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Abstract

Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of
brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable
difference in rates (h2$0.62) and a corresponding 20% difference in interlick interval (mean 6 SEM = 116.361 vs
95.461.1 ms). We systematically quantified motor output in these strains, their F1 hybrids, and a set of 64 BXD progeny
strains. The mean primary interlick interval (MPI) varied continuously among progeny strains. We detected a significant
quantitative trait locus (QTL) for a CPG controlling lick rate on Chr 1 (Lick1), and a suggestive locus on Chr 10 (Lick10).
Linkage was verified by testing of B6.D2-1D congenic stock in which a segment of Chr 1 of the D2 strain was introgressed
onto the B6 parent. The Lick1 interval on distal Chr 1 contains several strong candidate genes. One of these is a sodium/
potassium pump subunit (Atp1a2) with widespread expression in astrocytes, as well as in a restricted population of neurons.
Both this subunit and the entire Na+/K+-ATPase molecule have been implicated in rhythmogenesis for respiration and
locomotion. Sequence variants in or near Apt1a2 strongly modulate expression of the cognate mRNA in multiple brain
regions. This gene region has recently been sequenced exhaustively and we have cataloged over 300 non-coding and
synonymous mutations segregating among BXD strains, one or more of which is likely to contribute to differences in central
pattern generator tempo.
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Introduction

Rhythmic movements such as those controlling circulatory

function, respiration, and locomotion, are fundamental for life. So

are rhythmic oromotor movements involved in feeding and

drinking, including mastication, fluid licking or lapping, suckling,

and swallowing. Like respiration and locomotion, these move-

ments are thought to be controlled by one or more ‘‘central

pattern generators’’ (CPGs), intrinsic neuronal circuits in the

brainstem or spinal cord that produce rhythmic output

[1,2,3,4,5,6,7]. In rodents, licking from a tube may be thought

of as a surrogate for a more natural lapping behavior (drinking

from an open surface of water), although the tongue movements

are not exactly the same [8]. Regardless, licking from a spout has

long been used as a model of rhythmic behavior in rats and mice,

as it is relatively easy to measure and quantify [8,9,10,11,12].

Licking involves a pattern of alternating tongue protrusion and

retraction, predominantly controlled by extrinsic tongue muscles.

Physiological and anatomical evidence suggests that the lick CPG

is located in the medullary reticular formation, which either

directly or indirectly provides input to the adjacent hypoglossal

nucleus [13,14,15]. However, the specific neurons, their connec-

tivity, and mechanisms responsible for licking pattern generation

are unknown.

Recent studies in mice and other species support the utility of

molecular and genetic approaches for dissecting the organization

of both invertebrate and vertebrate CPGs [16,17]. Substantial

differences exist among common inbred strains of mice regarding

lick rate or speed [18,19,20], providing a useful starting point for

genetic analysis. Results from two groups using different types of

lickometers indicated that the DBA/2J (D2) strain possesses a

faster lick rate than C57BL/6J (B6), measured either by lick counts

in short (5 s) trials or by computing inter-lick interval (ILI)

duration [21,22]. These strains are the progenitors of the BXD

recombinant inbred strain set. This genetic reference population,

completely genotyped and currently consisting of ,150 lines, has

been used recently for mapping quantitative trait loci (QTLs) that

influence a host of behavioral, anatomical, and physiological

phenotypes [23,24,25,26].

In this experiment, we measured fluid licking in 63 BXD strains,

as well as B6, D2, and F1 mice, of both water and 0.1 M sucrose

using a relatively simple, high-throughput licking assay [21]. We

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e38169



sought to identify QTLs that influence licking behavior, especially

lick rate and its underlying CPG. Water and sucrose were used in

order to investigate the relationship of lick rate to appetitive

behavior, with water acting as a ‘‘neutral’’ stimulus relative to

sucrose, which is highly preferred to water even in fluid-restricted

mice [18].

Methods

Animals
Data were collected from adult male and female mice (Mus

musculus) from the following strains: B6 (n = 13), D2 (n = 14),

B6D2 F1 hybrids (n = 13), as well as two congenic lines: B6.D2 1D

(n = 14) and B6.D2 10M (n = 12). We also phenotyped a set of 64

BXD strains (n = 423 individuals). The majority of mice were bred

at UTHSC, although some were obtained directly from the

Jackson Laboratory (Bar Harbor, ME, USA); these were allowed

to acclimatize to the UTHSC vivarium for several weeks prior to

testing. B6.D2 1D and 10M congenic mice were offspring of

parents kindly provided by Dr Richard Davis and A. Jake Lusis

(UCLA); [27]. For B6.D2 1D, the introgressed fragment (from D2

onto the B6 background) spanned from proximal marker

rs6267646 (154.395967 Mb) to distal marker rs29609526

(197.134686 Mb). For B6.D2 10M, the introgressed fragment

spanned from proximal marker D10Mit299 (66.154402 Mb) to

distal marker rs3706484 (114.541067 Mb; locations from

NCBI37/mm9).

For BXD strains, the number of cases per strain ranged from 3

to 10, with an average of 6.6, although 5 or more mice were tested

in 55 of the 64 strains. Twenty-six of the BXD strains (BXD1

through BXD42) belong to the original sets generated by Taylor

and colleagues [28]. The remaining 38 strains were generated by

Williams, Lu, and colleagues [29]; www.GeneNetwork.org.

Of the 489 total mice tested, 256 were female and 233 were

male. With the exception of 9 of the 64 BXD lines, for which only

one sex was tested, males and females were approximately equally

represented in each genotype. Previously, we found no difference

between sexes in lick rate in relatively large samples of both B6 and

D2 mice [21]. The ages of all mice tested in this study ranged from

50 to 381 days, with a mean age of 120.3 days, and a median of

112 days. 85% of the mice tested were between 71–184 days old.

Few studies have examined the effects of age on licking or taste:

Zhang et al. [30] found no change in lick rhythm in rats from 6 to

12 months of age, but described a slowing of rhythm by 18 months

(548 days). In our dataset, age did not co-vary with lick rate across

all individual mice (r = 0.05). Where possible, we examined age as

a factor within strain in our dataset, but did not see effects on lick

rate (although the small sample sizes precluded meaningful

statistical comparison). In regards to taste, there is little evidence

of effects of age on solution preference [31].

Prior to testing, all mice were housed in plastic home cages in a

temperature and humidity-controlled vivarium on a 12:12-h light-

dark cycle. Food (22/5 rodent diet, Harland Teklad, Madison,

WI) and water were available ad libitum. Approximately 23 h

prior to testing in the lickometer, water bottles were removed from

the cages of individually housed mice and fresh bedding was

provided. Thereafter during the experiment, fluid was only

available during daily lickometer tests, whereas food was available

(in the home cage) only on an ad-lib basis. Mice were weighed

daily prior to testing. The Animal Care and Use Committee at

UTHSC approved this study, and all experiments were carried out

in accordance with the National Institutes of Health Guide for

Care and Use of Laboratory Animals (NIH Publications No. 80–

23), revised 1996.

Apparatus
Mice were tested in the Davis MS160 lickometer (DiLog

instruments, Tallahassee, FL, USA). This apparatus consists of an

opaque test chamber (28617.5616 cm) with a stainless steel mesh

floor. Access to a stainless steel sipper tube (aperture = 2 mm) was

controlled via a motorized shutter. A test period began when the

shutter opened to allow access to the sipper tube, and the mouse

made contact with the sipper tube. Lick contact with the sipper

tube completed an imperceptible electrical circuit (,50 nA) that

allowed the precise time of each contact to be recorded to a

computer file to the nearest ms. Each test period ended 20 minutes

after the first lick.

Lick Testing
All mice were tested in the MS-160 for three consecutive days:

The mice received deionized water on days 1 and 2, and a 0.1 M

sucrose solution on day 3, which is highly palatable to B6 and D2

mice. If a mouse only licked a few times or not at all during the

first day of testing, it was retested on the same day, after other mice

had been tested. Day 1 was therefore treated as a training day.

Lick counts were less robust on this day, with 16% of mice licking

Figure 1. Patterns of licking in representative individual mice.
A. In a 20 minute session licks for B6 (red ticks), F1 (blue ticks), and D2
(green ticks) mice are organized into a number of drinking bouts; in this
view, individual licks are not discernable. B. Expanded view of five
seconds of licking for each of the mice shown in A. Each tick denotes a
single lick contact C. Frequency distributions of ILIs (bin si-
ze = 5 ms),250 ms for each of these mice show primary distributions
with peaks in the range of 50–160 ms. The mean ILI duration in this
interval for each mouse is calculated as the MPI (mean primary ILI).
doi:10.1371/journal.pone.0038169.g001
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less than 100 times. All mice licked $123 times on test day 2

(water), and with the exception of a single BXD 25 mouse (50

licks), all mice licked $198 times on test day 3 (sucrose). On

average, mice maintained 90% of their pre-test body weight on

test day 1, 84% on test day 2, and 82% on test day 3 (note that

body weights were always sampled prior to fluid access and thus

represent the daily minimum). We showed previously that

decreasing % body weight as a result of prolonged restricted fluid

access results in elevation in the number of licks emitted during a

test session, but does not affect lick rate [21].

Analysis
Total lick counts and Inter-lick ILI durations were analyzed

using custom software written by S.J.S. ILI frequency distributions

were created for each mouse for each test session. From these

distributions, an average measure of ILI duration was derived:

The mean primary interlick interval (MPI). This is defined as the

mean ILI from the primary component (50–160 ms) of the ILI

distribution. As most ILIs fall within this primary component, a

smaller MPI value corresponds to a faster lick rate, previously

confirmed by counting licks in short trials [21]. Fluid consumption

during the test sessions was measured by weighing drinking tubes

before and after the session, and volume consumed was corrected

for fluid spillage due to bottle handling. Volume per lick (VPL) was

derived by dividing the corrected volume by total licks. 19 / 926

VPL values (8 for water and 11 for sucrose) were rejected due to

what was likely intake measurement error, e.g. excessive spillage

when removing bottles for weighing, or incorrectly recording the

bottle weight. The criterion for rejection was +/23 SD from the

Figure 2. Histograms for average (± SE) mean primary inter-lick interval (MPI) across all BXD, parental, and F1 strains. A. Water MPI.
B. Sucrose MPI. Green, blue and red bars denote values for D2, F1 and B6, respectively. C. Scatter plot of strain averages for water MPI and sucrose
MPI.
doi:10.1371/journal.pone.0038169.g002
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mean. Additionally, a sucrose MPI value for one mouse was not

calculated due to a corrupted file.

Statistical analyses
Data were analyzed using a general linear model. Simple

regression using a whole model r was used to test the influence of

factors that may affect the trait under consideration, such as the

potential effect of body weight on lick rate or lick count. Effect size

(g2) was computed as the sums of squares explained by the

independent variable over the total sums of squares (in this case,

after the sums of squares due to individual subjects has been

removed). Broad-sense heritability was estimated in BXD mice by

comparing between-strain and total differences using the method

outlined by Hegmann and Possidente [32], in which h2 = VA/

(VA+2VE), where VA = genetic variance and VE = environmental

variance. Multiple comparisons among strains, where appropriate,

were made using a bonferroni corrected t-test (a/n, where a= 0.05

and n = number of comparisons).

QTL mapping
All QTL mapping for MPI, total licks, and VPL (both for water

and sucrose trials) was conducted using interval-mapping software

and genotypes in GeneNetwork.org. We report loci achieving

genome-wide significance (p,0.05) and those considered sugges-

tive (p,0.63) based on permutation tests. Linkage was reported in

terms of the likelihood ratio statistic (LRS). Bootstrap resampling

was used to evaluate the approximate confidence intervals of QTL

peaks. All mean strain data are publicly available at GeneNet-

work.org (GN identifiers GN12296, 12297, 12601,12602,

12604,12605).

Figure 3. Histograms for mean (± SE) number of licks across all BXD, parental, and F1 strains. A. Licks to water. B. Licks to sucrose. Green,
blue, and red bars denote values for D2, F1 and B6, respectively. C. Scatter plot of strain averages for water MPI and sucrose MPI.
doi:10.1371/journal.pone.0038169.g003

Genetic Control of a Central Pattern Generator

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e38169



Analyses of gene expression and sequence variants
Multiple expression datasets from multiple brain regions of

inbred and BXD strains were used in this analysis (see results).

Additional detailed descriptions of strain, sex, tissue preparation,

and microarray method for each individual database is available at

www.genenetwork.org. Tools for correlating phenotype with

expression data are likewise available at this site. RNA–Seq

(RNA sequencing) data was generated at UTHSC [33], and is

available at http://ucscbrowser.genenetwork.org. Short sequence

reads were analyzed using Applied Biosystems whole transcrip-

tome software tools (www. solidsoftwaretools.com/). Reads were

mapped to the B6 reference genome (mm9, US National Center

for Biotechnology Information (NCBI) build 37) with a minimum

alignment score of 24.

Results

Strain values for licking and lick rate in inbred and BXD
strains

Lick data and ILI distributions from representative individuals

illustrate the highly significant and heritable differences between

parental strains and the intermediate phenotypes of F1 hybrids

(Figure 1). These data were collected on day 2, with water as the

stimulus. It is evident that licking across the 20-minute session is

organized into discrete bursts of drinking behavior (Fig. 1A),

including trains of highly rhythmic licks (Fig. 1B). Inter-lick

interval distributions reveal that most intervals occur in a

‘‘primary’’ interval from about 50–160 ms. The mean ILI

duration from the primary interval, termed ‘‘MPI’’, was computed

for each mouse on each day (Fig. 1C) [21]. Moreover, it is evident

Figure 4. Histograms for average (± SE) volume per lick (VPL) across all BXD, parental, and F1 strains. A. Water VPL. B. Sucrose VPL.
Green, blue, and red bars denote values for D2, F1 and B6, respectively. C. Scatter plot of strain averages for water MPI and sucrose MPI.
doi:10.1371/journal.pone.0038169.g004
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in Figure 1 that the distribution of ILI lengths varies significantly

among these strains, with MPI for D2,F1,B6.

The distribution of MPIs for both water and sucrose among all

strains has a continuous distribution from just below 100 ms to just

over 130 ms (Figure 2). The D2 parent is at the fast extreme

(lowest MPI) whereas B6 has a higher MPI (corresponds to slower

licking). The distribution of strain means did not significantly

deviate from normality, for either water or sucrose (Kolmogorov–

Smirnov test, p.0.2). Average strain MPI values in both test

sessions were highly correlated (Fig. 2C; r = 0.96, p,0.05).

Repeated measures ANOVA indicated a slight yet significant

elevation in MPI from water (mean 6 SEM across all

mice = 110.39 ms60.41) to sucrose (mean = 111.05 ms60.43;

F [1,395] = 10.9; p,0.001). However, the small effect size

(g2 = 0.027; i.e. less than 3% of the variability in MPI is accounted

for by the stimulus) suggests that this effect, while significant, is

quite small in magnitude.

Strain distributions were also constructed for either total licks

(Figure 3) or VPL (Figure 4) in response to either stimulus. Again,

a continuous, normal distribution was found for these variables (K-

S, p.0.2). For total licks, mice of all strains possessed higher lick

counts in response to sucrose (overall mean 6

SEM = 1252.9623.9) as compared to water (overall

mean = 692.6613.5). D2 mice were on the low end of the strain

distribution for total licks (Fig. 3A–B), whereas B6 mice possessed

an intermediate phenotype. F1 mice were located intermediate to

the parental strains. Mean strain values for licks to either stimulus

were strongly correlated (r = 0.78, p,0.05; Fig. 3C). B6 and F1

mice were in the higher end of the range for water VPL whereas

D2 mice were intermediate; D2 moved towards the higher end of

the range for sucrose (Fig. 4A–B). Interestingly, F1 mice possessed

the highest VPL for both water and sucrose. While mean strain

values for VPL were strongly correlated in both sessions (r = 0.74,

p,0.05; Fig. 4C), mice of all strains possessed a slightly overall

higher VPL for sucrose (mean 6 SEM = 1.0360.01) than for

water (0.9760.01). This difference was significant (F

[1,379] = 18.96; p,0.0001).

We examined potential effects of sex on each of these variables

across BXD and parental and F1 strains. There were no significant

effects of sex on MPI for either water (average MPI 6

SEM = 110.2960.56 for females, 110.4760.61 for males) or

sucrose (110.6860.58 for females, 111.4260.64 for males). Males

of all strains tended to have higher lick counts for both water

(mean licks 6 SEM = 680.36618.9 for females, 705.73619.4 for

males) and sucrose (1212.63630.7 for females, 1297.55637.1 for

males); only the latter was significant (F [1,393] = 4.35; p,0.04).

There were no significant effects of sex on VPL.

Correlation matrices (Pearson’s r) were constructed across all

individual cases for each variable (MPI, total licks, VPL, body

weight; Table 1) as well as strain means. MPI was not significantly

correlated with any other factor for either water or sucrose.

Number of licks and VPL were negatively correlated for water and

sucrose (r = 20.21 for water, and 20.35 for sucrose; p,0.05). This

correlation was also evident when strain means were used instead

of individual values (r = 20.19 for water, and 20.26 for sucrose;

only the latter was significant at p,0.05). For water, VPL was also

correlated with body weight (r = 0.13; p,0.05). These correlations

suggest that at least some of the variation in lick count is linked to

VPL (i.e. smaller VPL, greater number of licks), and that some of

the variation in VPL may be linked to body weight (i.e. smaller

mice may possess smaller tongues and hence smaller VPLs).

Heritability
Broad-sense heritability (h2) was calculated using raw data for

MPI, total licks, and VPL for both water and sucrose (Table 2).

Heritability was strongest for MPI: h2 = 0.62 for water and 0.65 for

sucrose. The main utility of these estimates is to gauge the

likelihood that subsequent mapping studies will yield QTLs. For a

Table 1. Correlations among all individual cases (BXD, B6, D2 and F1 micet) for MPI, total licks, VPL, and body weight.

A. Water

MPI Licks VPL Body Weight

MPI 1

Licks 0.05 1

VPL 0.05 20.21* 1

Body weight 20.04 20.04 0.13* 1

B. 01 M Sucrose

MPI Licks VPL Body Weight

MPI 1

Licks 0.09 1

VPL 20.01 20.35* 1

Body weight 20.03 20.04 0.04 1

tn = 455 for water, 451 for sucrose (casewise deletion of missing data).
*p value,0.05.
doi:10.1371/journal.pone.0038169.t001

Table 2. Estimated broad-sense heritability.

Trait Heritability

MPI water 0.62

MPI sucrose 0.66

Licks water 0.23

Licks sucrose 0.22

VPI water 0.13

VPI sucrose 0.17

doi:10.1371/journal.pone.0038169.t002
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behavioral trait, these particular heritability values for MPI are

unusually high, a fact that may reflect tight genetic control of

brainstem CPGs.

QTL mapping and validation
We mapped a strong common QTL for water and sucrose MPI

to distal Chr 1 (Figure 5). The QTL for water has a peak likelihood

ratio statistic (LRS) of 25.2, equivalent to a LOD (logarithm of the

odds) score of 5.5 (Figure 6). The empirical p value of detecting a

QTL with this LRS score was determined by mapping 10,000

random permutations of the original data set. For both traits an

LRS of 25 has a genome-wide significance level of p,0.001—a

highly significant threshold. High MPI values (slow lick rates) are

associated with the B allele inherited from the B6 parent. The

additive effect of the B allele at this locus (rs13476241) on MPI is

4.35 ms. The difference between BXD strains that inherited the

D/D and B/B haplotypes in this interval is approximately 9 ms.

The confidence interval of this strong QTL—defined by a 1.5

LOD drop on either side of the peak—extends from 172.5 to

175.5 Mb and encompasses the entire proximal region of the

QTL-rich region interval on Chr 1 [34]. The peak LRS is located

between markers at 174.7 and 175.2 Mb (Figure 6). The sucrose

MPI data generated using the same cases maps to the same

interval and has a closely matched peak LRS (26.8), effect size, and

position. We refer to this QTL shared by the two related

phenotypes as Lick1.

We controlled for the effect of Lick1 using the marker

rs13476241 (Chr 1 at 174.698878 Mb) and remapped both

phenotypes using composite interval mapping (Figure 7). This

procedure is essentially the partial regression of lick rate and MPI

after eliminating any genetic variance associated with the distal

Chr 1 region. We unmasked a second significant QTL on Chr 10

with a peak LRS of 20.5. This LRS has a genome-wide p of

approximately 0.005 based on 10,000 permutations of composite

mapping, and is also highly significant. The peak is located close to

rs13480629 at 67 Mb. The 1.5 LOD confidence interval extends

from 61.5 to 69.0 Mb. This QTL is in a SNP desert in the BXD

family (the region is essentially identical by descent), but includes a

small island of B vs D SNPs that extends from 67.5 to 69.0 Mb

Figure 5. Genome-wide linkage maps of MPI. A. Water MPI. B. Sucrose MPI. Blue trace denotes likelihood ratio (LRS) statistic. A QTL on
chromosome 1 exceeds the significance threshold (pink horizontal line; p,0.05) for either stimulus. A suggestive QTL (gray line; p,0.63) was found
on chromosome 10.
doi:10.1371/journal.pone.0038169.g005
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(Fig. 5b). The effect size of this Lick10 locus has the same polarity

as Lick1 and each B allele increases the MPI by 3.3 ms.

We estimated the joint significance of Lick1 and Lick10 and their

possible interactions using the DIRECT method of Ljungberg and

colleagues [35]. The full QTL model defined as

MPI = QTL1+QTL2+Q1XQ2 has a total LRS of 45.3 with

highly significant additive contributions (Fig. 7C) from Lick1

(QTL1) and Lick10 (QTL2) but no two-way interaction term (LRS

of 0.28). However, there may be a third locus on Chr 13 between

rs13481782 and rs6196305 that interacts epistatically with Lick1 to

generate especially long MPIs when both loci have the B

haplotype. This interaction has an LRS of 30.9 and has a

genome-wide p,0.1. The suggestive Chr 13 locus is also

associated with a small additive effect of +2–3 ms per B allele.

Lick1 and Lick10 account for 33% and 19% of the total between-

strain variance in MPI among the BXD strains. These two loci

therefore account for approximately 50% of the genetic variation

in lick rate. When BXD strains are grouped according to

haplotype at Lick1 or Lick10, those possessing mixed haplotypes

are intermediate in phenotype to those possessing either solely D2

or B6 haplotypes (Fig. 7C). Moreover, strain MPI means from the

congenic strain B6.D2.1D also possessed an intermediate pheno-

type, significantly different from D2 and B6, but not F1 mice

(Bonferroni corrected t-test; p,0.005). B6.D2.1D congenic mice

possess a region of chromosome 1, spanning from approximately

156 MB to 199 MB, from the D2 strain introgressed onto a B6

background (Fig. 7D; Davis et al., 2005). Mice from the congenic

strain B6.D2.10M were phenotypically similar to B6 mice,

although this result does not necessarily indicate failure to confirm

the QTL. The introgressed region on these mice spans from

approximately 66 MB to 115 MB on Chr. 10. Although the peak

LRS score for MPI on Chr 10 was in this region, the lack of

phenotypic difference between B6.D2.10M and B6 nevertheless be

in part be explained by a physical location for Lick10 proximal to

this fragment (but still within the confidence interval).

Figure 8 shows interval genome-wide maps for total licks to

water (Fig. 8A) or sucrose (Fig. 8B). A suggestive QTL was found

for licks to either stimulus on chromosome 16. For VPL for water,

suggestive QTLs were found on Chr 1, 11, and 16, and for sucrose

VPL suggestive QTLs were found on Chr 8,13, and 16 (Figure 9).

The suggestive QTL on Chr 1 for water VPL (peak at

approximately 95 MB) did not overlap with the significant lick

rate QTL (i.e. confidence intervals do not overlap).

Candidate Gene Identification
We examined the correlation between strain variation in MPI

and the expression of 26 genes in the Lick1 interval in whole brain

tissue [36], and detected strong correlations (rs.60.56, ps,0.002)

with three biologically relevant candidate genes—Atp1a2, Kcnj9,

and Kcnj10. All three are clustered between 174.2 and 174.4 Mb,

have high expression in the CNS (including the brainstem), are

represented by at least one probe set with a strong cis eQTL and

contain multiple B6 and D2 sequence variants (http://

ucscbrowser.genenetwork.org).

In order to discriminate among these candidates we performed

a partial correlation analysis as described in de la Fuente and

colleagues [37] and Mozhui et al. [34]. This procedure removes

variance attributable to specific genotype effects on Chr 1 using

marker rs13476241 as a controlled factor in a manner similar to

composite interval mapping. Of the three candidates, only Atp1a2

probe sets covaried with MPI (GN 12297) after controlling for

genetic variation (Table 3). Residual correlations persist due to

underlying biological networks controlled by other sources of

variation, such as regulation from other genomic regions and loci.

A more global analysis of Atp1a2 expression in brain by RNA-

seq of BXD strains confirms higher expression associated with

inheritance of the D allele (Figure 10). The most striking

expression difference occurs for the distal segment of the 39

UTR, which is reduced 2- to 3-fold in strains with the B allele.

Higher expression of the distal 39 UTR in the D2 strain is also

confirmed in striatal and eye RNA-seq data (ucscbrowser.gen-

enetwork.org). As suggested by Korostynski et al. (2006) this

prominent strain difference in Atp1a2 expression may be due to

alternative 39 UTR usage [38].

Discussion

MPI was found to vary among inbred and BXD strains in

response to either water or 0.1 M sucrose in a highly heritable

manner. Linkage analysis pinpointed a highly significant QTL on

distal Chr 1. We earlier reported significant linkage of water MPI

to the same region of Chr 1, using both a set of 26 BXD strains

(different mice than the current study) and a sample of B6 X D2 F2

mice ([39], published abstract; BXD data at genenetwork.org,

GN10039). MPI values in the current BXD dataset were highly

correlated with values from the earlier study (23 strains in

common, r = 0.87; p,0.000001). This identity, together with a

quantitative effect of distal chromosome 1 substitution through

congenic testing, confirms a highly significant QTL controlling lick

rate at this location, which we have named Lick1. A suggestive

QTL for MPI was also found for either stimulus on Chr 10. When

we controlled for the effects of Lick1, the Chr 10 QTL (Lick10) was

significant. We also found suggestive linkage on chromosome 16

for total licks – this QTL was found when the stimulus was either

water or sucrose (Fig 7), despite the fact that all strains licked more

sucrose. The similarity of phenotypes, especially MPI, in response

to a neutral (water) or highly appetitive (sucrose) stimulus is

consistent with the notion that taste or somatosensory feedback has

relatively little effect on lick rate [7,11,22,40].

Gene candidates for MPI QTLs
Potential neural substrates for the lick CPG are located in the

brainstem, including the medulla and pons [7,14,41,42], In

general, however, questions remain about which cell types (i.e.

interneurons, pre-motor or motor neurons) are critical for various

brainstem and spinal cord CPGs, and whether CPG output is

driven by individual pacemaker neurons, a synaptically-coupled

network, or a combination of these components [1]. Studies with

well-characterized invertebrate CPGs suggest a number of likely

targets, including ion channels involved in intrinsic neuronal

Figure 6. Interval QTL map on part of chromosome 1 for water MPI. Blue trace denotes LRS score, and red trace shows additive effect of the
B6 allele. Values for the additive effect are shown in green at right. The LRS score exceeds the threshold for genome-wide significance (pink horizontal
line; p,0.05). The dashed black line indicates the confidence interval of the QTL, defined by a 1.5 LOD drop on either side of the peak. Orange
seismograph marks indicate SNP density, and colored ticks at top of plot show positions of known genes. Below plot, haplotype distribution among
BXD strains is shown for part of the peak QTL region, between the SNP markers rs8242766 and rs6375522. D2 (D/D) genotype is indicated by green
bars and B6 (B/B) by red bars. Strains in this table are ordered according to MPI score, from fast to slow (top to bottom). The D2 genotype is
associated with faster lick rates, as reflected in low MPI values in strains possessing this genotype in the QTL region.
doi:10.1371/journal.pone.0038169.g006
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Figure 7. Mapping of a QTL for MPI on Chr 10, and examination of the effects on phenotype of both Lick1 and Lick10. A. Genome-wide
Interval map of water MPI, after controlling for the effect of Lick1 (composite interval mapping). The blue LRS trace shows a significant QTL (pink
horizontal line; p,0.05) on Chr 10. B. Enhanced view of QTL (blue trace) on Chr 10 following composite interval mapping. The dashed black line
indicates the confidence interval of the QTL, defined by a 1.5 LOD drop on either side of the peak. The red trace shows additive effects of the B6
allele, and the orange seismograph marks indicate SNP density. Additive values are shown in green on right. Colored ticks at top of map indicate
positions of known genes. C. Epistasis plot comparing water MPI among BXD strains (means; n = 13–19 strains per diplotype at Lick1 and Lick10). The
nearly parallel lines in this plot are most consistent with a strictly additive model. D. Histograms comparing average water MPI in D2, F1, B6.D2.1D,
B6.D2.10M, and B6 strains (means of individuals; n = 11–14 per strain). Green stripes superimposed on red bars indicate congenic strains. Groups
sharing common letters (a,b,c) do not significantly differ, whereas those with different letters significantly differ. Black bars indicate statistically
distinct groups, and asterisks denote significant group differences (p,0.005; Bonferroni-corrected t-test).
doi:10.1371/journal.pone.0038169.g007
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excitability and spiking frequency, as well as elements of synaptic

coupling or neuromodulators (for reviews, see [6,43]. Such gene

targets are also suggested by studies of vertebrate CPGs [1,2,3,44].

The QTL on chromosome 1 lies in a gene-rich, well-studied

portion of distal chromosome 1, termed Qrr1, a QTL hotspot

identified by Mozhui et al. [34]. This region is highly enriched in

QTLs controlling diverse behavioral and neural phenotypes, as

well as a number of regulatory QTLs that modulate expression of

a relatively large number of genes [34,45,46,47].

We focused on three positionally and biologically relevant genes

located in a short interval from roughly 174.2–174.3 Mb: Kcnj9,

Kcnj10, and Atp1a2. Kcnj9 and Kcnj10 are cis-regulated potassium

channel genes that encode G-protein activated inwardly rectifying

potassium channel subunits Kir3.3 and Kir4.1, respectively.

Inwardly-rectifying potassium channels have diverse physiological

functions, but play an important role in establishing the resting

membrane potential of cells, and regulating action potential

duration (Hibino et al., 2010). In situ expression data from the

Allen Brain Atlas (ABA, www.brain-map.org), as well as other

expression and immunohistochemical studies, demonstrate that

Kcnj9/Kir3.3 is expressed strongly in neurons throughout the

brain, including in the hippocampus, cerebellum, and brainstem

[48,49,50]. Variation in Kcnj9 expression has been strongly

implicated in barbiturate withdrawal in mice [51,52], and possibly

in seizure sensitivity [45,53]. On the other hand, Kcnj10/Kir4.1 is

expressed diffusely in glial cells [54,55,56]. Germaine to a

potential link to CPG function is the fact that Kir4.1 is expressed

in astrocytes in the ventral respiratory group in the medulla, where

it plays a role in K+ buffering in the respiratory network. However,

ablation of Kcnj10 did not impair overall respiratory network

activity in mice [54].

Atp1a2 is a cis-regulated gene (Table 3) encoding the a2 subunit

of the Na+/K+-ATPase, located just proximal to Kcnj9. Na+/K+-

ATPase (a type of sodium pump) is a membrane protein that plays

a critical role in maintaining Na+ and K+ gradients across the cell

membrane. There is strong evidence that Na+/K+-ATPase plays

an important role in rhythmogenesis in the respiration CPG(s) in

the brainstem [57], and in the locomotor CPG in the spinal cord

[58,59]. Na+/K+-ATPase is primarily composed of two major

subunits, a and b [60]. The a2-subunit isoform is expressed in a

developmental-dependent manner in neurons throughout different

regions of the brain, including the ventral respiratory group in the

Figure 8. Genome-wide linkage QTL maps of total licks. A. Licks to water. B. Licks to sucrose. A QTL on chromosome 16 exceeds the
suggestive threshold (gray line; p,0.63) for either stimulus.
doi:10.1371/journal.pone.0038169.g008

Genetic Control of a Central Pattern Generator

PLoS ONE | www.plosone.org 11 May 2012 | Volume 7 | Issue 5 | e38169



brainstem in E18.5 mice [61,62]. In the CNS of adult rats or mice

it is predominantly and widely expressed in astrocytes, although

evidence also suggests localization in a restricted population of

neurons, including in hippocampus and spinal cord [61,62,63,64].

Results from brain slice recordings in embryonic Atp1a22/2 mice

indicate that rhythm generation in respiration-related brainstem

neurons is impaired [62,65]. However, postnatal examination

(Atp1a22/2 mice die shortly after birth) suggests normal muscular

function [62]. A missense variant in the human ATP1A2 gene

causes Hemiplegia, including numerous motor abnormalities [66],

although variations in this gene are not linked to epilepsy [67].

Recent evidence suggests a role for Atp1a2 in a mouse model of

hemiplegic migraine (Cortical spreading depression) [68].

We investigated variants including 24 small insertion/deletions

and 288 SNPs located within 1 Kb of the Atp1a2 locus that are

polymorphic between B6 and D2. The majority of these variants

are located within introns or intergenic regions. However, 3

insertion/deletions and 41 SNPs are located in the 39 UTR and 15

SNPs were found in exons; all are silent (synonomous) mutations.

Expression of Atp1a2 is cis-regulated in multiple CNS data sets.

Among the BXD family, water MPI is significantly correlated

(p,0.00001) with Atp1a2 expression in whole brain (UCHSC,

20.631; INIA, 20.622; negative correlation indicates higher

expression in mice with D2 alleles), cerebellum (GE-NIAA,

20.651), and hippocampus (Hippocampus Consortium,

20.553). Unfortunately, genetic expression data of this type for

the brainstem have not yet been generated. Next-generation

RNA-seq confirms significantly higher (p,0.05) brain expression

of Atp1a2 in strains with the D allele at this locus (http://

ucscbrowser.genenetwork.org, Figure 10).

How differences in expression of the sodium pump a2 subunit

may ultimately correspond to variation in lick rate generation is

not entirely clear, but correlates between Na+-K+ ATPase

expression and neuronal function have been described. Anderson

et al. [69] isolated the sodium pump via pharmacological block

and found a higher density of Na+-K+ ATPase in fast spiking

interneurons (as opposed to pyramidal neurons) and hypothesized

that this higher level of activity plays a role in maintenance of high

frequency firing rates in this neuron type. Additionally, blocking

the pump disrupts rhythmic bursting in rat neonatal spinal cord

Figure 9. Genome-wide linkage QTL maps of VPL. A. Water VPL. B. Sucrose VPL. QTLs on chromosome 1,11 and 16 exceed the suggestive
threshold (gray line; p,0.63) for water. QTLs on chromosome 8,13 and 16 exceed the suggestive threshold for sucrose.
doi:10.1371/journal.pone.0038169.g009
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Table 3. Lick1 QTL candidate gene evidence table.

Symbol Probe Set Target Mean
Max Chr1
Marker cis LRS

Additive
Effect R MPI

Partial R
MPI

Partial P
MPI

Atp1a2 1455136_at distal 39 UTR 10.52 rs3707910 206.66 0.81 20.54 20.06 0.66

Atp1a2 1443823_s_at mid distal 39 UTR 13.35 rs3722740 34.77 20.10 0.21 20.20 0.15

Atp1a2 1434893_at Middle 39 UTR 12.51 rs3707910 93.03 20.27 0.44 20.24 0.08

Atp1a2 1427465_at proximal 39 UTR 11.91 rs3707910 39.12 20.14 0.41 20.27 0.05

Atp1a2 1452308_a_at exons 19 and 20 11.92 rs3707910 5.50 20.09 0.29 20.11 0.45

Kcnj10 1419601_at mid and distal 39

UTR
10.14 rs3707910 114.45 0.23 20.47 0.08 0.57

Kcnj9 1428602_at far 39 UTR 9.29 rs3707910 33.88 20.16 0.37 20.06 0.67

Kcnj9 1450712_at distal 39 UTR 9.14 rs3707910 95.18 0.51 20.45 0.01 0.97

Kcnj9 1426115_a_at exon 1 7.12 rs13476241 18.88 0.16 20.26 20.02 0.90

Mean = Mean expression in the Hippocampus Consortium M430v2 (Jun06) PDNN; R MPI = Pearson correlation between probe set and MPI (record 12297); Partial R
MPI = Partial Pearson correlation between probe set and MPI (record 12297) when controlling for marker rs13476241; Partial P MPI = P-value of partial correlation. The
additive effect shows the contribution of genotype on average log2 expression. A negative or positive additive effect indicates that the B6 or D2 allele increases trait
values, respectively. Probe sets 14348893_at, 1427465_at, and 1452308_a_at have multiple probes that overlap B6 vs. D2 sequence variants and show higher expression
associated with the B allele which is indicative of a probe artifact (see [78]). However, the use of partial correlation here corrects for these artifacts and any residual
covariation is the result of true biological networks. For example, notice the sign change before and after control for these three probe sets to match the sign of the
Partial RMPI for the remaining two Atp1a2 probe sets not affected by probe artifacts.
doi:10.1371/journal.pone.0038169.t003

Figure 10. Validation of strain variation in Atp1a2 expression in the BXD population by RNA-seq. Normalized (RPKM) values in whole
brain are shown for the B (N = 20) and D allele (N = 11) for each feature of Atp1a2 RefSeq transcript model. ‘‘Transcript level’’ (far right on X-axis)
measures expression for the entire Atp1a2 transcript based on the NCBI RefSeq transcript model. Asterisks denote the level of significance with single
and doublets representing p-values less than 0.05 and 0.01, respectively. There is a trend toward higher expression of all transcript features associated
with the D allele and this difference achieves statistical significance for exons 5, 8, 14, 18, 19, 20, 21, and exon 23 and the 39 UTR. Consequently, the D
allele is associated with higher expression of the entire Atp1a2 transcript in whole brain.
doi:10.1371/journal.pone.0038169.g010
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motor neurons [58]. Alternatively, given the predominance of

expression of the a2 subunit in glial cells in the CNS, it may act

instead through direct glial-neuron signaling or modulation

[70,71].

The Chr 10 QTL is located in a SNP-poor region, although

there is an island of B vs D SNPs extending from 67.5 to 69.0 Mb

(Fig. 5b). Of 15 genes located in this interval, an intriguing

candidate for CPG function is Ank3 (68.99–69.49 Mb) encoding

ankyrin G, a scaffolding protein linked to the clustering of voltage-

gated Na+ channels at the axon initial segment, and required for

normal action potential generation and neuronal polarity [72,73].

Ank3 is a relatively large gene with multiple splice variants,

containing a large number of non-coding synonymous polymor-

phisms between the B6 and D2 strain. It is strongly expressed in

the hypoglossal nucleus in the medulla (Allen Brain Atlas).

Although we focused our search for gene candidates on

neuronal/glial cell mechanisms, it is certainly possible that other

mechanisms contribute to control of variation in the lick CPG.

Anatomical substrates of licking include bone, connective tissue,

and oral musculature. Previously, no correlation between tongue

length/width or tongue weight with lick rate was found in the

parental strains [21]. We conducted a correlation analysis

(Pearson’s r) of MPI data with other published phenotypes

(GeneNetwork.org). A study measuring tongue size (Length or

weight) in 38 BXD strains did not find linkage to either Chr 1 or

Chr 10 [74], and neither variable correlated with MPI (rs,60.03;

44 strains in common). In the Reiner et al. study, tongue weight

correlated strongly (rs.0.8) with soleus, gastrocnemius, or extensor

digitorum (all rear limb muscles) weights [75]. MPI also correlated

significantly with several muscle weights (rs#0.58; 20 strains in

common). Variation in muscle size or weight may contribute to

variation in lick rate, although evidence for this association is

indirect. Other physiological or environmental influences may also

play a role in producing strain variation. However, studies of both

licking and whisking behavior generally demonstrate that although

the initiation (and cessation) of these orofacial movements are in

part dependent on sensory and motivation-related influences, the

underlying rhythm of these movements is relatively independent of

such factors [8,21,76,77].

In summary, our work demonstrates strong and precise linkage

of variation in lick rate to a gene-rich interval of distal Chr 1

previously implicated in several drug-related and locomotor

behaviors. A particularly strong causal candidate in this interval

is Atp1a2. This gene is expressed throughout the CNS, and has

previously been linked to respiratory generation, a closely allied

phenotype that is also known to be controlled by brainstem CPGs.

The discovery, and eventual confirmation of the contribution of

specific genes to natural variation in a CPG-driven behavior such

as licking holds great promise for understanding where and how

mammalian CPGs are organized in the brainstem and spinal cord.
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