
 

www.aging-us.com 10117 AGING 

INTRODUCTION 
 

Alzheimer’s disease (AD) is an age-related chronic 

neurodegenerative disease. In clinical, AD is 

characterized by gradual decline in memory and 

cognitive ability [1]. Excessive accumulation of 

amyloid-β (Aβ) and abnormally hyperphosphorylated 

tau protein are the main pathologies of AD [2]. The Aβ 

hypothesis is considered as one of the main reason for 

AD. Aβ accumulation induces neural oxidative stress, 

neuroinflammation and apoptosis, which lead to synaptic 

injury, neuronal death and cognitive impairment [3]. 

Chronic periodontitis (CP), which is caused by 
Porphyromonas gingivalis (P. gingivalis), has been 

identified as a risk factor for AD [4, 5]. Recently, in AD 

patients, infectious agents have been found in the brain, 

which cause neuroinflammation [6, 7]. Aβ seems to be 

an antimicrobial peptide against infectious 

microorganisms [8]. P. gingivalis lipopolysaccharide 

(LPS) has been found in AD patients’ brains [9]. 

Treatments targeting Aβ are considered to slow the 

progression of AD. However, all of the clinical trials 

were reported failed [10]. The main reason is that drug 

treatment is too late during AD course. Currently, there 
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ABSTRACT 
 

Amyloid-β (Aβ) accumulation is one of the main pathological hallmarks of Alzheimer’s disease (AD). 
Porphyromonas gingivalis (P. gingivalis), the pathogen of chronic periodontitis, could cause Aβ accumulation 
and was identified in the brain of AD patients. Salvianolic Acid B (SalB) has been proven to have the 
neuroprotective effect. Whether SalB could protect against P. gingivalis-induced cognitive impairment is still 
unknown. In this study, a P. gingivalis-infected mouse model was employed to study the neuroprotective role 
of SalB. The results showed that SalB (20 and 40 mg/kg) treatment for 4 weeks could shorten the escape 
latency and improve the percentage of spontaneous alternation in the P. gingivalis-infected mice. SalB 
inhibited the levels of reactive oxygen species and malondialdehyde, while increased the levels of antioxidative 
enzymes (superoxide dismutase and glutathione peroxidase). SalB decreased the levels of IL-1β and IL-6, 
increased the mRNA levels of bdnf and ngf in the brain of P. gingivalis-infected mice. In addition, SalB obviously 
decreased the level of Aβ. SalB elevated the protein expression of ADAM10, while downregulated BACE1 and 
PS1. SalB increased the protein expression of LRP1, while decreased RAGE. In conclusion, SalB could improve 
cognitive impairment by inhibiting neuroinflammation and decreasing Aβ level in P. gingivalis-infected mice. 
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are no drugs that could prevent or delay AD progression. 

Thus, finding effective therapeutic drugs targeting  

P. gingivalis is a possible way for AD. 

 
Salvia miltiorrhiza is a common Chinese medicinal herb 

in China. It contains some potential active ingredients, 

including Salvianolic acid B (SalB; Figure 1A). SalB is 

extracted from the roots of Salvia miltiorrhiza Bunge 

[11]. SalB have some well-known pharmacological 

actions, such as anti-oxidative stress, anti-inflammation 

[12–14]. Previous studies have indicated that SalB 

could protect against cardiovascular diseases [15–17]. 

In addition, SalB also possesses neuroprotective effect 

against AD. SalB can inhibit Aβ aggregation and fibril 

formation [18]. Besides, SalB can decrease Aβ level by 

inhibiting BACE1 activity [19, 20]. However, whether 

SalB could improve the cognitive impairment in  

P. gingivalis-infected mice is unclear.  

 

 
 

Figure 1. SalB improves memory deficits in P. gingivalis-infected mice. (A) The molecular structure of SalB; (B) Escape latency of 
Morris Water Maze test; (C) Crossing times of the platform; (D) Time spend in the target quadrant; (E) Swimming speed; (F) Percentage of 
spontaneous alternation of Y-maze. Experimental values were expressed as mean ± SEM (n = 15 per group). *P < 0.05, **P < 0.01 vs. Control; 
#P < 0.05, ##P < 0.01 vs. P.g. 
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In this study, a new AD model, P. gingivalis-infected 

mouse model, was employed to investigate the 

neuroprotective role of SalB. P. gingivalis infection can 

cause Aβ aggregation and neuroinflammation in the 

brain, which is similar to AD pathology. Different doses 

(20 and 40 mg/kg) of SalB were used to treat the mice. 

We revealed that SalB could obviously protect against 

P. gingivalis-induced memory deficits by inhibiting 

neuroinflammation and decreasing Aβ level.  

 

RESULTS 
 

SalB improves memory deficits in P. gingivalis-

infected mice 
 

In order to know whether SalB could improve the 

cognitive impairment in P. gingivalis-infected mice, we 

firstly tested the effect of SalB on cognitive deficits in P. 
gingivalis-infected mice by behavioral tests. As shown 

in the Morris water maze test (Supplementary Figure 1, 

Figure 1B–1E), the escape latency was obviously 

increased in P. gingivalis-infected mice, when compared 

with control group. However, SalB (20 and 40 mg/kg) 

significantly shortened the time spent in finding the 

platform. On the 7th day, we removed the platform to 

estimate the spatial working memory. The P. gingivalis-

infected mice had less crossing times and spent shorter 

time in the target quadrant than control group. The SalB 

groups increased crossing times and shortened time 

spent in the target quadrant. The average swimming 

speed was similar among all groups (Figure 1E). The Y-

maze spontaneous alternation test was also used to detect 

the neuroprotective effect of SalB (Figure 1F). The 

spontaneous alternation index was impaired in  

P. gingivalis-infected mice. SalB could improve the 

spontaneous alternation in P. gingivalis-infected mice. 

The data suggested that SalB had neuroprotective effect 

against memory impairment in P. gingivalis-infected 

mice. 

 

SalB ameliorates oxidative stress and 

neuroinflammation in P. gingivalis-infected mice 

 

We further investigated the protection against oxidative 

stress and anti-neuroinflammation effects of SalB. As 

shown in Figure 2, increased levels of oxidative stress 

indicators, ROS and MDA, as well as suppressed 

activities of antioxidant enzymes, SOD and GSH-Px, 

 

 
 

Figure 2. SalB ameliorates oxidative stress in P. gingivalis-infected mice. The levels of ROS (A), MDA (B) and the enzymes activities 
of SOD (C), GSH-Px (D) were detected in the hippocampus of P. gingivalis-infected mice. Experimental values were expressed as mean ± SEM 
(n = 6 per group). *P < 0.05, **P < 0.01 vs. Control; #P < 0.05, ##P < 0.01 vs. P.g. 
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were observed in the hippocampus of P. gingivalis-

infected mice. SalB significantly decreased the levels of 

ROS and MDA. Moreover, SalB significantly increased 

the activities of SOD and GSH-Px. In addition, 

inflammatory factors (IL-1β and IL-6) were also 

elevated in the hippocampus of P. gingivalis-infected 

mice, compared with control group (Figure 3). SalB 

significantly decreased the levels of IL-1β and IL-6. 

These results indicated that the neuroprotective effects 

of SalB could be related to its protection against 

oxidative stress and anti-neuroinflammation effects. 

 

SalB improves the expressions of neurotrophic 

factors in P. gingivalis-infected mice 
 

We also tested the neurotrophic factors (BDNF and 

NGF) to evaluate the nervous system function of P. 
gingivalis-infected mice. As shown in Figure 4, the 

mRNA levels of bdnf and ngf were decreased in the 

hippocampus of P. gingivalis-infected mice. After 

treatment with SalB, the mRNA levels of bdnf and ngf 
were increased. These data suggested that SalB could 

increase the gene expressions of bdnf and ngf. 
 

SalB decreases Aβ metabolism in P. gingivalis-

infected mice 

 

In order to illustrate whether the neuroprotective effect 

of SalB was related to Aβ, we tested the Aβ level in the 

hippocampus of P. gingivalis-infected mice (Figure 5). 

Both Aβ 1-40 and Aβ 1-42 were obviously increased in 

the hippocampus of of P. gingivalis-infected mice. SalB 

effectively decreased the Aβ 1-40 and Aβ 1-42 levels. 

We further studied the related mechanisms. As shown 

in Figure 6, SalB could elevate the protein expression of 

ADAM10, while downregulate the protein expressions 

of BACE1 and PS1. These data indicated that SalB 

could inhibit Aβ generation, which was in accord with 

previous study. In addition, Aβ transportation-related 

proteins were also detected. SalB increased the protein 

 

 
 

Figure 3. SalB ameliorates neuroinflammation in P. gingivalis-infected mice. The inflammatory factors levels of IL-1β (A) and IL-6 
(B) in the hippocampus of P. gingivalis-infected mice. Experimental values were expressed as mean ± SEM (n = 6 per group). *P < 0.05,  
**P < 0.01 vs. Control; #P < 0.05, ##P < 0.01 vs. P.g. 
 

 
 

Figure 4. SalB improves neurotrophic factors in P. gingivalis-infected mice. The mRNA levels of bdnf (A) and ngf (B) were detected 
in the hippocampus of P. gingivalis-infected mice. Experimental values were expressed as mean ± SEM (n = 6 per group). *P < 0.05, **P < 0.01 
vs. Control; #P < 0.05, ##P < 0.01 vs. P.g 
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Figure 5. SalB decreases Aβ levels in P. gingivalis-infected mice. The levels of Aβ1-40 (A) and Aβ1-42 (B) were detected in the 
hippocampus of P. gingivalis-infected mice. Experimental values were expressed as mean ± SEM (n = 6 per group). *P < 0.05, **P < 0.01 vs. 
Control; #P < 0.05, ##P < 0.01 vs. P.g. 
 

 
 

Figure 6. SalB inhibits Aβ generation in P. gingivalis-infected mice. Western blot results of APP (A), ADAM10 (B), BACE1 (C) and PS1 
(D) were detected in the hippocampus of P. gingivalis-infected mice. Experimental values were expressed as mean ± SEM (n = 3 per group). 
*P < 0.05, **P < 0.01 vs. Control; #P < 0.05, ##P < 0.01 vs. P.g. 
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expression of LRP1 and decreased the protein 

expression of RAGE (Figure 7). These data suggested 

that Aβ generation and transportation mechanisms were 

also involved in the neuroprotective effects of SalB. 

 

DISCUSSION 
 

In this study, we used a new AD animal model,  

P. gingivalis-infected mouse model, to study the 

neuroprotective effect of SalB. P. gingivalis can be found 

AD patients’ brains and cause Aβ aggregation and 

neuroinflammation. Behavioral tests (Morris Water Maze 

test and Y-maze test) suggested that SalB (20 and 40 

mg/kg) could ameliorate the memory impairment in P. 
gingivalis-infected mice. Moreover, SalB could protect 

neuron against oxidative stress and increase the mRNA 

levels of neurotrophic factors. In addition, SalB could 

ameliorate neuroinflammation, inhibit Aβ generation and 

promote Aβ transportation. 

 
P. gingivalis is mainly found in gingival and periodontal 

infections [21]. Recent studies have proven that patients 

with P. gingivalis infection could develop into AD or 

hasten the progression of AD [6, 22]. Periodontitis 

allows the bacteria entering the whole body through the 

bloodstream. AD is clinically characterized by the 

impairment of learning and memory. A great deal of 

studies showed that Aβ plays the central role in AD 

development [23–25]. P. gingivalis can cause Aβ 

accumulation, which initiates the cascade reaction in AD 

process. In this study, P. gingivalis-infected mice were 

employed to mimic AD pathology. To study the 

neuroprotective effect of SalB, two behavioral tests, 

including Morris water maze and Y-maze tests, were 

used to evaluate the learning and memory ability. 

Results indicated that SalB treatment protected against 

memory impairment in the P. gingivalis-infected mice. 

 

SalB, an active compound from the roots of Salvia 
miltiorrhiza Bunge, has been revealed to neuroprotective 

effects [26, 27], which is mainly related to the anti-Aβ 

fiber and antioxidant effects [18, 28, 29]. Aβ 

accumulation in the brain can induce a series of 

pathological changes, including oxidative stress. 

Oxidative stress can cause apoptosis of neuron and 

induce dysfunction of nervous system [30]. ROS 

generation and increased level of MDA in the brain are 

the most important indicators of oxidative stress [31, 

32]. In addition, antioxidant enzymes, such as SOD and 

GSH-Px, can be impaired by Aβ fiber [33]. Consistently, 

an increased oxidative stress statement and a decrease of 

neurotrophic factors were observed in the brain of P. 
gingivalis-infected mice. As expected, SalB ameliorated 

the Aβ-induced oxidative stress and increased the levels 

of neurotrophic factors in the brain of P. gingivalis-

infected mice. These findings suggested that of the 

antioxidant capacity of SalB might be involved in the 

neuroprotective effect. 

 

Inhibiting Aβ generation is an effective method to 

prevent Aβ accumulation. Aβ peptides are generated by 

APP excision. APP is a transmembrane protein, which 

 

 
 

Figure 7. SalB improves Aβ transportation in P. gingivalis-infected mice. Western blot results of LRP1 (A) and RAGE (B) were 
detected in the hippocampus of P. gingivalis-infected mice. Experimental values were expressed as mean ± SEM (n = 3 per group). *P < 0.05, 
**P < 0.01 vs. Control; #P < 0.05, ##P < 0.01 vs. P.g. 
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can be cleaved by α- (ADAM10), β- (BACE1) and γ-

secretase (PS1). The cleavage site of ADAM10 can 

prevent Aβ generation [34, 35]. When APP is mainly 

cleaved by BACE1, Aβ generation is increased. Thus, 

activation of ADAM10 and inhibition of BACE1 is an 

effective path to reduce Aβ accumulation. Previous 

studies have reported that SalB could inhibit BACE1 

activity in vitro [19, 20]. In this study, we further 

studied this in vivo. Consistently, SalB decreased the 

level of Aβ. SalB decreased the protein expressions of 

BACE1 and PS1 and increased the protein expression of 

ADAM10 in the brain of P. gingivalis-infected mice. 

Aβ can also be transported across the BBB to the 

outside of brain. LRP1 is the main transporter for Aβ 

efflux at the BBB, while RAGE can transport Aβ from 

the circulation into the brain [36–38]. Thus, activating 

LRP1 and inhibiting RAGE can prevent Aβ enter the 

brain. In this study, SalB effectively increased the 

protein expression of LRP1 and decreased the protein 

expression of RAGE in the brain of P. gingivalis-

infected mice. These results indicated that SalB could 

improve cognitive impairment via regulating Aβ 

metabolism. 

 

In summary, this study provided some evidences that 

SalB could improve cognitive impairment via regulating 

neuroinflammation and Aβ metabolism in P. gingivalis-

infected mice. SalB might be developed as an anti-AD 

drug. However, further studies are still needed. We will 

further study the mechanisms of P. gingivalis-induced 

Aβ accumulation. In addition, the key molecule of the 

target in SalB’s effect is still needed to identify. 

 

MATERIALS AND METHODS 
 

Materials 
 

Salvianolic acid B (SalB, purity > 99%) was purchased 

from the Chinese National Institute for the Control of 

Pharmaceutical and Biological Products (Beijing, 

China). 2’,7’-dichlo-rofluorescin diacetate (DCFH-DA) 

were obtained from Invitrogen (Carlsbad, CA,  

USA). Chemical kits used for the detection of 

malondialdehyde (MDA), superoxide dismutase (SOD), 

and glutathione peroxidase (GSH-Px) were purchased 

from the Nanjing Jiancheng Bioengineering Institute 

(Nanjing, China). The RNeasy kit was purchased from 

Qiagen (Hilden, Germany). SuperScript III Reverse 

Transcriptase was purchased from Invitrogen (Carlsbad, 

CA, USA). ELISA kits used for the detection of IL-1β, 

IL-6, Aβ1-40 and Aβ1-42 were purchased from 

Invitrogen. The blots were probed with the following 

antibodies: anti-Low density lipoprotein receptor-

related protein 1 (LRP1, Abcam); anti-receptor for 

advanced glycation endproducts (RAGE, Abcam); anti-

ACTB (Sigma, Aldrich); secondary antibody 

horseradish peroxidase- (HRP-) conjugated goat anti-

rabbit IgG (Cell Signaling Technology). The Western 

blot chemiluminescent horseradish peroxidase substrate 

was purchased from Millipore (USA). All other 

reagents and chemicals used in the study were of 

analytical grade. 

 

Animal and treatment 
 

Twelve-month-old male C57BL/6J mice were obtained 

from the Model Research Centre of Shandong 

University and were kept in a specific-pathogen-free 

environment according to protocols approved by the 

Animal Care and Use Committee of Shandong 

University. The mice were kept under controlled 

temperature (22 ± 2 °C) and humidity (55 - 70 %) 

conditions. A 12-hour light/12- hour dark cycle was 

maintained with food and water available ad libitum. 

The mice were kept in the cage for one week to adapt to 

the environment, a week prior to the experiment.  

 

These mice were infected with P. gingivalis according 

to previous method [22]. Briefly, mice were infected 

with P. gingivalis (1×108 CFU/mouse) every 3 days by 

intraperitoneally injection for 3 weeks. The mice were 

randomly assigned to four treatment groups (n = 15 per 

group): vehicle control group (0.9 % saline),  

P. gingivalis-infected group (P.g), low-dose SalB group 

(P. gingivalis-infected mice, SalB 20 mg/kg/d), high-

dose SalB group (P. gingivalis-infected mice, SalB 40 

mg/kg/d). Mice were treated with saline and SalB, 

respectively, by gavage, once per day for four weeks. 

 

Morris water maze test 
 

The Morris water maze test was used to detect spatial 

learning and memory ability. The procedure that was 

followed has been mentioned in previous studies [39]. 

In brief, the mice were subjected to the navigation test 

for five consecutive days. For each daily trial, there 

were four sequential training trials. The escape latency 

was recorded. 

 

Y-maze test 

 

The Y-maze test was used to evaluate the working 

memory performance. The procedure has been 

reported previously [40]. Initially, the mice were 

placed in one arm of the maze. Subsequently, the 

number of time each mouse entered the other arm in a 

5 min interval was recorded. After behavior tests, all 

mice were anesthetized with chloral hydrate 

(intraperitoneal injection) and sacrificed by cervical 

dislocation. Then, the hippocampus tissues of brain 

were separated on the ice and frozen in the -80 °C 

refrigerator for further tests. 
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Reactive oxygen species (ROS) level 
 

The tissues of the mice hippocampus were 

homogenized in cold saline. The ROS level was 

measured by the DCFH-DA fluorescent dye method. 

Measure fluorescence (Ex/Em = 485/535 nm) in a 

microplate reader with a fluorescence microscope. The 

intracellular ROS level obtained was noted. 

 

Malondialdehyde (MDA) level, superoxide 

dismutase (SOD) and glutathione peroxidase (GSH-

Px) activities 

 

The tissues of the mice hippocampus were 

homogenized in cold saline. The homogenate was 

centrifuged, and the supernatant was collected to detect 

the level of MDA and the activities of SOD and GSH-

Px using kits (Nianjing Jiancheng Bioengineering 

Institute, Nanjing, China). The procedures mentioned in 

the manufacturer’s instructions were followed. 

 

Quantitative PCR 

 

The tissues of the mice hippocampus were 

homogenized. The total RNA was isolated using an 

RNeasy kit and reverse-transcribed using SuperScript 

III Reverse Transcriptase. The gene expression was 

determined relative to a calibrator and normalized to the 

housekeeping gene β-actin using the standard curve 

method. Forward and reverse primers were as follows: 

Nerve growth factor (Ngf): For, 5′-CAAGGACGCAG 

CTTTCTATACTG-3′, Rev, 5′-CTTCAGGGACAGAG 

TCTCCTTCT-3′; Brain-derived neurotrophic factor 

(Bdnf): For, 5′-TACTTCGGTTGCATGAAGGCG-3′, 

Rev, 5′-GTCAGACCTCTCGAACCTGCC-3′; β-actin: 

For, 5′-AGAGCTACGAGCTGCCTGAC-3′, Rev, 5′-

AGCACTGTGTTGGCGTACAG-3′. 

 

ELISA 
 

The tissues of the mice hippocampus were homogenized 

in cold saline. The homogenate was centrifuged, and the 

supernatant was collected to detect the levels of IL-1β, 

IL-6, Aβ1-40 and Aβ1-42 by using an ELISA kit 

(Invitrogen) according to the manufacturer’s instruction.  

 

Western blot analysis 
 

The tissues of the mice hippocampus were homogenized 

and lysed in the sample buffer. The protein was 

subjected to SDS-polyacrylamide gel electrophoresis 

(PAGE) analysis and transferred to PVDF membranes. 

The membranes were incubated with anti-LRP1, anti-

RAGE, anti-ACTB. Then the membrane was incubated 

with horseradish peroxidase-conjugated anti-rabbit. 

Finally, the bands on the membrane were visualized. 

Statistical analysis 
 

Analysis of the data was performed using GraphPad 

Prism (V6, California, USA). The results were expressed 

as the mean ± SD. All statistical analyses were evaluated 

using Student’s t-test and ANOVA in SPSS 19.0 

statistical software (IBM, Endicott, NY). The differences 

were considered as statistically significant at p < 0.05. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Different dosages of SalB protects against memory deficits in P. gingivalis-infected mice. Escape 
latency of Morris water maze test. Experimental values were expressed as mean ± SEM (n = 15 per group). ** P < 0.01 vs. Control; #P < 0.05, 
##P < 0.01 vs. P.g. 


