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1  | INTRODUC TION

Reliable species identification is vital for survey and monitoring pro-
grams. This task can be challenging when faced with cryptic, rare, 
or elusive species (Bickford et al., 2007; Thompson, 2004). For taxa 
that are difficult to locate, trap, and monitor visually, conservation 

biologists often rely upon acoustic surveying of vocalizations to 
identify species and individuals (Conway, 2011; Oswald, Rankin, 
Barlow, & Lammers, 2007; Parsons & Jones, 2000; Steiner, 1981; 
Stiffler, Anderson, & Katzner, 2018a).

Vocalizations can be identified qualitatively by experienced sur-
veyors or quantitatively by using characteristics of spectrograms 
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Abstract
Reliable species identification is vital for survey and monitoring programs. Recently, 
the development of digital technology for recording and analyzing vocalizations has 
assisted in acoustic surveying for cryptic, rare, or elusive species. However, the quan-
titative tools that exist for species differentiation are still being refined. Using vocali-
zations recorded in the course of ecological studies of a King Rail (Rallus elegans) and 
a Clapper Rail (Rallus crepitans) population, we assessed the accuracy and effective-
ness of three parametric (logistic regression, discriminant function analysis, quadratic 
discriminant function analysis) and six nonparametric (support vector machine, CART, 
Random Forest, k‐nearest neighbor, weighted k‐nearest neighbor, and neural net-
works) statistical classification methods for differentiating these species by their kek 
mating call. We identified 480 kek notes of each species and quantitatively character-
ized them with five standardized acoustic parameters. Overall, nonparametric clas-
sification methods outperformed parametric classification methods for species 
differentiation (nonparametric tools were between 57% and 81% accurate, paramet-
ric tools were between 57% and 60% accurate). Of the nine classification methods, 
Random Forest was the most accurate and precise, resulting in 81.1% correct classi-
fication of kek notes to species. This suggests that the mating calls of these sister 
species are likely difficult for human observers to tell apart. However, it also implies 
that appropriate statistical tools may allow reasonable species‐level classification ac-
curacy of recorded calls and provide an alternative to species classification where 
other capture‐ or genotype‐based survey techniques are not possible.
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to compare recorded calls or unknown origin to known‐individual 
recordings (Conway, 2011; Parsons & Jones, 2000; Steiner, 1981). 
However for sister species that are difficult to distinguish, qualita-
tive differentiation methods may be too subjective and quantified 
sound characteristics based on spectrograms are recommended for 
reliable species identification (Lambert & McDonald, 2014; Russo & 
Voigt, 2016). The digital technology for recording and analyzing vo-
calizations has recently been developed, and the quantitative tools 
that exist for species differentiation are still being refined.

The most commonly used tools for quantitative acoustic differen-
tiation between species are parametric models such as discriminant 
function analysis or logistic regression (Biscardi, Orprecio, Fenton, 
Tsoar, & Ratcliffe, 2004; Oswald et al., 2007; Smith, Newman, 
Hoffman, & Fetterly, 1982; Steiner, 1981; Teixeira & Jesus, 2009; 
Vaughan, Jones, & Harris, 1997). Newer nonparametric models such 
as k‐nearest neighbor and neural networks have also been success-
ful at species classification (Britzke, Duchamp, Murray, Swihhart, 
& Robbins, 2011; Parsons, 2001; Redgwell, Szewczak, Jones, & 
Parsons, 2009). Comparisons between parametric and nonparamet-
ric approaches suggest that no singular approach works best under 
all circumstances. For example, in some cases neural networks out-
perform all other classification methods (Britzke et al., 2011; Parsons 
& Jones, 2000; Redgwell et al., 2009). However, in one study of vo-
calizations of 20 species of bats, multiple discriminant analysis per-
formed better than neural networks (Preatoni et al., 2005).

Although several species of secretive marsh birds produce qual-
itatively distinguishable calls, others do not. For example, the calls 

produced by the Clapper Rail (Rallus crepitans) and its sister species 
the King Rail (Rallus elegans) are similar in structure and variable 
among individuals, making qualitative aural differentiation difficult 
(Conway, 2011; Graves, 2001; Zembal & Massey, 1987; Figure 1). 
Identifying these species accurately in the field is important be-
cause both have experienced significant population declines due to 
wetland loss and fragmentation (Correll et al., 2017). Furthermore, 
although the two species are similar, their conservation status and 
suggested management practices differ, and thus, it is important to 
find mechanisms to effectively and accurately identify and survey 
for these species (Cooper, 2008; Kushlan et al., 2006).

The overarching goal of this study was to examine quantitative 
statistical tools to distinguish vocalizations of King and Clapper rails 
collected during surveys. To do this, a collaborative joint effort was 
established between researchers at West Virginia University and 
East Carolina University. Each university was conducting indepen-
dent projects on rail vocalizations with different overarching project 
goals. Researchers at West Virginia University investigated rail dis-
tributions along the Pamunkey and Mattaponi Rivers, Virginia, USA 
using acoustic surveying techniques (Stiffler et al., 2018a, 2018b, 
2017), while researchers at East Carolina University explored the 
vocal behaviors of King rails in a long‐term monitored population 
in North Carolina, USA (Schroeder, 2018). We used recordings of 
known King and Clapper rail kek vocalizations and quantitatively 
characterized them with seven standardized acoustic parameters. 
We then compared the accuracy and effectiveness of three para-
metric and six nonparametric statistical classification tools to (a) 

F I G U R E  1   Morphological and spectrographic comparison of a Clapper Rail (a) and a King Rail (b). Spectrograms depict a six second kek 
call segment from an individual of each species
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determine whether these two species could reliably be differenti-
ated acoustically, and (b) identify which method performed best at 
differentiating the two species.

2  | METHODS

2.1 | Study species

King and Clapper rails coexist along a salinity gradient within 
marshes of the Atlantic and Gulf coasts of the United States. 
King rails inhabit both freshwater and brackish marshes, while 
Clapper rails reside in tidal salt marshes (Meanley, 1985). However, 
both species are sympatric in transitional zones of intermediate 
brackish‐salt marshes (Meanley, 1969; Meanley & Wetherbee, 
1962), and, where they coexist, they may hybridize (Chan, Hill, 
Maldonado, & Fleischer, 2006; Meanley & Wetherbee, 1962). 
The two species can be differentiated based on subtle variations 
in morphology (i.e., size, plumage), physiology (i.e., osmoregula-
tion by salt glands), and genetics (i.e., mitochondrial and nuclear 
DNA) (Chan et al., 2006; Conway, Hughes, & Moldenhauer, 1988; 
Eddleman & Conway, 1994; Maley & Brumfield, 2013; Olson, 1997; 
Reid, Meanley, & Fredrickson, 1994).

King and Clapper rails produce eight distinct calls using variants 
of a single note (Massey & Zembal, 1987; Meanley, 1969). One of 
their most frequent calls is the kek, which consists of a single note 
repeated multiple times. Intraspecific and within‐individual variation 
occurs with kek note structure and calling rates in response to exter-
nal stimuli (Massey & Zembal, 1987; L. L. Stiffler, & K. M. Schroeder, 
personal observations). During the breeding season, unpaired males 
use the repeated kek call for mate advertisement as well as in terri-
torial displays when paired (Kolts & McRae, 2017; Meanley, 1969; 
Zembal & Massey, 1987).

2.2 | Field data collection

We recorded calls from King and Clapper rails at two study sites 
~135 km apart. Known populations of only one of the two species 
inhabit each site. We did not use playback to elicit calls from either 
species, but instead recorded calls passively.

Clapper rails were recorded May–July 2015 within Eltham Marsh 
near West Point, Virginia, USA. Eltham Marsh is a ~288 ha privately 
owned brackish tidal marsh located at the confluence of the York and 
Pamunkey rivers within the Chesapeake Bay. Vegetation in lower 
areas was dominated by smooth cordgrass (Spartina alterniflora), 
while the higher, irregularly flooded areas were dominated by salt-
meadow cordgrass (Spartina patens) and big cordgrass (Spartina cyno‐
suroides). Recordings were taken using a Song Meter SM3 (Wildlife 
Acoustics, Maynard, MA, USA) at 24 kHz and 16‐bit deployed in 
rotation between 15 random locations within the marsh, each one 
at least 400 m from every other survey location (Conway, 2011), 
at least 50 m from marsh edge, and easily accessible by boat from 
the Pamunkey River. Animal capture and population genetic survey-
ing of the marsh confirmed that Clapper rails were the only Rallus 

species found within the marsh (Coster et al., 2018; G. Costanzo and 
S. Harding unpublished data).

King Rail recordings were collected April–June 2016 at Mackay 
Island National Wildlife Refuge (NWR) in northeastern North 
Carolina, USA. Mackay Island is a 3,300 ha freshwater and brack-
ish marsh centrally located on the Atlantic Flyway in the Southeast 
Coastal Plain. The refuge includes 550 ha of impoundments managed 
for overwintering waterfowl, as well as extensive natural marshes 
subject to prescribed burn (Rogers, Collazo, & Drew, 2013). King 
rails are the only species of long‐billed rail breeding at the site, and 
detailed study of King Rail ecology and behavior has been ongoing 
at Mackay Island NWR for the last 7 years (for further information 
about the study population, see Clauser & McRae, 2016; Clauser & 
McRae, 2017; Kolts & McRae, 2017). Recordings were made using 
a Song Meter SM4 (Wildlife Acoustics) at 44.1 kHz and 16 bit. Two 
SM4s were deployed in rotation among 10 different locations on the 
refuge. Locations were no <400 m apart (Conway, 2011) and were 
selected based on auditory and visual confirmation of King Rail pres-
ence. Additional recordings were made opportunistically in different 
locations using a handheld linear pulse‐code modulation (PCM) re-
corder (Sony, New York, NY, USA) and ME 66 shotgun microphone 
(Sennheiser, Old Lyme, CT, USA; 44.1 kHz, 16‐bit).

The selection of field sites and seasonal timing of our surveys 
makes it unlikely we would encounter hybrids within our systems. 
Ecological segregation occurs between the King and Clapper rail on 
the basis of habitat salinity (Maley & Brumfield, 2013). In our genetic 
and trapping surveys over several years, we found that the brackish 
Eltham marsh contained exclusively Clapper rails, while the freshwa-
ter marshes of Mackay Island NWR are inhabited exclusively by King 
rails. Although King rails can be found in saltmarshes during migra-
tion stopovers, they leave these areas prior to breeding (Meanley, 
1969; Reid et al., 1994). Thus, by surveying during the breeding sea-
son, we have limited the potential for misidentifying recordings of 
vocalizations.

2.3 | Processing and preparation of acoustic data

We visualized all calls using Raven Pro software (Bioacoustics 
Research Program, 2014). We selected for analysis 480 King Rail and 
480 Clapper Rail kek notes. Recordings were selected between the 
hours of 0630–0830 and 1800–2015 Eastern Daylight Time (EDT) 
to account for traditional marsh bird monitoring protocols during 
sunrise and sunset. During these time frames, difference between 
morning and evening call patterns and structure were marginal 
(Schroeder, 2018; Stiffler et al., 2017). We chose to use single kek 
notes instead of kek calls (a series of kek notes in sequence) since call 
length was often difficult to ascertain, and bouts of calling some-
times continue for hours with periodic pauses (Massey & Zembal, 
1987). Notes were selected that did not overlap calls of other wet-
land species such as Red‐winged Blackbirds (Agelaius phoeniceus), 
Marsh Wrens (Cistothorus palustris), and Killdeer (Charadrius vo‐
ciferus). All kek notes from both species were truncated to only in-
clude frequencies between 1.5–5 kHz. This allowed us to exclude 
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prominent low frequency background noises in recordings taken 
from Eltham Marsh and cricket calls at around 5.5 kHz in Mackay 
Island NWR recordings. In spite of this truncation, all kek note selec-
tions captured the major harmonic (Massey & Zembal, 1987).

We measured and quantified the following seven parameters 
from each kek note: (a) Peak Frequency, (b) First Quartile Frequency, 
(c) Third Quartile Frequency, (d) Inter‐quartile Range (IQR) 
Bandwidth, (e) Frequency 5%, (f) Frequency 95%, and (g) Bandwidth 
90% (derived from Charif, Waack, & Strickman, 2010; each variable 
is described in Supporting Information Table S1; Figure 2). Since we 
truncated each call note to the portion between 1.5 and 5 kHz, we 
excluded from the list of parameters we considered, the Minimum 
and Maximum Frequencies. Although Pulse Rate and Duration were 
originally considered for analysis, high variation in these parameters 
within and between individuals of the same species meant that they 
had limited predictive power for species classification. Parameters 
were measured from the power spectrum (Hann window, window 
size 1,024 samples). To account for different sampling frequencies 
during recording, a Discrete Fourier Transformation (DFT) of 2,048 
samples was used for King Rail calls and 1,024 samples for Clapper 
rails. This resulted in frequency resolutions of 21.5 and 23.4 Hz for 
King and Clapper rails, respectively.

2.4 | Statistical analysis

We first evaluated Spearman’s rank correlations between param-
eters to determine which parameters to retain and which to remove 
from further analyses. Removal of highly correlated parameters 

ensures the assumption of little to no multicollinearity exist for para-
metric classification tools. Of the seven parameters we considered, 
two (IQR Bandwidth, Bandwidth 90) were highly correlated with 
other parameters (r > 0.70) and thus removed from further consider-
ation (Supporting Information Table S2). We retained the remaining 
five parameters for use in statistical analyses (variance‐inflation fac-
tor <3; Fox & Monette, 1992). We performed all statistical analyses 
using Program R (R Development Core Team, 2013).

The nine quantitative classification methods we used for species 
differentiation were as follows: logistic regression, support vector 
machine, classification and regression tree (CART), Random Forests, 
linear discriminant function analysis (DFA), quadratic DFA, k‐nearest 
neighbor, weighted k‐nearest neighbor, and neural networks. Each is 
described in detail below. Using such a broad range of techniques, 
we allow for a variety of model development approaches. We ran-
domly assigned 70% of the kek notes to the model building dataset 
and we reserved the remaining 30% for model cross‐validation. The 
model building dataset served to train the classification functions.

For each approach, we calculated accuracy, precision, sensitivity, 
specificity, area under the curve (AUC), and Cohen’s kappa coeffi-
cient (Landis & Koch, 1977; Sokolova & Lapalme, 2009). Accuracy is a 
measure of the model’s ability to correctly assign individual kek notes 
to their proper species. We calculated overall classification accuracy 
rates for each model using confusion matrices. Since our models were 
assigning calls to one of two species, interpreting the accuracy of a 
given analysis must be performed relative to the accuracy expected 
by chance alone (i.e., 50%). Precision represents the class agreement 
of the data for Clapper rails given by the model. Sensitivity represents 

F I G U R E  2   Digitization and example measurement of a typical Clapper Rail kek call in Raven Pro. Notes were selected from the 
spectrogram then measured in the power spectrum. Parameters defined in Table S1. To minimize underlying background noise, only regions 
between 1,500 and 5,000 Hz were included in parameter measurement, as represented by the dotted black lines
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a model’s effectiveness in classifying Clapper rails, while specificity 
represents a model’s effectiveness in classifying King rails. The area 
under the curve (AUC) describes the model’s ability to avoid false 
species’ identifications. We used Cohen’s kappa coefficients (Κ) to 
evaluate the chance‐adjusted classification agreement between the 
true classification and the model‐predicted classification (Landis & 
Koch, 1977; Viera & Garrett, 2005). Kappa is a metric standardized 
between −1 and 1, where 1 is perfect agreement and 0 is agreement 
by chance alone (Landis & Koch, 1977). We conducted 1,000 itera-
tions of model building and cross‐validation to account for variability 
in model performance due to random assignment of kek notes.

The two discriminant function analyses and logistic regression 
are all parametric approaches to classification. Linear discriminant 
function analysis classifies kek notes to groups based on orthogo-
nal linear functions derived from the five parameters by maximizing 
the variation between species, assuming equality of covariance ma-
trix among species (Venables & Ripley, 2002). Quadratic discrimi-
nant function analysis relaxes the assumption of a single covariance 
matrix for both species by estimating separate covariance matrices 
using quadratic functions (Venables & Ripley, 2002). Both discrimi-
nant function analyses were performed using the R package “MASS” 
(Ripley et al., 2018). Logistic regression classifies individuals into 
species by estimating probabilities conditional to the five parame-
ters using a logistic function (Press & Wilson, 1978).

Neural network classification, CART, Random Forests, support 
vector machines, k‐nearest neighbor, and weighted k‐nearest neigh-
bor are nonparametric methods that assume no distribution for model 
development. K‐nearest neighbor assigns species classification for 
an individual note based on the majority of species’ identities of the 
note’s k‐nearest neighbors (Hechenbichler & Schliep, 2004; Venables 
& Ripley, 2002). We used the R package “class” for k‐nearest neighbor 
classification and the R package “kknn” for weighted k‐nearest neigh-
bor classification (Ripley & Venables, 2015; Schlierp, Hechenbichler, 
& Lizee, 2016). We evaluated the performances of k ranging from 0 
to 20 and selected k = 1 for analysis because it resulted in the larg-
est reduction in classification error. Weighted k‐nearest neighbor 
performs similarly, but weights the influence of the neighbors by dis-
tance, whereby closer neighbors provide higher weights for species 
classification (Hechenbichler & Schliep, 2004). We evaluated the per-
formances of k ranging from 0 to 20 and selected k = 5 for analysis 
because it resulted in the largest reduction in classification error.

The CART decision tree recursively partitions the data into two 
groups using a splitting rule to identify the split to use at each node 

(Steinberg & Colla, 2009). Single classification trees are grown to 
maximal size then pruned back until the highest predictive perfor-
mance is achieved. In contrast, the Random Forest grows multiple 
classification trees in which each tree “votes” on the classification 
based on how each tree splits the data at nodes (Breiman, 2001). 
The forest chooses the overall classification having the most “votes” 
by aggregating across all trees. We used the R package “rpart” to 
build the CART classification trees and the R package “randomFor-
est” to conduct our Random Forest analysis (Liaw & Wiener, 2018; 
Therneau, Atkinson, & Ripley, 2018).

Support vector machines rely on learning algorithms to perform 
discriminative classification by creating separation splines between 
species through iterative training (Vapnik, Golowich, & Smola, 1996). 
The support vector machine learns to tell the difference between the 
two species by optimizing the separating hyperplane that maximizes 
the distance between the closest kek notes lying on the boundaries 
(Bennett & Campbell, 2000). We performed this analysis using the R 
package “e1071” (Meyer et al., 2018).

Neural networks are algorithms that simulate the human brain 
through learning and memorization of mathematical relationships 
(Venables & Ripley, 2002). For the neural network construction, we 
used the R package “neuralnet” to build a feed‐forward, resilient 
back‐propagation classification neural network (Fritsch, Guenther, 
Suling, & Mueller, 2016; Riedmiller & Braun, 1993; Smith, 1996; 
Venables & Ripley, 2002). The input layer consisted of the five kek 
note parameters. The network output was a single neuron for species 
classification. We chose a structure with a single hidden layer for sim-
plicity, but varied the number of neurons per hidden layer between 1 
and 18. Neurons within the hidden layer form interaction terms based 
on weights of the connection between each input neuron and hidden 
neuron (Venables & Ripley, 2002; Warner & Misra, 1996). We trained 
each neural network on 1,000 repetitions prior to assessing overall 
accuracy. We identified the most suitable network architecture (0 
hidden neurons) as the one that produced the highest accuracy rate.

3  | RESULTS

The mean and median values of all five parameters taken from the 
960 kek notes were similar between species (Table 1). All nonpara-
metric classification methods performed slightly better for Clapper 
rails (sensitivity > specificity), while all parametric classification 
methods performed better for King rails (sensitivity < specificity; 

Clapper rails King rails

Mean Median SD C.V. Mean Median SD C.V.

Peak frequency 2,824 2,742 529 18 2,808 2,756 476 17

Q1 frequency 2,482 2,508 337 13 2,556 2,562 309 12

Q3 frequency 3,284 3,258 416 12 3,254 3,112 530 16

Frequency 5% 1979 1922 280 14 2096 2,132 323 16

Frequency 95% 4,175 4,312 579 13 3,997 4,059 587 15

TA B L E  1   Means, medians, standard 
deviations (SD), and coefficients of 
variation (C.V., as a percent) for five 
variables (all measured in Hz) from kek call 
notes of Clapper rails monitored in 
Virginia, USA during 2015 and King rails in 
North Carolina, USA during 2016
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Table 2). Among all classification methods, accuracy and AUC 
provided identical assessment of model fit. Overall, each classi-
fication model performed better than expected by chance alone 
and in general, nonparametric techniques performed better than 
parametric models. Random Forest and weighted k‐nearest neigh-
bor were the only two methods that resulted in Κ coefficients 
>50%. Random Forest was the most accurate and precise clas-
sification tool for individual kek call notes (81.1% overall), and this 
technique correctly classified 81.7% of Clapper Rail and 80.6% of 
King Rail call notes. The two k‐nearest neighbor approaches and 
the support vector machine approach were less effective in clas-
sification, providing just over 70% accuracies. Of the nonpara-
metric approaches, CART and Neural Networks were the worst 
(both <62% accurate). The three parametric approaches, logistic 
regression and quadratic and linear DFA, classified call notes rela-
tively poorly (57%–60% accurate; Table 2)

The most important parameters for accurate classification 
were similar for the top four classification methods, although the 
percent of relative importance varied (Table 3). Frequency 5% and 
Q3 Frequency were the most important parameters accounting for 
>60% of relative importance for model classification. Q1 Frequency 

and Peak Frequency were less important, but still accounted for 
most of the remaining importance. Frequency 95% was generally 
unimportant to any of the top classification models.

4  | DISCUSSION

Our analyses showed that it was possible to statistically separate 
recorded kek call notes of King and Clapper rails. However, our work 
also demonstrated that the effectiveness with which this could be 
performed depended greatly on the statistical tool used for classi-
fication. As such, our findings have relevance both to surveys for 
conservation and management of these species, and to our broader 
understanding of the utility of statistical tools for classification of 
vocalizations based on variation in frequency parameters.

4.1 | Classification efficacy

We found substantial variation in accuracy among the nine classifi-
cation methods we tested. Random Forests and weighted k‐nearest 
neighbors were the top two performing models with Κ coefficients 

TA B L E  2   Classification efficacy for individual King and Clapper rail kek call notes from North Carolina and Virginia, USA, respectively, 
during 2015 and 2016, classified to species and ranked according to model performance

Classification model Class Accuracy Precision Sensitivity Specificity AUC Κ

Random Forest N 0.811 0.809 0.817 0.806 0.811 0.623

Weighted k‐nearest neighbor N 0.755 0.743 0.782 0.729 0.755 0.511

k‐nearest neighbor N 0.733 0.722 0.759 0.707 0.733 0.466

Support vector machine N 0.714 0.707 0.734 0.694 0.714 0.428

CART N 0.617 0.602 0.702 0.531 0.617 0.233

Quadratic DFA P 0.597 0.596 0.602 0.592 0.597 0.194

Neural network N 0.575 0.566 0.673 0.477 0.575 0.150

Logistic regression P 0.566 0.567 0.563 0.570 0.566 0.132

Linear DFA P 0.566 0.567 0.562 0.570 0.566 0.132

Note. The models were logistic regression, support vector machine, classification and regression tree (CART), Random Forest, linear discriminant func-
tion analysis (DFA), quadratic DFA, k‐nearest neighbor, weighted k‐nearest neighbor, and neural networks. In all cases, mean classification rates were 
determined using cross‐validation (70%/30%) for 1,000 iterations. Class represents either parametric (P) or nonparametric (N) test types. Accuracy 
represents the overall effectiveness of a model, and Precision describes the class agreement for Clapper rails given by the model. Sensitivity represents 
model effectiveness in classifying Clapper rails, while specificity represents model effectiveness in classifying King rails. The area under the curve 
(AUC) describes the model’s ability to avoid false species identifications. Cohen’s kappa coefficients (Κ) represent the corrected classification score for 
inter‐rate agreement by chance.

TA B L E  3   Relative importance of five acoustic parameters used in classification of kek notes from King and Clapper rails

Classification method

Acoustic parameter

Frequency 95% Peak frequency Q1 frequency Q3 frequency Frequency 5%

Random Forest 0.000 0.2516 0.3060 0.3757 0.4611

Support vector machine 0.000 0.2608 0.3090 0.3627 0.4131

k‐nearest neighbor 0.000 0.2491 0.3036 0.3760 0.4102

Weighted k‐nearest 
neighbor

0.000 0.2508 0.2955 0.3310 0.3965

Note. Comparison is between classification methods that resulted in >70% accuracy.
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>50%, suggesting moderate to substantial agreement between true 
and model‐predicted classifications (Landis & Koch, 1977). Although 
both Random Forests and weighted k‐nearest neighbor methods 
rely upon the same information, each analysis offered differing 
advantages and disadvantages for classification. Random Forest 
combines results from multiple decision trees, thus overcoming the 
problem of overfitting symptomatic of CART (Breiman, 2001). As a 
consequence, Random Forest possesses a flexible framework and 
maintains high accuracy even when portions of the data are missing 
(Cutler et al., 2007). This may be especially beneficial when combin-
ing multiple datasets. However, due to its complex structure, inter-
preting Random Forests can be less intuitive and it can be difficult 
to determine the underlying relationships between parameters and 
classes. By contrast, weighted k‐nearest neighbor is robust to noisy 
data because the distance function it uses can be adjusted to ac-
commodate large variances within the data (Zhao & Chen, 2016). 
However, nearest neighbor classification methods require selection 
of an appropriate value of the parameter k. Selecting a value that is 
too small can lead to overfitting and negative effects of noise, while 
selecting a value that is too large creates generalization, but reduces 
the negative effects of noisy data (Zhao & Chen, 2016).

Nonparametric algorithms resulted in higher classification ac-
curacy than parametric classification methods. The success of 
nonparametric methods for species classification is likely a reflec-
tion of the characteristics of and the relationships among the vo-
calization parameters. In particular, nonparametric analyses provide 
more flexibility with regard to distributions, nonlinearity, parameter 
selection, and outliers (Friedl & Bradley, 1997; Pal & Mather, 2003; 
Timofeev, 2004), all of which were relevant to our dataset.

4.2 | Parameter selection

Parameter selection played a key role in each method’s ability to 
differentiate between species. Spectrographic software is currently 
limited in its ability to automatically detect and capture the full spec-
trum of species vocalizations (Bardeli et al., 2010; Towsey, Planitzm, 
Nantes, Wimmer, & Roe, 2012). Thus, manual analysis of recordings 
provides higher rates of accuracy, but can produce inherent error in 
the selection of vocalizations. Parameter selection can also be af-
fected by the quality of recordings and underlying background noise, 
both of which can ultimately skew frequency and duration of meas-
urements and limit which parameters can be included in an analysis.

Currently, there are no standard criteria for selecting parameters 
for analysis of avian vocalizations. For differentiation between rail 
species, we were limited to five frequency‐derived parameters due 
to high levels of pairwise correlation among initial seven parameters. 
The addition of new parameters describing variation in the temporal 
domain and aggregated phrases and notes could possibly increase the 
statistical power of our analyses (Thompson, LeDoux, & Moody, 1994). 
Although parametric classification methods require parameter selec-
tion prior to analysis, nonparametric classification methods allow for 
parameter selection during analysis. We conducted parameter selec-
tion prior to statistical analyses to ensure consistency of parameters 

across all models for comparison. Overall, the relative importance of 
each parameter is dependent on the classification method used.

4.3 | Alternative processing and 
statistical techniques

We selected our methodology for processing and preparing the acous-
tic data from among many available techniques for understanding and 
evaluating avian vocalizations. We processed our acoustic data with a 
commonly used sound analysis software to facilitate transfer of knowl-
edge to other ecologists and conservation biologist wishing to imple-
ment similar analyses. Although sound analysis software packages such 
as Raven Pro, Sound Analysis Pro, and AviSoft‐SASLab Pro all provide 
a user‐friendly interface for spectrographic analysis, they also impose 
constraints. Within Raven Pro, we accounted for differences in sam-
pling rates between sites and species by adjusting the window sizes 
to get similar resolutions. However, we could not make the frequency 
resolutions exactly the same because Raven Pro only allows for discrete 
window size options in a pull‐down menu, thus not allowing us to enter 
the exact value that would make the windows equivalent. Nevertheless, 
the differences in the adjusted sampling rates were marginal and should 
not have altered the differentiation process. For parameter selection, 
we conducted fast Fourier transformations and selected parameters 
from the power spectra performed in previous studies (Bardeli et al., 
2010; Towsey et al., 2012; Zollinger, Podos, Nemeth, Goller, & Brumm, 
2012). Alternatively, we could have chosen to use a constant‐Q trans-
formation to represent the spectral data (Brown & Pucketter, 1992). We 
did not take this approach primarily because common acoustic software 
packages only include the option for Fourier transformations.

An alternative technique for parameter selection is the use of 
Mel‐Frequency Cepstral Coefficients (MFCCs) for acoustic feature 
extraction. MFCCs are a signal representation method used in audio 
classification tasks, most frequently for human speech recognition 
(Davis & Mermelstein, 1980). The basis for the Mel‐frequency scale 
is derived from the human perceptual system, which is not the same 
as that of birds. Additionally, this methodology is less intuitive for 
practitioners to implement as it requires calculation of the MFCC 
parameters by segmenting calls into overlapping frames and trans-
forming the power spectrum of each frame into logarithmic mel‐fre-
quency spectrum using triangular filter (Davis & Mermelstein, 1980; 
Fagerlund 2007; Towsey et al., 2012). When using MFCCs, songs and 
calls are parameterized using descriptive measures derived from the 
temporal and spectral domains. This method has been used for au-
tomated recognition of calls of multiple avian species (Cai, Ee, Pham, 
Roe, & Zhang, 2007; Dufour, Artieres, Glotin, & Giraudet, 2014; 
Fagerlund 2007; Lee, Lee, & Huang, 2006; Potamitis, Ntalampiras, 
Jahn, & Riede, 2014). While MFCCs are a viable method for classi-
fying bird songs, in certain situations they can be outperformed by 
other machine learning methods (Stowell & Plumbley, 2014).

Our analysis evaluated the performance of nine classification tools, 
but this was by no means exhaustive. Dynamic time warping has been 
used to match spectrograms of syllables from Indigo Buntings (Passerina 
cyanea) and Zebra Finches (Taeniopygia guttata) to a repository of 
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spectrograms (Anderson, Dave, & Margoliash, 1996). Alternatively, 
Gaussian mixture models (GMMs) estimate the probability density 
function used for statistical classification by modeling complex distri-
butions with multiple modes (Brown & Smaragdis, 2009; Kwan et al., 
2006; Roch, Soldevilla, Burtenshaw, Henderson, & Hildebrand, 2007; 
Somervuo, Härmä, & Fagerlund, 2006). Hidden Markov models (HMMs) 
take GMMs a step further by modeling the temporal data in a sequence 
of states defined by GMMs (Clemins, 2005; Kogan & Margoliash, 1998). 
Using a sequence of GMMs to explain the input data, HMMs can allow 
for sensitivity in temporal changes within a call and can thereby be used 
to describe the structure of the call (Brown & Smaragdis, 2009; Chu & 
Blumstein, 2011; Trawicki, Johnson, & Osiejuk, 2005).

4.4 | Intrinsic and extrinsic factors influencing call 
classification

Intrinsic and extrinsic factors influence the structure of vocalizations 
and thus the ability to distinguish between species and individuals. 
Marsh bird vocalizations can vary with sex, age, breeding status, and 
proximity to conspecifics (Conway & Gibbs, 2001; Legare, Eddleman, 
Buckley, & Kelly, 1999; Robertson & Olsen, 2014; Smith, 1974; Zembal 
& Massey, 1987). Recording artifacts can also introduce variability. The 
type of audio recording equipment, recording quality, distance from 
the bird to the recorder, and the direction the bird is calling relative to 
the recorder (Conway & Gibbs, 2011) are acoustic sampling variables 
that can be adjusted during the recording process. Environmental fac-
tors such as the strength or direction of wind, variation in tempera-
ture and humidity, level of background noise, and presence of thick 
vegetation can result in underlying recording artifacts that may need 
to be accounted for during spectrographic analysis.

The slight variation we observed in kek notes between King and 
Clapper rails may be in part a reflection of inter‐species differences 
in body size (Bowman, 1983; Tubaro & Mahler, 1998; Wallschager, 
1980). Male Clapper rails (329.4 ± 26.7 g) are, on average, signifi-
cantly smaller than male King rails (369.6 ± 34.9 g; Perkins, King, 
Travis, & Linscombe, 2009), although their size distributions overlap. 
It is therefore possible that larger bodied male King rails produce kek 
vocalizations with on average lower frequencies than those of male 
Clapper rails. Also, Clapper rails possessed a larger frequency range 
(~15% wider) than King rails. By design, our study provides a metric 
that allows for comparison of breeding males only, given that female 
King and Clapper rails are not known to kek (Meanley, 1969). We tar-
geted kek calls since these vocalizations are heard most prominently 
during the breeding season, thereby providing a reliable estimate of 
occupancy and an opportunity to record a large sample of calls.

The potential for hybridization also presents a problem for con-
servation biologist and those interested in species identification 
through classification of vocalizations. The males of both species 
hide in emergent vegetation while using kek calls to advertise to 
mates (Massey & Zembal, 1987), making aural identification the pri-
mary method for species identification. However, both species are 
known to respond to heterospecific calls (Conway & Nadeau, 2010). 
Although our statistical tools were able to differentiate between the 

species, the introduction of hybrid individuals may alter model de-
velopment and performance. Hybrid vocalizations could either have 
a vocalization structure more similar to one parent species or they 
could fall onto a gradient between species. Currently, although hy-
brids are known to occur, there are no published records of vocaliza-
tions produced from a confirmed hybrid individual and thus we were 
not able to consider such birds in our analyses. However, several sta-
tistical approaches used herein, both parametric and nonparametric, 
can provide an estimate of the probability of assignment to a specific 
classification, enabling us to identify potential hybrid individuals.

Finally, selecting the appropriate audio recording equipment is a key 
component to capturing vocalizations. However, understanding what 
equipment to choose presents challenges. Recording equipment varies 
by cost, durability, size, weight, sampling rate, battery life, and sound 
quality. The selection process becomes even more complicated when 
weighing budget and temporal constraints against the number of sam-
pling locations, sampling effort, and availability of personnel. For exam-
ple, while researchers with handheld shotgun microphones can adjust 
proximity and directionality relative to the calling bird to provide higher 
quality recordings, autonomous recording units (ARUs) can record for 
longer time periods using fewer person‐hours in the field. Ultimately, re-
cording equipment selection depends on the goals of the project and re-
cording quality considerations should be balanced with sampling effort.

5  | CONCLUSION

Acoustic surveying has become an increasingly popular management 
tool and is the predominant surveying technique for secretive marsh 
birds, such as the King and Clapper rail. Our analysis aims to facilitate 
the process of distinguishing each species within a management area. 
Establishing occupancy of each species, particularly in fragile brackish 
coastal marshes, could be critical in determining management prac-
tices and in allocating resources for conservation. Nonparametric clas-
sification methods outperformed parametric classification methods 
for King and Clapper rail kek note differentiation. Of the nine classi-
fication tools, Random Forest was the most accurate, correctly clas-
sifying 81.1% of call notes to species, with a kappa statistic of 62.3%. 
This work suggests that rail vocalizations are likely difficult for human 
observers to tell apart, but that appropriate statistical tools may pro-
vide an alternative method for acoustic species classification where 
other capture‐ or genotype‐based survey techniques are not possible.
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