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Animal models of carcinoma of the pancreas provide new information regarding the
pathways for histogenesis of the tumors. Four models, induced by chemical carcinogens or
transgenic methods, are reviewed briefly from this perspective. Recent reports indicate that
carcinomas with a ductal phenotype can arise from transformed acinar cells in rodents. A
transgenic mouse model provides evidence that anaplastic carcinomas and islet cell tumors may
arise from primitive cells that express the elastase gene, yet retain the potential to differentiate
as islet cells. In a nitrosamine-induced hamster model, ductal carcinomas appear to arise
directly from ductal cells. Carcinomas in this model contained mutations in the c-K-ras
oncogene that are similar to those reported in about 75 percent of human pancreatic
carcinomas, whereas acinar cell carcinomas of rats lacked this mutation. The histologic type of a
carcinoma may reflect the cell of origin, but this statement is not always true. Therefore,
classification of tumors on the basis of phenotype rather than on the presumed cell of origin is
recommended. Among the animal models, the carcinomas in hamster pancreas rank as most
similar to human pancreatic ductal adenocarcinomas in regard to the phenotype of the tumors
and the prevalence of the c-K-ras mutation.

INTRODUCTION

Carcinoma of the pancreas ranks fifth among cancers as a cause of death in the
United States [1]. The cancer is usually diagnosed late in its course for several
reasons. The internal location of the pancreas makes access for diagnostic studies
difficult, and, in most patients, large portions of the gland must be destroyed or
obstructed before there are clinical symptoms. Thus, pancreatic carcinomas have
often spread to lymph nodes or the liver before the patient seeks medical care, so
that surgical removal is difficult or impossible. These characteristics of the disease
make its prevention an important goal and, failing prevention, dictate that we need
to define the cellular and molecular biology of the carcinomas as a basis for rational
approaches to treatment.
Animal models for the induction of pancreatic carcinoma by chemicals or trans-

genic technology provide models in which preventive approaches can be studied, and
in which experimental therapies can be evaluated. These models have provided
examples of carcinomas that arise in both acinar cells and ductal cells. The spectra of
histologic types in these tumors provide a reasonable match for the tumors encoun-
tered in humans.
The evolution of the focal proliferative lesions can be studied in animals by serial
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DSL 6 RAT TUMOR Acinar cell carcinoma

DSL6-C/1 CELL CULTURE Transient amylase secretion

DSL6-T/1 RAT TRANSPLANT Ductal, scirrhous or adenosquamous

DSL6-C/2 CELL CULTURE No amylase secretion

DSL6-T/2 RAT TRANSPLANT Ductal, scirrhous or adenosquamous

DSL6-C/3 CELL CULTURE No amylase secretion
FIG. 1. Flow chart of alternate in vivo and in vitro growth of cell lines DSL-6A and DSL-6B

derived from transplantable acinar cell carcinoma, DSL-6.

autopsies following treatment with a carcinogen, or during the life span of transgenic
mice, so that progression from initial cellular changes to neoplasms can be inferred.
This approach has provided new perspectives regarding the histogenesis of pancre-
atic neoplasms in animals, although the relevance of some models for the human has
been questioned. In particular, studies reported since 1990 have provided evidence
that carcinomas with a ductal phenotype can arise from transformed acinar cells.

ANIMAL MODELS: AZASERINE-INDUCED MODEL IN RATS

Azaserine treatment has provided the best-characterized and most generally used
model of pancreatic carcinoma in rats, although similar carcinomas are induced by
other agents [2]. Azaerine is an effective pancreatic carcinogen in rats because it is
mutagenic and initiates a sequence of focal proliferative changes in acinar cells that
culminate in the development of carcinomas [3]. The proliferative sequence begins in
acinar cells, and the succession of lesions has been designated as focus, nodule,
adenoma, and carcinoma. The development of secondary and even tertiary popula-
tions of phenotypically distinct cells within nodules is described [3] and is felt to
reflect the stepwise progression to malignancy. The acinar phenotype is retained by
the majority of the carcinomas in this model, although focal development of ductlike
structures has been noted in a few of the carcinomas. No hyperplastic or dysplastic
changes are found in the duct system of azaserine-treated rats, so that it does not
appear that neoplasms arise directly from ductal epithelium. The incidence of islet
cell tumors in azaserine-treated rats is similar to that in controls.

Recent studies were undertaken to establish and characterize new cell lines from
an azaserine-induced acinar cell carcinoma [4]. Two cell lines were established in
separate experiments by placing a well-differentiated transplantable carcinoma
(DSL-6) derived from a Lewis rat into culture. Although the cultured tumor cells
initially produced amylase, production of exocrine enzymes ceased after one to two
weeks. The cultured cells were tumorigenic in Lewis rats. The sequence of experi-
ments is outlined in Fig. 1. One cell line produced firm, solid tumors with a high
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FIG. 2. Subcutaneous tumor produced by inoculating the first cell line, DSL-6A, into a syngeneic rat.
The tumor is composed of ductlike structures separated by dense fibrous tissue. Hematoxylin and eosin.
x120.

content of fibrous tissue surrounding ductlike structures when it was grafted into
syngeneic rats (Fig. 2), and the second cell line yielded tumors that grew with an
adenosquamous phenotype-producing a significant amount of mucin. In each case,
the altered phenotype persisted when the tumors were returned to culture (Fig. 3),
and then re-implanted into rats.
The original tumor had a high content of CCK receptors (radioligand binding

assay) [5], but the first cell line established in culture lacked the receptors (the
second cell line has not been evaluated for the presence of receptors). Electron
microscopy showed ductlike cells without zymogen granules and with little rough
endoplasmic reticulum. Immunohistochemical studies of the cell lines and the
re-grafted tumors have demonstrated expression of several ductal markers, including
cytokeratin 19. These studies provide strong support for the hypothesis that ductlike
carcinomas can arise from neoplastic pancreatic acinar cells in rats. There is loss of
acinar cell differentiation and acquisition of ductal markers in the tumor cells.

TRANSGENIC MOUSE MODELS

Transgenic mice that express several growth-controling genes in the pancreas
provide new models for pancreatic carcinogenesis. Two strains of transgenic mice
bearing the elastase promoter-SV40-early antigen construct (Ela-1-SV40 T), desig-
nated as Tg(Ela-1, SV40E)Bril8 and Tg(Ela-1, SV40E + Ela-1, neo)Bril9 [6], and
another strain bearing the Ela-1-myc construct, designated as Tg(Ela-1, Myc)Bril59
[7], are the best characterized. The transgenes for these strains utilize the elastase-1
enhancer/promoter to target oncogene expression to the exocrine pancreas. These
mice have been used for in vivo characterization of focal neoplastic transformation
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FIG. 3. Cultured cells of the second line, DSL-6B, showing both glandular and squamous (Sq)
differentiation. This cell line formed adenosquamous carcinoma when it was re-grafted into syngeneic
rats. Hematoxylin and eosin. x 630.

and tumor progression in the pancreas [8,9]. Two features of these models have
special relevance for the histogenesis of pancreatic neoplasms.
The Ela-1-SV40 T (ELSV) mice develop diffuse acinar cell dysplasia and hyperpla-

sia, followed by focal acinar cell proliferative lesions that develop into carcinomas.
Most carcinomas retain evidence of acinar cell differentiation, as in the azaserine
model in rats, but diverse histologic types of cancer including undifferentiated
(anaplastic) tumors occurred [9]. An unpredicted high incidence of islet cell tumors
developed in the Bril8 strain mice [10]. A novel form of islet hyperplasia was also
found in the majority of these mice and was implicated in the pathogenesis of
the islet cell tumors. The abnormal islets were composed of a core of normal,
mature-appearing islet cells that contain insulin identified in immunohistochemical
stains. The core is surrounded by a mantle of small cells that stained intensely for
somatostatin by immunohistochemistry. Expression of T antigen was not originally
detected in p-cell tumors [10], but recent immunohistochemical studies (unpub-
lished) in our laboratory indicate that T antigen is expressed in the nuclei of some of
the small peripheral cells in hyperplastic islets and in some small islet cell tumors
(Figs. 4 and 5).
These findings suggest that some of the tumors that were originally classified as

undifferentiated (small-cell) carcinomas may arise from the same cells as the small
cells at the periphery of the abnormal islets in the Bril8 mice, and that the resulting
tumors may either remain as anaplastic tumors composed of small cells or differenti-
ate into islet cell tumors. One interpretation is that a stem cell population expresses
the Ela-1-SV40 T transgene and therefore proliferates. This population could give
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FIG. 4. Peripheral portion of a large hyperplastic islet from a Tg(Ela-1, SV40E)Bril8 transgenic
mouse. Dysplastic acinar tissue occupies the left third of the field. Acinar and islet cells with the darkest
nuclei express T antigen in the nucleus. Immunoperoxidase stain, monoclonal anti-T-antigen antibody.
x 480.

rise to the mantle of somatostatin-positive cells that is seen around some islets in this
model, to anaplastic carcinomas, or to islet cell tumors.

Ela-1-myc transgenic mice show many similarities to Ela-1-SV40 T mice and
develop diffuse hyperplasia of acinar tissue, followed by acinar cell carcinomas of the
pancreas. This strain displays two features that were not observed in Ela-1-SV40 T
mice. About half of the acinar cell tumors contain areas of ductal differentiation
associated with desmoplasia [7]. The ductal elements in some of these carcinomas
have undergone squamous metaplasia, producing an adenosquamous pattern. The
proliferative potential of the ductal areas appears to be limited, so that the ductal
phenotype does not become dominant, and no purely ductal carcinomas have been
described. The observations in this model may supply an additional example of
metaplasia of transformed acinar cells to a ductal phenotype, although it is possible
that the ductal component is derived from an unrecognized population of epithelial
stem cells.

NITROSAMINE-INDUCED MODEL IN THE HAMSTER

N-nitrosobis(2-oxopropyl)amine (BOP) is a potent pancreatic carcinogen in ham-
sters. BOP is metabolized to an alkylating species that is mutagenic and capable of
initiating a carcinogenic sequence, yielding carcinomas that usually have a ductal
phenotype. Atypical papillary epithelial hyperplasia has been described focally in the
pancreatic ducts of BOP-treated hamsters, and this type of change is regarded as the
origin of at least some of the carcinomas. Focal proliferative lesions in the lobules of
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FIG. 5. Islet cell tumor from the pancreas of a Tg(Ela-1, SV40E)Bril8 transgenic mouse. The darker
nuclei are stained positively for T antigen. Immunoperoxidase stain, monoclonal anti-T-antigen antibody.
x 480.

the pancreas, termed tubular ductal comple-xes orpseudoductular hyperplasia, are also
regarded as possible early lesions in a carcinogenesis sequence. The BOP-induced
model in hamsters has been widely studied and utilized because of the similarities of
the ductal carcinomas to the most common type of pancreatic carcinoma found in
humans [11].

ONCOGENE CHANGES IN EXPERIMENTAL CANCERS

Recent studies indicate that about 75 percent of human pancreatic carcinomas
have an activated c-K-ras oncogene, usually with a mutation in codon 12 [12]. A
similar codon 12 mutation has been found in the majority of hamster carcinomas that
have been evaluated, but a smaller number of hamster tumors have had a codon 13
mutation [13,14,15]. Recent studies indicate that the c-K-ras mutation occurs early
during carcinogenesis in the hamster model [16].
The azaserine-induced acinar carcinomas of rats have been found to contain

wild-type c-K-ras when examined for mutations at codons 12, 13, and 61, and they
thus appear to lack the ras mutations that most commonly activate the proto-
oncogene in humans [15,17]. Acinar cell tumors induced in rats by pancreaticobiliary
diversion similarly lack the c-K-ras mutations [18]. van Kranen et al. also evaluated
azaserine-induced acinar cell carcinomas for H-ras mutations, and none were found
[15]. Preliminary studies indicate that the ELSV mouse carcinomas also lack
mutation in codon 12 of c-K-ras [Longnecker DS, Kuhlmann ET: unpublished].
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DISCUSSION

Avenues for the histogenesis of pancreatic carcinoma have been outlined on the
basis of data from several animal models. These pathways indicate that acinar cells
may be transformed in rats and mice and may give rise to acinar cell carcinomas,
ductlike carcinomas, adenosquamous carcinomas, and undifferentiated carcinomas.
Alternately, duct or centroacinar cells may be transformed in the hamster model to
give rise to ductlike carcinomas and other histologic variants. These studies have
demonstrated that the spectra of histologic types of pancreatic cancer arising from
acinar and ductal cells overlap. Thus, the morphologic classification of a pancreatic
carcinoma does not necessarily reflect the histogenesis, as has been noted for
neoplasms arising in other organs [19]. Classification on the basis of tumor pheno-
type, e.g., ductal, acinar, islet, anaplastic, is more accurate. Moreover, the expression
of more than one differentiated phenotype in a tumor may be evidence for the
transformation of a primitive (stem) cell.

In hamster, rat, and mouse models, development of the carcinomas is promoted by
feeding the animals a high-fat diet, but the mechanism of this effect is not known
[20]. In rats and mice but not in hamsters, exocrine carcinomas have a higher
incidence in male than in female animals, as is true in the human. Testosterone
seems to support, and estrogen to suppress, the development of the carcinomas in
these two rodent species. Several peptide hormones have also modified carcinogene-
sis in the rat [21]. Thus, carcinogenesis in the pancreas appears to be a complex
process that can be influenced by exposure to chemical carcinogens, dietary factors,
and endogenous hormonal factors.
Mechanisms of the effect of dietary factors and hormones on pancreatic carcino-

genesis can be studied in the animal models, and they can be used to study the effects
of exogenous hormonal treatment on established cancers. In such studies, relevance
to the human is always a question, and comparative studies with human carcinomas
and pancreatic cancer cell lines are important. Among the animal models, the
pancreatic carcinomas in hamsters rank as most similar to human pancreatic ductal
adenocarcinomas in regard to the phenotype of the tumors and the prevalence of the
c-K-ras mutation. On the other hand, some of the less common histologic types of
human pancreatic cancer, e.g., acinar cell carcinoma, are similar to the carcinomas
found in rat and mouse models. When all factors are considered, there appears to be
a continuing role for study of pancreatic cancer in several rodent species with
ongoing comparison to human tumors. A major focus for the immediate future is to
extend the comparison at the molecular level and to define genetically determined
abnormalities of growth control.
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