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Abstract

Background: Tsetse flies (Glossina spp.) are the prominent vector of African trypanosome parasites (Trypanosoma spp.)
in sub-Saharan Africa, and Glossina pallidipes is the most widely distributed species in Kenya. This species displays
strong resistance to infection by parasites, which are typically eliminated in the midgut shortly after acquisition from
the mammalian host. Although extensive molecular information on immunity for the related species Glossina morsitans
morsitans exists, similar information is scarce for G. pallidipes.

Methods: To determine temporal transcriptional responses of G. pallidipes to Trypanosoma brucei brucei challenge, we
conducted Illumina based RNA-seq on midgut organ and carcass from teneral females G. pallidipes at 24 and 48 h
post-challenge (hpc) with T. b. brucei relative to their respective controls that received normal blood meals (without the
parasite). We used a suite of bioinformatics tools to determine differentially expressed and enriched transcripts between
and among tissues, and to identify expanded transcripts in G. pallidipes relative to their orthologs G. m. morsitans.

Results: Midgut transcripts induced at 24 hpc encoded proteins were associated with lipid remodelling, proteolysis,
collagen metabolism, apoptosis, and cell growth. Midgut transcripts induced at 48 hpc encoded proteins linked to
embryonic growth and development, serine endopeptidases and proteosomal degradation of the target protein, mRNA
translation and neuronal development. Temporal expression of immune responsive transcripts at 48 relative to 24 hpc
was pronounced, indicative of a gradual induction of host immune responses the following challenge. We also searched
for G. m. morsitans orthologous groups that may have experienced expansions in the G. pallidipes genome. We identified
ten expanded groups in G. pallidipes with putative immunity-related functions, which may play a role in the higher
refractoriness exhibited by this species.

Conclusions: There appears to be a lack of strong immune responses elicited by gut epithelia of teneral adults. This in
combination with a compromised peritrophic matrix at this stage during the initial phase of T. b. brucei challenge may
facilitate the increased parasite infection establishment noted in teneral flies relative to older adults. Although teneral
flies are more susceptible than older adults, the majority of tenerals are still able to eliminate parasite infections. Hence,
robust responses elicited at a later time point, such as 72 hpc, may clear parasite infections from the majority of flies. The
expanded G. m. morsitans orthologous groups in G. pallidipes may also be functionally associated with the enhanced
refractoriness to trypanosome infections reported in G. pallidipes relative to G. m. morsitans.
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Background

African Trypanosomiasis constitutes one of the most
neglected tropical diseases (NTDs) affecting humans and
their livestock with devastating health and economic
consequences in Africa [1, 2]. Two forms of the human
disease (human African trypanosomiasis, HAT) exist,
also known as sleeping sickness. The chronic form in
West and Central Africa is caused by Trypanosoma
brucei gambiense, while the acute form in East and
Southern Africa is caused by Trypanosoma brucei
rhodesiense. The animal disease (animal African trypano-
somiasis, AAT), also known as Nagana, is caused by T. b.
brucei, and related Trypanosoma vivax and Trypanosoma
congolense. All African trypanosomes are transmitted to
the mammalian host through the bite of an infected tsetse
fly (Diptera: Glossinidae). HAT and AAT remain major
public health and veterinary threats, respectively, in most
of Africa due to the long adult life of tsetse and exclusive
haematophagy of both sexes. Brought under control in the
1960s, HAT re-emerged and resurged to epidemic propor-
tions by the end of the twentieth century due to decreased
disease control and surveillance activities. Concerted and
collaborative control efforts over the last decade reversed
the epidemic trend of the gambiense disease, reducing the
cases to just 6228 in 2013 [3]. Informed by the progress in
HAT control, the WHO Strategic and Technical Advisory
Group for NTDs declared a target to eliminate gambiense
HAT as a public health problem by 2020 and zero inci-
dences of the rhodesiense HAT by 2030 [4]. In contrast to
gambiense, control of rhodesiense disease in Central and
East Africa is more difficult due to the presence of many
animal reservoirs. Although human disease has not been
reported in the past decade in Kenya, with the exception
of several cases reported in tourists from exposure to in-
fective tsetse bites in game parks [5], there is ongoing risk
of re-emergence of rhodesiense disease due to the pres-
ence of disease in neighboring countries and parasites cir-
culating in wild game and domestic animals, which serve
as reservoirs [6, 7]. In contrast, AAT is rampant in live-
stock inhabiting tsetse-infested areas throughout the
continent, including Kenya.

No mammalian vaccines against HAT exist, and there
are few available for chemotherapy. Furthermore, treat-
ment is expensive and involves long administration regi-
ments using drugs that have adverse effects [8-10].
Chemotherapy is also problematic due to the widespread
and increasing resistance detected in trypanosomes to
existing drugs [11], the high cost of treatment and spor-
adic availability of drugs in areas with the high fly chal-
lenge [12]. Tsetse population control efforts, therefore,
constitute the cornerstone in disease suppression and
eradication efforts. Suppression of tsetse populations re-
lies largely on insecticide-based technologies [13-15].
Also, eradication campaigns integrate a sterile insect
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technique (SIT) based approach to eliminate residual
tsetse populations, as demonstrated in Zanzibar [16].
However, the irradiated male flies released in SIT appli-
cations are still capable of transmitting trypanosomes, a
challenge that can be surmounted by the development
of tsetse release strains refractory to trypanosome infec-
tions [17, 18]. The ability to generate parasite-resistant
strains requires a better understanding of the molecular
interactions that lead to establishment or elimination of
parasite infections in tsetse.

The genus Glossina consists of three species groups
(Morsitans, Palpalis and Fusca), each of which presents
differential vector competencies [17]. Flies in the
Palpalis subgroup are highly refractory to trypanosome
infection [19], while those in the Morsitans subgroup are
more susceptible [20]. Within the Morsitans subgroup,
there are two closely related species, G. morsitans
morsitans and G. pallidipes, which also show differential
susceptibility, the latter being more refractory to infec-
tion with trypanosomes [21]. Glossina pallidipes is
widely distributed in Kenya, and is a vector of AAT, and
has transmitted HAT in the past [22, 23].

Trypanosome transmission through the mammalian
host and tsetse vector is complex and involves a series
of developmental forms. The process of parasite trans-
mission in tsetse begins in the vertebrate host by differ-
entiation of the long slender bloodstream forms (BSF)
into non-dividing stumpy forms (ST) [24, 25]. Within
hours of ingestion, BSF is readily lysed in the gut while
ST parasites differentiate to midgut-adapted procyclic
forms (PCFs) [26], which express a non-varying surface
coat composed of procyclin proteins [27]. In the major-
ity of flies, trypanosomes are eliminated from the gut
within several days post-acquisition, while in a few sus-
ceptible individuals PCF parasites survive and establish
gut infections [28, 29]. The parasites in these susceptible
flies subsequently colonize the proventriculus (cardia)
organ and elongate to form mesocyclic trypomastigotes
that migrate to the proventriculus where they undergo a
complex differentiation as described by Sharma et al
[30] to form short epimastigotes. The short epimasti-
gotes enter the salivary glands where they attach to the
epithelial cell and differentiate into metacyclic forms
[30]. Mammalian infective metacyclic are transmitted to
the next host in saliva as the fly takes a blood meal and
differentiate to the BSF that promotes disease [31].

In the laboratory setting, less than 1% of older adults
that have received several normal blood meals before re-
ceiving infectious parasites become colonized by para-
sites. This phenomenon may explain why infection
prevalence in natural populations is very low even in en-
demic disease areas [32]. In contrast, newly eclosed
adults (termed teneral) are more susceptible to infection
when trypanosomes are provided in their first blood
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meal [33]. The teneral phenomenon has been linked to
the immature nature of the peritrophic matrix (PM),
which is a chitinous barrier that lines and protects the
midgut epithelium from damage by components of the
blood meal including the pathogens it may contain [34].
The immature nature of the teneral fly immune system
may further contribute to its higher susceptibility. In
older adults, the variant surface glycoprotein (VSG) coat
proteins of the BSF parasites released into the gut lumen
shortly upon acquisition transiently compromises the
synthesis of the PM and enables the parasites to bypass
the PM barrier [35]. Experimental reduction of PM in-
tegrity before parasite acquisition has led to higher infec-
tion establishment indicating that PM acts as an initial
barrier [36]. Additional factors that influence parasite
transmission in adults are midgut proteolytic lectin(s)
that may induce transformation of BSF to PCF [37],
antimicrobial peptides [38-40], peptidoglycan recogni-
tion protein LB [41, 42], TsetseEP protein [43, 44] and
reactive oxygen species [45].

Much of the molecular and functional work on tsetse-
trypanosome dynamics has been performed with G. m.
morsitans. However, the molecular dynamics underpin-
ning differential susceptibility in the more refractory
vector, G. pallidipes, are poorly understood. The differ-
ential resistance to infection between these species is
more pronounced in the gut than in the salivary glands,
such that all G. pallidipes with gut infections give rise to
mature infections in the salivary glands, while only a
proportion of gut infections mature in the case of G. m.
morsitans [21]. The availability of the annotated whole
genome sequences of both G. pallidipes [46] and G. m.
morsitans [47] presents an opportunity to investigate the
genetic basis of their differential vector competence. The
purpose of this study was to determine the molecular re-
sponses of G. pallidipes to T. b. brucei challenge early in
the infection process. Given the strong parasite resist-
ance adult flies express, we analyzed teneral flies (24 h
post-eclosion) and evaluated the temporal (24 and 48 h
post parasite challenge, hpc) transcriptional responses of
the gut tissue and carcass (comprising all other organs)
at a time when BSF to PCF differentiation occurs and
when PCF parasites are typically eliminated from the
gut. This molecular information now forms the founda-
tion on which to build functional investigations to inter-
fere with trypanosome transmission in G. pallidipes.

Methods

Biological materials

Puparia for G. pallidipes were obtained from the
Bratislava laboratory in Slovakia and maintained in the
insectary at Yale University at 25 °C with 50-60% rela-
tive humidity, and adults were fed on bovine blood using
artificial membrane feeding method [48]. The T. b.
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brucei strain RUMP 503 used for tsetse challenges was
originally isolated from bovines in Nyanza, Kenya
(http://tryps.rockefeller.edu/DocumentsGlobal/lineage_E
ATRO795-LUMP227.pdf).

Tsetse fly challenges with trypanosomes

The BSF T. b. brucei were expanded in rats, and
provided to newly eclosed (one day old) teneral female
G. pallidipes at a concentration of 2 x 10° cells/ml in
bovine blood, while a matching control group received
only normal blood. Flies were microscopically dissected
in 1x phosphate-buffered saline (137 mM NaCl, 2.7 mM
KCl, 10 mM Na,HPOy, 2 mM KHyPO,) at 24 or 4 8 h
post-challenge (hpc), and ten midguts (minus proven-
triculi) or carcasses (plus proventriculi) were pooled for
each biological sample, respectively. All samples were
immediately placed in TRIzol Reagent (Invitrogen,
Carlsbad, USA), and subsequently transferred to -80 °C
until when required. A total of eight biological samples
were collected corresponding to 24 and 48 hpc guts and
carcasses from parasite challenged, and normal blood
meals, respectively of which four samples were collected
from parasite challenged flies and four controls from
normal blood meal fed flies.

Isolation of RNA and RNA-sequencing

Total RNA was isolated using TRIzol reagent following
the manufacturer’s protocol, and genomic DNAs
(gDNA) digested using Ambion® TURBO DNase™
(Thermo Fischer Scientific, Waltham, MA USA) follow-
ing manufacturer’s instructions. Removal of the gDNA
was confirmed via PCR amplification of the final RNA
sample using tsetse specific beta-tubulin gene primers
(Additional file 1: Table S1) as described in Telleria et al.
[49] and RNA quality was analyzed by Agilent Bioanalyzer.
c¢DNA was generated by Illumina TruSeq RNA Sample
Preparation Kit (Illumina, Hayward, CA, USA) and
sequenced on an Illumina HiSeq2000 instrument (paired-
end 100 bp) at the McDonnell Genome Institute,
Washington University School of Medicine, St Louis, MO,
USA. All sequences are available in the Sequence Read
Archive (SRA) under study accession numbers
SRP090042.

Identification and validation of differentially expressed
(DE) G. pallidipes transcripts

Low-quality reads, reads with less than 100 base pairs
and adapter sequences were removed by Illumina build
software (Illumina, Hayward, CA, USA) in sequence
clean up. The resultant raw RNA-Seq reads from each
treatment were stored in bam file formats of interleaved
FastQ formatted sequences for downstream analysis.
Sequence quality in each file was assessed using the
FastQC software (http://www.bioinformatics.babraham.
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ac.uk/projects/fastqc/), and data were filtered for quality
using SamToFastq software (http://broadinstitute.githu-
b.io/picard/). All filtered reads were aligned to the
protein-coding genes of G. pallidipes at Vectorbase [46].
The differential expression (DE; differences in expression
of transcripts between RNA-Seq libraries) profiles of the
transcripts were determined using the RNA-Seq analysis
module in the CLC genomic workbench version 8.0
(CLC Bio, Aarhus, Denmark) as described [49]. The pro-
files were normalized using Kal’s test [50] and compared
between challenged and control midguts or carcasses
(24 or 48 hpc), respectively. To minimize false positives,
transcripts were considered DE between treatments if
they had the following criteria: at least a two-fold
change, false discovery rate (FDR) corrected P < 0.05, at
least five reads per kilobase of transcripts per million
mapped reads (RPKM), a proxy of gene expression [51]
and supported by at least 100 unique read mappings.
Most abundant transcripts were considered as those
within the 90 percentile in this selection and supported
by at least 5000 reads. The fold changes were deter-
mined as a ratio of RPKM values between treatments
and respective controls and normalized based on the
number of reads from each library. Enrichment analysis
was conducted to determine enrichment of transcripts
within and between two midgut temporal samples and
respective carcasses (spatial).

We validated the differentially expressed (DE) profiles of
ten randomly selected genes by real-time quantitative
PCR (RT-qPCR) analysis from midguts obtained at 48 hpc
and controls, respectively. These analyses were conducted
using independent biological replicates obtained from dis-
sected midgut and carcass tissues generated under the
same experimental conditions as described for the tran-
scriptome samples. Total RNA (1 ug) was reverse tran-
scribed using iScript™ ¢cDNA synthesis kit (BIO-RAD,
Hercules, USA), according to manufacturer’s protocol.
Transcript expressions were evaluated by RT-qPCR using
the gene-specific primers and amplification conditions
described in (Additional file 1: Table S1). The expression
levels were analyzed with CEX Manager Software version
3.1 (Bio-Rad) and normalized to the G. pallidipes house-
keeping gene glyceraldehyde 3-phosphate dehydrogenase
(gapdh) (VectorBase accession number GPAI033271).
Fold change in transcript expressions were established by
comparing levels of expression in challenged (treatment)
relative to unchallenged (control) midguts. Pearson correl-
ation analysis was conducted between fold changes
obtained from RT-qPCR to those obtained from the
RNA-seq data to estimate our false positive rate.

Functional annotations of DE transcripts
To identify functions and processes that may be altered
by DE putative products, gene ontology (GO), Kyoto
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Encyclopedia of Genes and Genomes (KEGG) and
Wikipathways pathway enrichment analyses were con-
ducted using the web-based gene set analysis toolkit
(WebGestalt; Vanderbilt University, TN, USA; http://
www.webgestalt.org/ [52]. Drosophila melanogaster
genes were used as a proxy for G. pallidipes where D.
melanogaster homologs of the G. pallidipes differentially
induced or suppressed genes were employed. Hypergeo-
metric test, Benjamini & Hochberg multiple test adjust-
ment [53] and P <0.05 cut-off values were employed to
separate and identify significant functions and pathways.
Additional functional annotations of DE gene sets were
performed using BLASTx [54] to compare nucleotide se-
quence to the non-redundant protein database at Na-
tional Centre for Biotechnology Information (NCBI),
GO and Interpro databases using Blast2GO™ software
[55, 56]. An e-value of 0.001 was used to perform the
BLAST and annotation steps while mapping was carried
out by default settings. Drosophila melanogaster tran-
scripts encoding putative immune-specific and associ-
ated proteins were acquired from FlyBase [57] as
previously described [47, 49] and were used to identify
their potential homologs among the DE transcripts by
tBLASTx [54] homology searches. Heatmaps of gut DE
transcripts at 24 and 48 hpc were developed by compar-
ing fold changes of respective RPKM values using Com-
plex Heatmaps Bioconductor R package [58] by
employing “maximum” and “ward.D” methods within
the package. Orthology groups containing G. pallidipes
specific gene expansions, as determined by the Ensembl
compara pipeline [59], were retrieved from Vectorbase
[46]. These genes were functionally annotated as previ-
ously described using BLASTx and Blast2GO™ software.
The DE profile of the orthologs was analyzed between
the 24 and 48 hpc datasets using Complex Heatmaps
Bioconductor R package [58] where only orthologs sup-
ported by at least 100 reads and more than 1 RPKM
were considered.

Results

Global expression profiling of G. pallidipes responses
following challenge with T. b. brucei

Processing of the RNA-Seq data yielded 43 to 92 million
reads in the 24 and 48 hpc midgut and carcass libraries
(Fig. 1), of which 64.5-75.3% could be mapped to G.
pallidipes genes, respectively (Fig. 1). At least 89% of the
mapped reads were unique to specific genes. To validate
the transcriptome data, the expression profiles of ten
randomly selected transcripts were obtained using
RT-qPCR from RNA extracted from independent bio-
logical samples of G. pallidipes parasite challenged and
control guts, respectively. The comparison revealed a
Pearson correlation coefficient (R =0.766) and good-
ness of fit (R> = 0.586) (Additional file 2: Table S2,
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Gut-enriched transcripts and putative protein-

protein interactions in G. pallidipes challenged with T. b.
brucei

Under normal and parasite challenging conditions
(Fig. 3), most of the transcripts (> 93%) were expressed
at similar levels in control versus treatment datasets,
despite the temporal change. Only 4.6% (1038) and 2.7%
(617) of transcripts were induced in the gut 24 and
48 hpc, respectively (Fig. 3a). The expression profiles of
the gut-enriched transcripts were analyzed to under-
stand potential physiological changes that may influence
parasite infection processes. The gut is the initial
immune-associated contact tissue by the parasite, with
the carcass providing immunological responses later in
the infection [39]. Temporal analysis of gut induced
transcripts showed that more transcripts were sup-
pressed at 24 hpc than at 48 hpc in the presence of the
parasite (Fig. 3b, c¢). Only 37 DE transcripts were shared
between the 24 and 48 hpc datasets and expression most
of these transcripts (25) was up-regulated (Fig. 3c).

A web-based gene set analysis toolkit [51] was used to
reveal functions and pathways induced or suppressed at
24 or 48 hpc (Additional file 3: Table S3). The induced
transcripts in the 24 hpc gut dataset were predominantly
associated with carboxylic acid metabolic processes and
negative regulation of RNA post-translational modification,
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while those at 48 hpc were associated with axonogenesis,
cytoskeleton organization and response to a stimulus. The
24 hpc suppressed gut-associated transcripts were domi-
nated by chitin metabolism, response to oxidative stress
and associated genes, while the analysis did not associate
any specific pathway with 48 hpc suppressed transcripts. In
the carcass, transcripts associated with chitin metabolism
were induced at 24 hpc and suppressed at 48 hpc
(Additional file 4: Table S4). The dissected gut tissues
we studied did not contain the cardia organ; hence
the cardia specific transcriptional responses that are
involved in PM synthesis are represented in the
carcass dataset, while our method allowed for analysis
of midgut-specific responses. Pathways associated with
induction of amino acid (arginine, proline tryptophan),
purine and glycogen/glucose metabolism, as well as folate
and terpenoid backbone biosynthesis, were among those
enriched in the 24 hpc gut dataset.

Expression of immunity associated genes in G. pallidipes
gut 24 and 48 hpc

When DE transcripts were interrogated through BLAST
analysis, 139 transcripts were associated with an im-
mune function in either G. m. morsitans and/or D.
melanogaster. Of these, 27.3% were induced, and 45.3%
were suppressed at 24 hpc, while 21.6% were induced
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and 5.8% were suppressed at 48 hpc (Additional file 5:
Table S5). Transcripts predominating the expression
profile included induction of CDI109 antigen, and
suppression of both trypsin epsilon and serine protease
sp24d (Additional file 5: Table S5). Expression of Tld
domain-containing protein 2, ejaculatory bulb-specific
protein 3 and endocuticle structural protein/glycopro-
tein encoding genes were also suppressed at 24 hpc.
Similarly, expression of chymotrypsin-1, AP2-associated
protein kinase 1, myosin heavy non-muscle, transferrin
and croquemort coding genes were induced, while those
of lectin subunit alpha was suppressed at 48 hpc.
Transcripts for the serpin 3 and toll proteins associated
with the toll signalling pathway were induced and sup-
pressed, respectively at 24 hpc. Similarly, expression of
the immune deficiency (Imd) pathway associated genes
mask and peptidoglycan recognition protein LC
(PGRP-LC) were induced and suppressed, respectively,
24 hpc, while notch was the only induced transcript in
the Imd pathway at 48 hpc. PM-related putative
products reduced in the gut included chondroitin pro-
teoglycan A 1 and cysteine transfer RNA ligase gene.
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Heatmap of DE gut transcripts at 24 and 48 hpc

The heatmap of DE transcripts at 24 and 48 hpc gut
datasets revealed distinct temporal gene expression pro-
files (Fig. 4). In particular, trypsin-1, 30S ribosomal pro-
teins II, chaperone protein, heat shock protein 83 and
glutamine synthetase coding transcript abundances were
higher at 24 hpc relative to 48 hpc. Transcripts induced
at 48 hpc relative to 24 hpc included estradiol 17-beta-
dehydrogenase 11, fatty acid synthase, protein croque-
mort and several hypothetical proteins. Among the
temporal DE transcripts, only trypsin-1 and protein
croquemort were immune-associated (Fig. 4).

Abundant transcripts 24 or 48 hpc

Analysis of the most DE (> 90 percentile) and enriched
(supported by at least 5000 reads) transcripts 24 hpc
relative to the unchallenged control midgut libraries
revealed induction of functions associated with lipid re-
modeling/lipogenesis, proteolysis, the urea cycle, carni-
tine trafficking, collagen metabolism, apoptosis, and cell
growth/differentiation (Additional file 6: Table S6). The
majority of these transcripts did not encode secreted

Vectobase ID 24 hpe 48 hpc Best Blast Hit (SwissProt Database) E-Value
Normalized Fold Change# *GPAIO08345 I+ Trypsin 1. 1.34E.36
-- -- “ GPAI000755 30s ribosomal protein s11. 5.4446E.80
-10 -5 0 5 10 GPAI000789 Chaperone protein. 0
GPAI031242 ~NA... -
‘5 GPAI015300 u4 small nuclear ribonucleoprotein 27 kda.protein. 1.28E.24
GPAI043644 -NA.. -
GPAI014739 Filamin a. 0
GPAI046602 **Calponin homology domain containing protein. 0.01E.1
GPAI043434 Breast cancer anti estrogen.resistance protein 1. 2.18E.18
It GPAI002274 -NA... -
*GPAI040411 Myosin heavy non muscle. 0
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proteins (77%) and/or products associated with immun-
ity (73%). Functions associated with transcripts that were
suppressed included nervous system development,
neurotransmitter  transport/cellular  calcium  ion
hemostasis and cuticular structure.

At 48 hpc, most induced transcripts were associated
with pathways involved in embryonic growth and devel-
opment, muscle/motility function, tumour suppression,
proteosomal degradation of target proteins (serine endo-
peptidases and related enzymes), mRNA translation and
neuronal development. Similar to 24 hpc, only 33% of
these transcripts encoded secreted products, and 10%
were associated with immunity. Of note, pathways asso-
ciated with ATP-dependent degradation of ubiquitinated
proteins and cell proliferation/migration were sup-
pressed, and only 50% of these transcripts encoded
secreted or immune associated products.

Annotations of G. m. morsitans orthologs expanded in G.
pallidipes

Analysis of G. m. morsitans orthologous groups in
Vectorbase [46] revealed a 51-83% expansion (propor-
tion of G. pallidipes orthologs for each respective G.
morsitans ortholog) of ten gene families in G. pallidipes
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relative to G. m. morsitans (Additional file 7: Table S7,
Fig. 5). Predicted functions of these gene products were
determined by tBLASTx [54] homology searches against
the NCBI nr protein database. This analysis associated
the orthologous groups containing expanded gene mem-
bers with DNA replication licensing factors, N-acetyl-D-
glucosamine  kinase,  brunelleschi, transportin-3,
importin-13, serine-threonine- kinase, mastermind 3,
DEP domain-containing protein, MICOS complex sub-
unit, kinesin, fatty acyl- reductase, several transcriptional
regulators and the zinc finger protein weekly. No homo-
log was identified for one of the orthologous groups
(VBGT00190000011679), which together with the tran-
scriptional regulators (VBGT00820000045973) were
associated with immunity by their respective GO terms
biological processes annotations. Analysis of the expres-
sion profiles of expanded orthologous groups in the G.
pallidipes midgut showed general inductions of the
orthologs by trypanosome challenge at both time points
post-challenge (Fig. 5).

Discussion
This study reports on the molecular responses of G.
pallidipes to T. b. brucei at a critical moment in the

post-challenge; FC, fold change; *, with Immune associated GO terms
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Fig. 5 Expression profiles of expanded G. m. morsitans orthologs in G. pallidipes midguts 24 or 48 h post-challenge with T. b. brucei in relation to
their respective controls. Expression cut-off: reads per kilobase per million (RPKM) > 1 and unique read mapping > 100. Abbreviations: hpc, hours
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infection process when most trypanosomes are typically
cleared, with a few surviving to establish permanent
infections in the fly midgut. G. pallidipes is more refrac-
tory to trypanosome establishment than G. m. morsitans,
and therefore we used a transcriptomic approach to
study the early molecular responses in G. pallidipes
upon challenge with T. b. brucei. We analyzed host
responses from two different fly compartments: the gut
where epithelial immune responses can limit parasite
survival, and the carcass that is involved in systemic
immunity and metabolic responses. We also used these
datasets to identify host responses that are preferentially
enriched in the gut. We established that gut transcripts
associated with metabolic processes dominated the early
(24 hpc) responses; with immune-associated gene ex-
pression beginning to be detected in the later (48 hpc)
responses. These findings suggest that in the fly’s teneral
state, parasites encounter minimal immunological chal-
lenge upon entering the gut, which potentially permits
the differentiation and survival of the parasite from BSF
to PCF forms early in the infection. Our observations
may reflect the immature nature of the gut immune
responses in teneral tsetse. However, at 24 hpc, our find-
ings of induced transcripts, such as serine protease
sp24d, which is associated with immunity, may also sug-
gest a process of systematic suppression of host immun-
ity. Such a phenomenon, during which parasites inhibit
tsetse immunity to facilitate their colonization of the fly,
is evident in the case of tsetse cardia responses, and
reduced PM formation, following parasite acquisition
[35]. Similarly, induction of transcripts associated with
cytoskeletal reorganization may indicate modifications of
tsetse gut physiology that can influence parasite differen-
tiation processes or be a response to parasite-induced
damage of host epithelia [60, 61]. We also noted
suppression of oxidation-reduction processes at 24 hpc,
as shown by reduction of transcripts associated with
calcium binding proteins. In another study in teneral G.
p. gambiensis challenged with T. b. gambiense, proteome
analysis revealed induction of these processes at a later
time in the infection process, 72 hpc [62]. Suppression
of oxidation-reduction processes is thought to reflect
oxidative stress resulting from a large amount of heme
present in the blood meal and/or a response to the
invading parasites [44]. Oxidative stress responses are
reported in a variety of insects upon pathogen
challenge, including tsetse [35, 39, 63, 64]. Suppres-
sion of these responses upon parasite entry into
tsetse’s gut suggests promotion of parasite survival or
differentiation early in the infection process. Gut re-
sponses from older adult G. m. morsitans at 48 and
72 hpc also noted induction of ROS responses as part
of the immune arsenal that may result in parasite re-
fractoriness [35].
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In teneral flies, we also noted increasing immune re-
sponses to parasite challenge at 48 hpc, suggesting grad-
ual maturation of the immune system. The observed
induction of transcripts related to the keratinocyte sig-
nalling pathway, associated with apoptosis [65], signals
recognition of dead cells or parasite antigens by the host
defences during parasite challenge. Parasite products are
known to compromise the integrity of host gut physi-
ology during the early course of infection in older adult
flies. Specifically, mammalian parasite surface coat VSG
proteins, which are released into the lumen, modify host
transcriptional responses transiently, thus reducing PM
barrier integrity in adult flies [35]. The integrity of the
PM is an important barrier that limits parasite infections
in older adults [36]. In our analysis in teneral flies, we
also noted a reduction of PM-related products in the
gut, which includes chondroitin proteoglycan A 1 in-
volved in chitin binding and the cysteine transfer RNA
ligase gene. Besides the PM-associated products, we also
noted alterations in transcripts associated with chitin
metabolism, the main structure of the PM backbone.
While chitin metabolism was induced in the carcass at
24 hpc, we noted suppression of the same transcripts at
48 hpc in the gut. The transcript induction observed at
24 hpc in the carcass could be linked to insect growth
and morphogenesis [66] as we used teneral tsetse with
an underdeveloped exoskeleton. However, suppression
of these transcripts at 48 hpc may be tied to suppression
of chitin metabolism in the gut associated with impaired
PM structure to facilitate trypanosome escape to the
ectoperitrophic space. Lack of mature immune re-
sponses in the teneral state can further facilitate the
establishment of these infections in the teneral state,
while they would be more effectively cleared from the
more immuno-competent gut of mature adults.

The greater parasite refractoriness reported in G
pallidipes in relation to G. m. morsitans [21] may be in-
fluenced by the ten orthologous groups (gene families)
that are expanded in the G. pallidipes genome relative to
G. m. morsitans. Most of these gene expansions are as-
sociated with immune pathways where they appear to
enhance innate immunity in the host. The mastermind 3
gene orthologs are characterized components of the
immune-associated notch signalling pathway [67]. The
DEP domain-containing protein orthologs are involved
in intra cellular signal transduction in regulation of im-
mune responses by the mTOR signalling pathway [68].
The zinc finger weckle protein is a component of the toll
signalling pathway [69]. Additionally, two expanded
orthologous  groups  (VBGT00190000011679  and
VBGT00820000045973) are associated with immune
function by their respective GO terms and appear to
regulate the immune responses at the nuclear level, an
observation underscored by other nucleus based cell
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signalling components that are encoded by the rest of
ortholog gene expansions. These activities include
enhanced kinesin associated intracellular transport [70]
that is associated with activation of immune cells in
idiopathic inflammatory myopathies [71], duplication of
genomic DNA by DNA replication licensing factors [72],
regulatory roles of N-acetyl-D-glucosamine kinase in
gene expression [73], meiosis cytokinesis by brunelleschi
[74], and nuclear import of splicing factors through
nuclear pore complexes by transportin [75] and
importin-13 [76]. In our transcriptomes, these genes are
upregulated in a midgut preferential manner. The en-
hanced temporal expression of these orthologous fam-
ilies upon trypanosome challenge underscores their
putative immune responsive role in G. pallidipes, which
can be confirmed through functional genomic studies in
the future.

Follow up studies with a spectrum of pathogen and
trypanosome developmental forms (BSF/ PCF) may pro-
vide insights on whether these response patterns are
pathogen-specific and the potential role that the BSF -
PCF transformation has on these patterns. Additionally,
the role of the tsetse microbiome in modulating these
responses also merits investigation, as factors influencing
parasite establishment in the fly midgut, are not only
genetic. Both Wigglesworthia glossinidia and Sodalis
glossinidius, which are prominent members of tsetse’s
indigenous microbiota, exert a strong influence on
tsetse’s vector competency [77-79].

Conclusions

In conclusion, there appears to be a lack of strong im-
mune responses elicited by gut epithelia of teneral
adults. This in combination with a compromised PM at
this stage during the initial phase of T. b. brucei
challenge may facilitate the increased parasite infection
establishment noted in teneral flies relative to older
adults. Although teneral flies are more susceptible than
older adults, the majority of tenerals are still able to
eliminate parasites infections. Hence, more robust
responses elicited at a later time point, such as 72 hpc
may clear parasite infections from the majority of flies.
The expanded G. m. morsitans orthologous groups in G.
pallidipes may also be functionally associated with the
enhanced refractoriness to trypanosome infections re-
ported in G. pallidipes relative to G. m. morsitans.
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