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DNA methylation is an epigenetic modification with a very long evolutionary history.
However, DNA methylation evolves surprisingly rapidly across eukaryotes. The genome-
wide distribution of methylation diversifies rapidly in different lineages, and DNA methyla-
tion is lost altogether surprisingly frequently. The growing availability of genomic and epi-
genomic sequencing across organisms highlights this diversity but also illuminates
potential factors that could explain why both the DNA methylation machinery and its
genome-wide distribution evolve so rapidly. Key to this are new discoveries about the
fitness costs associated with DNA methylation, and new theories about how the funda-
mental biochemical mechanisms of DNA methylation introduction and maintenance
could explain how new genome-wide patterns of methylation evolve.

Introduction
Bases in DNA across all domains of life are often modified by a variety of chemical moieties. Probably
the most widespread and well-characterised modification is methylation. In eukaryotes, methylation
predominantly is found at the five position of cytosine bases, but other forms of methylation, includ-
ing different positions on cytosine and on adenine have been documented.
The enzymatic properties of DNA methyltransferases have been extensively reviewed elsewhere [1].

Here I will discuss the extraordinary variation in the machinery and genome-wide patterns of DNA
methylation across eukaryotic organisms. I will attempt to show how we are starting to move beyond
a characterisation of the evolution of DNA methylation levels and patterns towards an understanding
of the factors shaping this diversity across species. Remarkably, rapid evolution of DNA methylation
patterns occurs not only across evolution, but also within human cancers, where the genome-wide dis-
tribution of DNA methylation is often vastly different from the cell of origin. Understanding the
factors that drive DNA methylation evolution across species may give insights into why DNA methy-
lation evolves so fast in cancer, and the potential functional consequences.

Types of cytosine-5 methylation (5mC)
The most widespread and abundant form of methylation across eukaryotic species is cytosine-5
methylation at CG sequences (also referred to as CpG methylation). CG methylation is a paradigm to
understand how methylation of DNA can be heritable through cell division without requirement on
the initial trigger [2–4]. CG methylation is introduced onto both strands of unmodified CG sequences
by enzymes known as de novo methyltransferases. In mammals, these are known as DNMT3A and
DNMT3B. Homologues of DNMT3 are found in early land plants; the enzyme DRM is also likely
derived from DNMT3 [1,4]. Every time the cell divides new, unmodified CG bases are introduced
opposite methylated CG. However, another methyltransferase enzyme, DNMT1 in mammals, shows
high affinity for the ‘hemi-methylated’ intermediate where one strand retains methylation [3,4]. This
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mechanism of CG methylation maintenance is conserved in plants, where the homologous enzyme is known as
MET1 or DMT1, and in fungi [5], indicating that it must have evolved very early in eukaryotes [6].
DNMT5 is an additional DNMT found in some fungi and algae. DNMT5 is a CG methyltransferase [7]. In

Cryptococcus neoformans, DNMT5 has maintenance activity and has no de novo activity [8]; however its sub-
strate preferences in other organisms are undetermined. Additional methyltransferases, found in some fungi
and protists are DNMT4 and DNMT6 [5]. Their functions are not yet clear but at least DNMT6 does not seem
to be a DNA methyltransferase [9].
5mC can occur in other sequence contexts besides CG. In the model land plant Arabidopsis, ∼7% of cyto-

sines in the CHG context and 2% in the CHH context are methylated [10]. DMT2 alongside two dedicated
enzymes, CMT2 and CMT3 introduce CHH and CHG methylation [11,12]. Despite no maintenance mechan-
isms CHG and CHH methylation can persist through cell division because they take part in a feedback loop
involving small RNAs and chromatin modifications [4,13].
In mammals, particularly in brain, non-CG methylation also occurs [14,15]. This is conserved across verte-

brates; however, the levels of this methylation are much lower than CG methylation, and it is largely dependent
on DNMT3A rather than enzymes specific for non-CG contexts [16]. It is therefore possible that non-CG
methylation reflects off-target activity of CG DNMTs. As cells in the brain do not divide, this would not be
removed through dilution during cell division, hence its particular accumulation in brain tissue. This possibility
can be countered by the rather high abundance of non-CG methylation. Moreover, specific proteins, notably
the Rett syndrome protein MeCP2, recognise CAA and CAT methylation [17]. Thus it seems plausible that
non-CG methylation is functionally relevant but the exact role remains to be determined.

Factors influencing the levels of cytosine DNA methylation across eukaryotes
DNMT1 and DNMT3 have been lost from many distinct eukaryotic lineages including several model organisms
including C. elegans, Drosophila, S. cerevisiae and S. pombe [5,6]. Many of these species still retain TRDMT1, a
homologue of DNMT1 and DNMT3, originally known as was DNMT2 [5,6]. However, this enzyme does not
act on DNA efficiently in vitro and instead methylates tRNA, with Aspartate tRNA a prominent substrate [18].
Some evidence from mass spectrometry and bisulfite sequencing suggested that TRDMT1 might result in very
low levels of DNA methylation (<1% of cytosines) [19–21]. However, these findings can be questioned.
Bisulfite sequencing relies on conversion of unmethylated cytosine into uracil by sodium bisulfite treatment
and there is often a substantial non-conversion rate of between 0.1 and 1% of cytosines [22]. Mass spectrom-
etry is potentially able to rigorously assess low levels of DNA methylation with very high sensitivity and accur-
acy but contamination from reagents used to prepare samples is common [23]. Recent studies suggest that
DNA methylation is undetectable in species with only TRDMT1 and mammalian cells without DNMT1, 3A
and 3B but retaining TRDMT1 [24].
Even if there is some low-level cytosine methylation provided by TRDMT1, complete loss of DNA methyla-

tion has occurred frequently across evolution- C. elegans and S. cerevisiae, for example, lack DNMT1, 3 and
TRDMT1 [5]. This might hint at the possibility of an evolutionary cost associated with DNA methylation.
One possible cost of DNA methylation is the mutagenic nature of methylated cytosine. CG sites in verte-

brates are mostly methylated. In almost all vertebrate species examined they are less common than would be
expected given the occurrence of C and G across the genome [25]. In insect species where a subset of genes are
methylated, methylated genes have strongly depleted CG frequency compared with unmethylated genes [26].
Consistently, analyses of human somatic mutations in cancer and normal tissue demonstrate that the highest
rate of mutation is C-T mutations at methylated CG sites [27]. The source of the excess mutagenicity of methy-
lated cytosine is most likely to be that methylated cytosine deaminates to thymine rather than uracil [28–30].
High mutation rate is disadvantageous [31], thus may promote evolutionary loss of DNA methylation [32].
New insights into costs associated with DNA methylation came from the discovery that DNMT1 and

DNMT3 co-evolve with a DNA repair enzyme, ALKB2, across eukaryotes. ALKB2 and, in mammals, its paralo-
gue ALKB3, has evolved to repair 3mC in DNA [33]. 3mC is a highly toxic form of DNA damage because of
its ability to interfere with base pairing; it leads to a replication fork stall and potentially double-strand breaks
[34,35]. The co-evolution was explained by the finding that DNMTs directly introduce 3mC as an off-target
effect both in vitro and in mammalian cells [36]. Modelling of the catalytic site of DNMT3A suggests that this
is an inevitable property of the enzymatic mechanism [37]. Lower levels of 3mC might be advantageous to
fast-dividing cells as there would be insufficient time to repair 3mC, even with ALKB2 present, before
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replication happens. This might lead to a drive to lose DNMTs in organisms with fast early embryonic divi-
sions such as nematodes and many insects.
When DNA methylation is present, its levels vary enormously across different organisms. A striking example of

this is the arthropod phylum. The first arthropods discovered to have DNA methylation were honey bees, where
the overall percentage of methylation is very low at ∼1% of CG sites [26,38]. This led to a view that arthropod
methylation was ‘sparse’ with most genes totally devoid of methylation with a few highly methylated genes and
little methylation in intergenic regions or repetitive elements such as transposons [39–42]. However, further work
including studies of individual species [43–46], a study across insects [47] and an attempt to systematically
examine many branches of arthropods [48], has shown that there is a huge range of methylation within arthro-
pods. The centipede S. maritima possesses much higher levels of DNA methylation at ∼30% of CGs [46,48],
whilst methylation occurs only at ∼0.5% of CG sites in the burying beetle Nicrophorus vespilloides [49].
One factor that is associated with different levels of DNA methylation across arthropods is the alkylation

repair enzyme ALKB2. In most organisms, the presence or absence of DNMT1 and 3 correlates with the pres-
ence or absence of ALKB2 [36]. In arthropods, the level of methylation correlates with the presence of ALKB2
[48]. This indicates that species that methylate a very small proportion of their cytosines correspondingly
produce a smaller level of 3mC and therefore do not require ALKB2 activity [48]. A similar relationship,
although not as strong, exists in fungi [50]. It will be interesting to determine whether this relationship also
affects the expression of ALKB2 in different species depending on different methylation levels.
Global analyses of methylation in whole animals or selected tissues may mask more subtle differences in DNA

methylation levels between tissues or during development. Development in mammals shows dynamic changes in
DNA methylation. During embryonic development there are two waves of demethylation where the average
methylation, which is ∼70% of CGs in adult somatic tissues, drops from ∼10% in the zygote to 1% before rising
again [51]. The dramatic remodelling of DNA methylation in mammals is not conserved across vertebrates [52],
and therefore probably evolved to facilitate imprinting, a process where methylation levels and gene expression of
∼250 genes varies depending on whether they are on the maternal or paternal chromosome [53].

Variety in genome-wide methylation patterns
In addition to the variability in methylation levels across species, the sites which are methylated within the
genome vary in their genomic location. There are a few recognised archetypes, which are summarised in
Table 1. However, the increasing number of species with methylation patterns that have been analysed by
genome-wide bisulfite sequencing throws some doubt on the extent to which all of these archetypes are ances-
tral properties of eukaryotic DNA methylation.

DNA methylation in deuterostomes
Extensive studies of DNA methylation in mammalian cells demonstrated extremely high levels of methylation
at ∼80% of cytosines in the CG context are methylated [54]. All the categories of DNA methylation present in

Table 1 Summary of key forms of DNA methylation across eukaryotes

Type Presumed function Phylogenetic distribution

TE methylation Silencing of mobile elements to ensure genome
stability

Vertebrates; Plants; some
Arthropods; Nematodes; Fungi;
Sponges

Gene body methylation Unclear- proposals include suppressing intergenic
transcription and that it has no explicit function in gene
expression

Widespread; exceptions are fungi,
nematodes, basal plants.

Promoter methylation Gene expression control Vertebrates; Centipedes;
Mealybugs; Sponges; Flowering
Plants

Repeat-induced point
mutation (RIP)

Destruction of mobile elements to ensure genome
stability

Fungi-mostly Ascomycota

Periodic methylation by
DNMT5

Genome compaction? Algae
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Table 1 are found in mammals. DNA methylation of transposable elements (TEs) is required for robust silen-
cing, as many TEs become desilenced when DNMTs are mutated [55]. Promoter methylation in mammals is
associated with silencing of genes, often in a developmental context or at imprinted genes [56]. Failure of DNA
methylation in development is lethal [57,58]. Further on in development genes are shut down in specific cells
as part of differentiation [56]. It is important to note that DNA methylation acts in concert with many other
epigenetic factors such as histone modifications, non-coding RNAs and nuclear localisation to maintain silen-
cing of developmentally inactivated genes; positive feedback between all these epigenetic factors ensures robust
silencing [59].
The role of methylation within genes, known as ‘gene-body’ methylation, is more nuanced. Gene-body

methylation is generally weakly associated with transcriptional activity, but this is not the case for all tissues
[54,60]. In mammals DNMT3B carries a PWWP domain that binds to H3K36me3 modified nucleosomes, a
modification associated with transcription, thus may be responsible for methylation being slightly higher at
expressed genes [61]. Gene body methylation is hypothesised to play a role in preventing spurious transcription
initiation from within the gene [61,62].
How ancient is the mammalian pattern of DNA methylation? Methylation within genes, transposons and

promoters is found in chicken [63], zebrafish [64] and Xenopus [52]. However, the early-branching chord-
ate Branchiostoma lanceolatum (Amphioxus) has methylation predominantly located within genes, with no
evidence of extensive promoter methylation or TE methylation [65]. Similar patterns were observed in
Ciona intestinalis [39]. Interestingly the early-branching chordate Oikilopleura has lost DNMT1 and
DNMT3 [66]; despite this a study reported moderate levels of DNA methylation genome-wide [67]. This
work was carried out using an immunoprecipitation approach and should probably be re-evaluated using
bisulfite sequencing. In both Amphioxus and Ciona, there is a correlation between gene activity and DNA
methylation [39,65].
Further back in deuterostome evolution, the sea urchin Strongylocentrotus purpuratus displays a similar

pattern of DNA methylation to early-branching chordates. DNA methylation is found at a subset of expressed
genes but apparently absent from TEs and promoters [68]. On this basis a reasonable conclusion would be that
the genome-wide methylation pattern seen in vertebrates was not present in the ancestral deuterostomes.
However, studying further species by bisulfite sequencing would be important to confirm this hypothesis. At
present it is difficult to speculate about what changes in ecology or genome structure could have led to this
change in DNA methylation [42,69]. Notably, TEs are abundant in the amphioxus genome [65], thus it is
unlikely that the high repeat content that is a feature of vertebrate genomes is sufficient to explain the evolution
of high genome-wide methylation levels.

DNA methylation in nematodes
The lineage leading to C. elegans lost DNMT1 and DNMT3 ∼350my ago [36]. However, some nematodes
retain DNA methylation [36,70]. All nematodes with DNA methylation show some evidence of TE methyla-
tion, and no compelling evidence of methylation of genes [36]. Unusually, the nematode lineage leading to the
mammalian parasites Trichinella spiralis Trichuris muris has retained DNMT3 but lost DNMT1, an unusual
configuration across eukaryotes. In the nematode T. spiralis DNA methylation is associated with silencing by
small RNAs [71] but it is not clear whether this is ancestral to the phylum. Loss of DNA methylation in nema-
tode evolution correlates to the appearance of a new type of small RNA pathway, characterised by short RNA
dependent RNA polymerase products known as 22G-RNAs [71], which silence TEs [72]; this may have
enabled loss of DNA methylation by protecting the genome in its absence.

DNA methylation in arthropods
The honey bee was the first animal species outside of mammals to be subjected to whole genome bisulfite
sequencing, which led to a long-held perception that arthropods, and indeed invertebrates more widely had
methylation at a subset of highly expressed genes, with no methylation at TEs [42]. The honey bee and other
hymenoptera as well as coeloptera display very low levels of methylation and a small subset of genes are methy-
lated [39,40,47]. However, further back in arthropod evolution there is evidence of TE methylation [43,45,48].
Ancestral state reconstruction revealed that the most likely state involved ∼10% methylation of CG sequences
in TEs and slightly higher in genes [48].
Across arthropods methylation at a subset of orthologous genes seems to have been conserved across

∼300my of evolution [48]. The mechanism whereby this occurs is likely to be distinct from the
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H3K36me3-directed mechanism observed in mammals, because similar genes are methylated even in lineages
that have lost DNMT3 and only have DNMT1. Methylated genes are enriched for housekeeping functions and,
interestingly, display ‘focussed’ expression [26,44,48,73]. By mapping these genes to their Drosophila ortholo-
gues, it was shown that they were likely to have broad rather than tissue-specific expression [48]. This corre-
lated to a characteristic nucleosome arrangement around the transcription start site and a broad transcription
initiation region, characteristic of housekeeping genes [74]. Since Drosophila orthologues have these character-
istics despite complete absence of CG methylation, it is likely that methylation is a consequence of the distinct
nucleosome environment rather than a cause [48]. This offers a possible mechanistic explanation for why
certain genes acquire methylation in arthropods.
Although low level TE methylation is widespread across arthropods methylation of particular TEs is not

strongly associated with reduced TE expression [48]. However, two species, S. maritima and P. citri, show
extensive TE methylation, and this correlates with the evolution of promoter methylation that is anticorrelated
to gene expression, reminiscent of mammals [48]. In S. maritima, this may also be associated with the evolu-
tion of a novel family of DNA repeats [46]. Further study of other arthropod species will undoubtedly reveal
further novel patterns of DNA methylation.

DNA methylation in lophotrochozoa
Our understanding of methylation patterns in lophotrochozoans is limited. In the mollusc Crassostrea gigas,
there is methylation at genes but not TEs [75]. DNA methylation shows positive correlation with gene expres-
sion, although further analysis would be needed to test whether this is similar to arthropods, where ‘moderate’
expression is enriched within methylated genes [75]. Integration of this data with analysis of nucleosome posi-
tioning in this species would also be interesting.
Within lophotrochozoa, the platyhelminth phylum is potentially interesting for further study. Parasitic flat-

worms are monophyletic and have lost DNMT1 and DNMT3 at the base of the group, alongside ALKB2 [76].
One report suggested that DNMT2 could methylate cytosine in DNA [20] but given findings from other organ-
isms presented above, this may indicate false positive methylation or off-target, low-level methylation that is
not relevant to its cellular role. The widely used free-living flatworm model organism Schmidtea mediterranea
has lost DNMT1 and DNMT3, but some free-living flatworms, such as Macrostomum ligano [77], have retained
both DNMT1 and DNMT3, alongside ALKB2. The patterns of methylation across the genome are unknown in
any free-living flatworm.

Methylation in early-branching animals
DNA methylation has been studied at nucleotide resolution in two sponges (Amphimedon queenslandica and
Sycon ciliatum), a sea anemone (Nematostella vectensis) and a comb jelly (Mnemiopsis leidyi) [78]. Comparative
analyses showed that CG methylation within genes was present in all these organisms, but that the overall
levels of DNA methylation were highest in the sponge A. queenslandica, which displayed vertebrate levels of
DNA methylation, methylation of TEs, and variable methylation of promoters suggesting a role for DNA
methylation in regulating gene expression [78].

Methylation patterns in plants
The evolution of methylation patterns in plants displays some similarities and some differences to that of
animals. Extensive research has investigated methylation patterns in the model flowering plant Arabidopsis
[13]. To summarise, CG methylation occurs at genes with moderate to high expression [10] and is associated
with specific positions on the nucleosome [79], although it is not clear whether the relationship between posi-
tioned nucleosomes at the transcription start site and DNA methylation seen in arthropods is also present in
Arabidopsis. Transposable elements and repeats have high levels of CG methylation and also are the sites of
CHG and CHH methylation (where H = A or T), which has a silencing function [13]. Promoter methylation in
the form seen in vertebrates is only rarely associated with silencing in Arabidopsis. However, sometimes
protein-coding genes can be silenced by DNA methylation- this is due to acquisition of TE-like CHG and
CHH methylation and can occur due to mutations where TE fragments jump into a protein-coding gene [80].
How well conserved are methylation patterns across plants? Within the Brassicaceae, close relatives of

Arabidopsis, the overall patterns of methylation across the genome are largely conserved. Moreover, the level of
methylation within the bodies of individual genes is conserved in orthologues in different species [81]. More
widely, DNA methylation at gene bodies and TEs is generally conserved in flowering plants, although the levels
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of DNA methylation vary somewhat [82]. Nevertheless, the duckweed has lost gene body methylation and dis-
plays unusual TE methylation that is independent of small RNAs, suggesting that even within flowering plants,
methylation patterns can evolve rapidly [83]. Interestingly, in contrast with conservation of gene body methyla-
tion in Brassicaceae, in maize, the specific genes that are subject to gene body methylation do not seem to be
under strong purifying selection [84].
Outside of flowering plants, the distribution of methylation seen in Arabidopsis is not conserved. TE methy-

lation is found in basal plants but the pattern of gene body methylation observed in Arabidopsis is not obvious,
with the exception of the pine P. tanae and Charophytes such as Klebsorbium nitens [85–87]. Either recurrent
gain of gene body methylation in some lineages including plants or loss of gene body methylation in many
basal plant lineages are possible hypotheses to explain these patterns and further sampling is probably required
to clarify this.
An important study on methylome evolution in plants identified two plant species Eutrema salsugineum and

Conringia planisiliqua which have independently lost CG methylation at genes, correlating to the loss of the
plant de novo methyltransferase CMT3 [88]. In these species the orthologues of genes with gene body methyla-
tion in closely related plants showed no difference in gene expression or gene expression variability [88,89] It
was proposed that gene body methylation arises due to occasional random errors where CMT3 targets an
expressed gene and introduces both CHG and CG methylation [87]. At transcribed genes, however, aberrant
CHG methylation is lost because the transcription process recruits the H3K9 demethylase IMB1 [90]. In con-
trast, CG methylation can be maintained due to maintenance methyltransferases with little effect on transcrip-
tion. In a direct test of this model, introduction of CMT3 into E. salsugineum causes acquisition of CG
methylation that can be inherited in the absence of CMT3 [91].
Two key aspects required for this model are open to challenge. First, the model relies on faithful mainten-

ance of methylation states through DNA replication but the stability of epimutations through long-term evo-
lution experiments in Arabidopsis is limited [92–94]. It is possible, though, that epimutations spanning
entire genes may have greater stability due to cooperativity between individual methylated cytosines [95].
Second, the apparent lack of effect on gene expression from DNA methylation has been challenged by com-
parative evolutionary analyses [96,97]. Laboratory experiments are much less sensitive to subtle fitness effects
than evolution over millions of years. Nevertheless, this fascinating model has great potential to revise the
assumption that notable features of genome-wide methylation patterns are adaptive and involved in gene
regulation.

Methylation patterns in fungi
Comparative analysis of DNA methylation across fungi was the subject of a recent extensive study of 40
genomes by whole genome bisulfite sequencing to map DNA methylation [50]. Across fungi there was no evi-
dence of gene body methylation of CG sequences. Instead, the CG methylation was frequently found at repeats.
Indeed, the proportion of the genome made up of repetitive elements was a significant predictor of the
genome-wide level of CG methylation [50]. This strongly implies that silencing of repetitive elements is the
ancestral role of TE methylation in fungi.
Within fungi, some interesting examples of DNA methylation in TE regulation have evolved. Repeat induced

point mutation, with the memorable acronym RIP, was first characterised in Neurospora crassa [98] but is
present in many other Ascomycota [99]. RIP involves the activity of the cytosine methyltransferase Masc1 (also
known as RID), which is recruited to repetitive DNA during meiosis and is associated with an extremely high
rate of C-T transitions [100]. The mechanism is still unclear, because the endogenous rate of deamination is
probably too slow to account for the rapid rate of mutagenesis [101]. There may be a specific enzyme that med-
iates deamination of methylated cytosine. An alternative possibility is that Masc1 itself catalyses this reaction
[100]. So far this is the only known exploitation of the mutagenic properties of cytosine methylation but it may
well have evolved in other species outside fungi.
Another widespread type of methylation in fungi that is likely TE-specific is associated with DNMT5 [7].

DNMT5 is thought to have maintenance activity [7,50], which has been demonstrated biochemically for the C.
neoformans enzyme [8]. The evidence for a TE-directed role of DNMT5 comes from analysis of C. neoformans,
which only has DNMT5 and where methylation is restricted to a subset of repeats concentrated at centromeres
[7,8]. In other species with DNMT5 TE methylation is also seen [39,50] but as DNMT1 is present it is not
clear whether DNMT5 is also required for this modification.
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Figure 1. New hypotheses on the evolution of methylation across eukaryotes. Part 1 of 2

(A) A model for how gene body methylation might be a consequence of evolutionary processes. Any gene could aberrantly
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Other eukaryotic methylomes
The methylomes of the diverse group of single celled organisms at the base of the eukaryotic tree have so far
been understudied. Many protists have lost DNA methylation completely, however, there are a number of
organisms that retain DNA methylation [36] and a systematic study of these is still missing. One important
study investigated methylation patterns in several brown and green algal species, finding genome-wide, highly
periodic methylation linked to DNMT5 [7]. In the alga Emiliania huxleyi the periodicity was associated with
nucleosome organisation, with methylation confined to linker regions of the DNA. This striking methylation
pattern seems to have arisen specifically in this algal lineage [7]. Evidently, new patterns of DNA methylation
to evolve even using the same machinery as found in other organisms and highlighting the need for more
investigations in early-branching eukaryotes to clarify the ancestral state of the methylome.

Evolutionary history of the eukaryotic methylome
Gathering together the studies across eukaryotes described above, three possible hypotheses to explain the dis-
tribution of methylation patterns can be proposed.

1) Gene body methylation of moderately expressed genes and dense TE methylation associated with TE silen-
cing were ancestral, but either or both of these have been lost in individual lineages. This would be con-
sistent with retention of both of these features in plants and animals. A slightly modified hypothesis to fit
with the apparent rarity of TE methylation across animals would be that TE methylation was lost in
primitive metazoa but regained in a few lineages such as vertebrates, sponge, nematodes and some arthro-
pods [78].

2) Gene body methylation was ancestral to eukaryotes but TE methylation evolved independently in verte-
brates, plants, and some fungal lineages. The main factor in favour of this model is the fact that many
animal lineages display some form of gene body methylation, and that gene body methylation seems to be
targeted to genes with similar characteristics in plants and many animal species [32].

3) Inspired by new thinking about gene body methylation in plants [87,91], TE methylation might have been
ancestral to all eukaryotes but gene body methylation was not. Instead, gene body methylation arose repeat-
edly due to mistargeted TE methylation occasionally attacking genes (Figure 1A,B). In the original proposal
for plants, this occurs due to CMT3 non-CG methylation [87], but other de novo methylation enzymes or
even aberrant activity from a maintenance methyltransferase could initiate this process. Due to the ability of
DNA methylation to be propagated through cell division, methylation of certain genes would persist. Two
factors would make this more likely to happen at housekeeping genes:
i) Consistent expression of housekeeping genes might resist heterochromatin formation, as in plants [91]
ii) Over long periods of time, selection to maintain sequence would be stronger at housekeeping genes than

non-essential genes. As a result, C to T mutations that are promoted by methylation [27] would accumu-
late only in non-essential genes, causing them to degrade and eventually no longer be recognisable. Even
if the origin of gene body methylation was independent in plants and animals, similar biases in the types
of genes subject to methylation would emerge.

Hypothesis 3 underlies a very important point- that some of the features of methylomes recurring in differ-
ent organisms could reflect constraints from the basic molecular biology of methyltransferases, which might
not indicate conserved evolutionary history of the genome-wide methylation pattern. Another example of this
may be the influence of nucleosome positioning on methylation patterns observed in plants, mammals and
arthropods [48,79,102]. It also suggests that DNA methylation could be propagated independent of any func-
tional benefit but that is coopted throughout evolution into different functional roles, a concept familiar from
hypotheses concerning retrotransposons [103].

Figure 1. New hypotheses on the evolution of methylation across eukaryotes. Part 2 of 2

acquire CG methylation, but in an inducible or tissue-specific gene, selection to maintain the gene is weaker so the increased

mutation rate associated with 5mC leads to loss of gene function, whilst purifying selection preserves non housekeeping

genes. (B) Recurrent acquisition of gene body methylation and loss of TE methylation characterises eukaryotic DNA

methylation patterns. The guide tree is for illustration purposes only and branch lengths are not accurate. Only lineages in

which some form of DNA methylation is retained are shown.
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Perspectives
• Methylomes often differ considerably even between closely related species and so examin-

ation of many phylogenetically distant species is vital to understand its evolution. New techni-
ques to simultaneously acquire methylomes and genomes rapidly and cheaply should enable
many more eukaryotic organisms to be characterised, which will assist ancestral state recon-
struction to propose plausible hypotheses for key nodes on the eukaryotic family tree.

• Specific DNA methylation patterns may not always be the product of adaptive natural selec-
tion. New hypotheses about how DNA methylation could be maintained without any specific
benefit to organisms have the potential to inspire new ways of thinking about DNA methylation
evolution.

• Cancer methylomes are highly variable [104] and much of this is poorly understood [105].
Understanding some of the factors, including passive or selfish DNA methylation mainten-
ance, that lead to changes in methylomes across species, could be applied to the rapidly
evolving cancer cell and prompt new ideas for treatment.
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