of flanking
domains can modulate pathogenesis (4–10). Although
there are many human polyQ-containing proteins (11),

only nine polyQ-containing proteins are implicated in
pathogenesis, and the precise repeat threshold to patho-
genesis varies within the disease subset, for example, a
37 glutamine repeat is sufficient to lead to Huntington’s
disease, while SCA3 results only when the polyQ repeat
expands to 45 or greater (12–14).

Many other human, non-disease related proteins
contain polyQ repeats, which are intrinsically prone to
expansion at the genetic level (11,15,16). In fact, a 40 glu-
tamine repeat is the normal allele present in forkhead box
P2 transcription factor; a protein that has not been found
to be associated with a polyQ disease (17,18). This
evidence has led to the hypothesis that protein character-
istics modulate the propensity of polyQ-containing
proteins to aggregate and cause disease. To investigate
the variable characteristics of polyQ proteins we have per-
formed a bioinformatics investigation of the protein
context of polyglutamine repeats, and constructed a
web-accessible database of all human proteins containing
a polyQ repeat greater than seven glutamines in length,
termed ‘PolyQ’. The PolyQ database provides a tool to
compare the polyQ repeat location, the occurrence/type
of domains and the number of domain repeats present
across disease and non-disease proteins.

PolyQ DESCRIPTION AND USE

PolyQ was created using open-source MySQL relational
database server software, version 5.0.82 (http://www
.mysql.com), running on an Apple 8-core 3.0GHz Xeon/
OS X Server (version 10.5.8). The database consists of
three tables. A web-based query interface to the
database was developed using the PHP5 programming
language, hosted via Apache 2.2.14. The user interface
was developed with the utilisation of the JQuery
Javascript library and JQuery widgets. Charts and
graphs are constructed on the fly using the Google
Visualization API.

*To whom correspondence should be addressed. Tel: +613 9902 9313; Fax: +613 9902 9500; Email: ashley.buckle@monash.edu
Correspondence may also be addressed to Stephen P. Bottomley. Tel: +613 9902 9313; Fax: +613 9902 9500; Email: steve.bottomley@monash.edu

D272–D276 Nucleic Acids Research, 2011, Vol. 39, Database issue Published online 8 November 2010
doi:10.1093/nar/gkq1100

� The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



The PolyQ database was populated by extracting all
human sequences from the NCBI non-redundant (NR)
database that contained at least seven consecutive glutam-
ine residues. We then performed a Pfam (19) domain

search to find protein domains within this subset of se-
quences. The NCBI NR contains many versions of the
same protein, which created bias in the statistical
analysis of PolyQ location data. We simplified the

Figure 1. (A) Typical results of a simple search (blank in this instance), showing graphical breakdown according to sequence classification; Results
shown graphically according to domain occurrence (B) and domain repeats (C) using the tabs at top of page [as seen in (A)].
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analysis by indentifying protein variants/isoforms and
using only the longest protein isoforms (which we
termed ‘master sequences’), therefore eliminating splice
variants/protein fragments. Multiple variants/isoforms
of each protein were crudely identified by comparing the
protein sequence following the PolyQ chains. The original
sequences were then subjected to the BLASTClust (20),

FORCE (21), MCL (22) and HomoClust algorithms
(23), and the variants/isoforms were adjusted as necessary.
The crude identification used the 10 amino acids immedi-
ately after the PolyQ chain as a ‘search string’; any
sequence that had the 10 amino acids immediately follow-
ing its own polyQ chain was presumed to have homology
with that sequence. The homology groups were confirmed

Figure 2. Selecting the ‘Stats’ menu text shows the entire database contents to be grouped into non-disease and disease causing proteins. To aid
analysis specific entries can be selected (indicated by a tickbox), using the ‘examine’ button and grouped together.
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by analyzing the data using the above algorithms. This
yielded a total of 128 master sequences, from an original
data set of >700 polyQ-containing human protein
sequences.

The database can be searched according to protein
name, Pfam domain or sequence. The results of a typical
search, shown in Figure 1A, show both a graphical
summary (Figure 1A, top) and textual details
(Figure 1A, bottom) according to sequence classification
(see below). The graphical summary shows pie chart and
bar chart representations of the results according to
sequence classification (Figure 1A, top), Pfam domain
occurrence (Figure 1B) and Pfam domain repetition
(Figure 1C). Retrieved database entries are listed in
table format with one row per protein, and three
columns containing protein name (with links to the
GenBank entry), Pfam domains, and protein sequence
(with the polyQ region annotated), respectively.
Homologs in the database can be included or excluded
from the search. From this view, the domain and
sequence context of the polyQ sequence can be identified
and further interrogated. To aid analysis specific entries
can be selected from the results (using the ‘examine’
button) and grouped together.

Sequence classification

The data are sorted and annotated according to the
following sequence classifications: N-Terminal PolyQs—
sequences where the first polyQ chain appears before all
Pfam domains; C-Terminal PolyQs—sequences where the
last polyQ chain appears after all Pfam domains;
Interdomain PolyQs—sequences where the polyQ chains
appear between the first Pfam domain and the last Pfam
domain; Mid Domain PolyQs—sequences in which the
polyQ chain appears in the middle of a Pfam domain, or
overlaps a Pfam domain; No Significant Domain PolyQs—
sequences that do not contain any significant Pfam
domains; Unclassified PolyQs—sequences that did not fit
into any of the above classifications. Each group is readily
accessed using the tabs in the web page (Figure 1A). We
have also further reduced the redundancy in the data by
clustering sequence homologs, and have also tagged
known disease proteins.

Domain occurrence, repeats and disease statistics

The website features pre-constructed pages that show the
database entries sorted according to non-disease and
disease-causing proteins respectively. This distinction is
applied to the sequence classifications above, the domain
occurrence (e.g. listing all domains, Figure 1B), and
domain repeats (Figure 1C). This allows database entries
to be grouped and examined according to whether the
polyQ tracts are found in non-disease or disease-causing
proteins (Figure 2).

CONCLUSIONS AND FUTURE DIRECTIONS

PolyQ is a valuable resource for theoreticians and experi-
mentalists looking for insights into the context of PolyQ
repeats in proteins and relationships with disease.

Although the query tool allows searching across much
of the database, we are developing a custom interface
that will allow user-configurable queries against the
whole data set as well as user customization of how the
results are displayed. We are also adding the structural
information [e.g. from the SCOP (24), CATH (25)
and PDB databases (26)] to the resources such that the
structural context of polyQ repeats can be investigated.
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