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A B S T R A C T   

Biofloc Technology (BFT) is proven to be the fulcrum of sustainable recirculating aquaculture 
system especially under zero water discharge condition. The efficiency of BFT system is reinforced 
by an unswerving microbial community in the system. Several researchers have made copious 
reports on the microorganisms in BFT and identified heterotrophic bacteria predominant in the 
microbial composition. A summary of these researches considers these microorganisms playing 
the role of chemo-photosynthetic autotrophs, organic detoxifiers, probiotic, decomposers/bio-
flocculants, bio-leachers and pathogens. Although these functional roles are well identified, the 
reports have failed to sufficiently illustrate the borderline at which these microbial communities 
fail to serve their beneficial roles in BFT system. This review paper firstly presents a snapshot of 
some indispensable water quality conditions and zootechnical variables aided by the microbial 
community in floc as well as the amphibolic process that synthesizes nutrient from the organic 
deposit in BFT. Furthermore, information on the microbial community in BFT is evaluated to have 
Bacillus sp., Lecane sp. and Pseudomonas sp. serving all-encompassing role in BFT while Vibrio sp. 
and Enterobacter sp. are pathogenic under unsuitable water quality conditions. Functional char-
acterisation of the commonly reported microorganisms in BFT categorised 21.95 % as most 
critical, whose abundance indicates an efficient BFT.   

1. Introduction 

The advent of biofloc technology (BFT) has resolved the unavoidable challenge of toxic waste accumulation in closed aquaculture 
systems by the introduction of microbial community that co-exist in a complex multi-functional interaction to create a culture system 
that promotes optimum growth supported by auto-synthesized food sources and enhanced health conditions. BFT system is a zero- 
water exchange system that relies on the microbial community not only in detoxifying the ammonia generated from fecal deposits 
and unconsumed feed. Sustainable aquaculture is deterred by an upsurge in the formation of lethal nitrogenous waste caused by 
organic residue under intensive culture [1–4]. BFT is a sustainable aquaculture technique that relies on the in-situ production of 
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Table 1 
Water quality conditions in the biofloc and clearwater systems.  

Culture system Species Culture period References 

BFT CLW    

Temperature (oC) 
29.10 29.10 L. vannamei 55 days [30] 
27.20 29.00 L. vannamei 80 days [31] 
27.90 28.00 L. vannamei 48 days [32] 
27.00 27.80 P. monodon 127 days [33] 
26.20 26.50 L. vannamei 30 days [34] 
26.20 26.40 M. japonicus 106 days [4] 
26.50 26.60 P. satiferus 45 days [35] 
23.12 23.39 L. vannamei 60 days [36] 
32.30 32.00 F. indicus 120 days [37] 
Summary: 

Biofloc (BFT): 27.28 ◦C; 
Clearwater (CLW): 27.64 ◦C 

Dissolved Oxygen (mg.L¡1) 
6.40 6.30 L. vannamei 83 days [13] 
5.04 5.37 L. vannamei 80 days [31] 
5.70 6.00 L. vannamei 48 days [38] 
5.02 6.12 P. monodon 127 days [33] 
7.60 8.10 L. vannamei 30 days [34] 
5.60 7.80 M. japonicus 106 days [4] 
7.10 7.20 P. satiferus 45 days [35] 
5.99 6.57 L. vannamei 60 days [36] 
4.13 4.20 F. indicus 120 days [37] 
Summary: 

Biofloc: 5.84 mg L− 1; 
Clearwater: 6.40 mg L− 1 

pH 
7.70 7.90 L. vannamei 83 days [13] 
6.61 6.77 L. vannamei 80 days [31] 
7.59 8.02 P. monodon 127 days [33] 
7.87 8.03 L. vannamei 30 days [34] 
7.80 8.30 M. japonicus 106 days [4] 
7.40 8.20 P. satiferus 45 days [35] 
7.80 7.80 L. vannamei 60 days [36] 
8.22 8.23 F. indicus 120 days [37] 
Summary: 

Biofloc: 7.62; 
Clearwater: 7.90 

Salinity (g.L¡1) 
28.40 28.80 L. vannamei 83 days [13] 
25.00 25.00 L. vannamei 48 days [38] 
31.60 31.90 L. vannamei 80 days [31] 
16.85 16.94 P. monodon 127 days [33] 
31.80 31.50 L. vannamei 30 days [34] 
22.70 22.90 M. japonicus 106 days [4] 
34.70 35.00 P. satiferus 45 days [35] 
41.20 39.90 F. indicus 120 days [37] 
Summary: 

Biofloc: 29.03 g L− 1; 
Clearwater: 28.99 g L− 1 

Total Ammonia- Nitrogen, TAN (mg.L¡1) 
0.10 0.30 L. vannamei 83 days [13] 
1.50 0.30 L. vannamei 48 days [38] 
0.43 1.15 P. monodon 127 days [33] 
0.13 0.09 L. vannamei 30 days [34] 
0.26 0.42 L. vannamei 21 days [39] 
0.57 0.78 L. vannamei 60 days [36] 
Summary: 

Biofloc: 0.49 mg L− 1; 
Clearwater: 0.50 mg L− 1 

Nitrite (mg.L¡1) 
2.20 0.90 L. vannamei 83 days [13] 
9.20 2.50 L. vannamei 48 days [38] 
0.58 1.15 P. monodon 127 days [33] 
0.43 0.13 L. vannamei 30 days [34] 
0.15 0.45 L. vannamei 21 days [39] 
0.93 1.89 L. vannamei 60 days [36] 

(continued on next page) 
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microorganisms, including bacteria, algae, protozoa, and nematodes, majority being heterotrophic bacteria. The function of the biofloc 
is to reduce the nitrogenous metabolic waste (ammonia, nitrite) produced by shrimp feeding and production. Through their meta-
bolism, these bacteria liberate many inorganic compounds to the environment that can be used by other living organisms, also they 
produce exoenzymes that decompose diverse compounds such as cellulose, lignin, keratin and other molecules that are hard to 
transform [5]. In a biofloc closed system, certain species of microorganisms play a crucial role in maintaining water quality and 
promoting the growth and health of the culture animals. Innovative aquaculture systems using BFT have been applied to many fish 
farms due to increasing concern about environmental pollution [6]. Heterotrophic bacteria in BFT assimilate inorganic nitrogen and 
synthesis them into useful energy-rich bio-materials for the trophic utilization of the cultured animals [7–10], consequently detoxi-
fying the culture system of the deleterious waste generated from the fecal pellets and unconsumed feeds left in the water medium. In 
this way, BFT act as a self-sustaining aquaculture system enhancing the re-use of waste as well as the creation of resources from 
harmful waste [11]. 

Compared to normal aquaculture, biofloc based systems promote higher shrimp growth rates and better water quality due to the 
presence of biofloc, which is essentially a microbial community [12]. Unlike many recirculating systems, BFT does not rely on external 
biological filtration, but rather on a dense microbial community that develops in the water column [13]. The operating cost of growing 
animals in BFT is also drastically cut down as feeding is partially supplemented and the cost of water supply is completely eliminated. 
In addition, biofloc systems have advantages in terms of ventilation through consistent oxygen supply to aid the metabolic activities of 
the microbial community as well as the direct utilization by the culture animals. Compared to clean water, biofloc systems require 
higher aeration because the microbial communities in biofloc systems require oxygen supply for metabolism [14]. The growth and 
overall health of shrimp reared in a biofloc system is enhanced by the gut microbiota of different scales which is usually different from 
that in clear water systems [15]. The nitrogenous waste generated through the metabolic activities of shrimp stimulate develops and 
sustains the microorganisms in a biofloc community which is dominated by bacteria species. It has earlier been established by re-
searchers that only 20–30 % of nitrogen administered in the diet of aquatic organisms is obtained at harvest [16–18]. Every aqua-
culture system is confronted with the nitrogen balance whose residual by-products constitute great harm to the grown animals. The 
build-up of NH4+-N and NO2- is typical of closed system [19,20]. Considered as blue revolution, BFT makes intensive production of 
shrimps possible under limited growing space which gives rise to a corresponding discharge of waste. However, the heterotrophic 
bacteria in BFT take up these wastes thereby promoting nutrient, water reuse and enhancing the conducive conditions of the system 
[21,22]. Nutrient supply in this system is obtained from activities of organic decomposers that operate under optimum CN ratio where 
carbon is often augmented with the application of additional carbohydrate sources [23]. Microbial protein is synthesized from the 
trophic activities of the microorganisms on the nitrate which is obtained from the oxidation of ammonia arising from organic waste in 
the system. The introduction of carbon into the system aids use up of the nitrate and carbon to produce biomass comprising proteins, 
carbohydrate, lipids and nucleic acids [24] which is made available as food source for the grown aquatic animals [25–28]. 

The main purpose of farmers using BFT system is to utilize the microbial community that provides immunity in the culture system 
and synthesizes food to meet the nutritional needs of the farmed animal. Biofloc systems are designed to foster the growth and 
wellbeing of aquatic creatures, including fish and shrimp. Through photosynthesis and the organic growth of macro-aggregates, BFT 
harmonizes carbon and nitrogen levels, promoting self-nitrification in culture water [29]. Determining the microbial makeup of a 
successful aquaculture production in BFT can be quite challenging. The functionality of the entire BFT system hinges on understanding 
the roles played by each microbial species. Inadequate knowledge of this information poses an even greater challenge to farmers who 
may incur significant losses due to pathogenetic bacteria in the biofloc microbial community, leading to disease outbreaks, shrimp 

Table 1 (continued ) 

Culture system Species Culture period References 

BFT CLW    

0.52 0.03 F. indicus 120 days [37] 
Summary: 

Biofloc: 2.00 mg L− 1; 
Clearwater:1.00 mg L− 1 

Nitrate (mg.L¡1) 
39.30 20.50 L. vannamei 83 days [13] 
21.40 11.30 L. vannamei 48 days [38] 
1.89 3.02 P. monodon 127 days [33] 
0.949 1.617 L. vannamei 21 days [39] 
2.42 3.21 L. vannamei 60 days [36] 
0.08 0.03 F. indicus 120 days [37] 
Summary: 

Biofloc: 11.00 mg L− 1; 
Clearwater: 6.61 mg L− 1 

Turbidity (NTU) 
90.10 6.10 L. vannamei 83 days [13] 
15.10 3.80 L. vannamei 48 days [38] 
18.20 58.20 L. vannamei 21 days [39] 
Summary: 

Biofloc: 41.13 NTU; 
Clearwater: 22.70 NTU  
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Table 2 
Zootechnical variables in the biofloc and clearwater systems.  

Culture system Species Culture period References 

BFT CLW    

Final weight (g) 
11.10 11.60 L. vannamei 83 days [13] 
9.55 7.06 L. vannamei 80 days [31] 
6.70 5.90 L. vannamei 48 days [38] 
17.97 12.95 P. monodon 127 days [33] 
0.62 1.26 L. vannamei 42 days [40] 
0.73 0.70 L. vannamei 110 days [41] 
10.78 9.52 L. vannamei 30 days [34] 
4.00 3.60 L. vannamei 21 days [39] 
11.33 9.98 M. japonicus 106 days [4] 
9.28 8.08 P. satiferus 45 days [35] 
6.64 5.97 L. vannamei 60 days [36] 
20.50 18.00 F. indicus 120 days [37] 
Summary: 

Biofloc: 9.10 g; 
Clearwater:7.88 g 

Net yield (kg.m¡3) 
1.60 1.90 L. vannamei 83 days [13] 
3.66a 2.36a L. vannamei 80 days [31] 
1.96a 1.13a P. monodon 127 days [33] 
1.30 0.92 M. japonicus 106 days [4] 
0.683b 0.613b F. indicus 120 days [37] 
Summary: 

Biofloc1.84 
Clearwater: 1.38 

SGR (%.day¡1) 
2.85c 3.05c L. vannamei 83 days [13] 
0.12c 0.08c L. vannamei 80 days [31] 
2.08c 2.06c L. vannamei 48 days [38] 
0.14 0.10 P. monodon 127 days [33] 
1.06 0.46 M. japonicus 106 days [4] 
0.09 0.07 L. vannamei 110 days [41] 
1.48 1.08 L. vannamei 30 days [34] 
1.40 0.92 L. vannamei 21 days [39] 
0.07 0.06 L. vannamei 60 days [36] 
1.09 1.03 F. indicus 120 days [37] 
Summary: 

Biofloc: 1.03 
Clearwater:0.89 

FCR     
1.80 1.50 L. vannamei 83 days [13] 
1.00 1.50 L. vannamei 80 days [31] 
1.10 1.40 L. vannamei 48 days [38] 
1.42 2.30 P. monodon 127 days [33] 
1.60 1.10 L. vannamei 42 days [40] 
1.67 1.80 M. japonicus 106 days [4] 
1.41 1.86 L. vannamei 21 days [39] 
2.60 2.90 F. indicus 120 days [37] 
Summary: 

Biofloc: 1.51 
Clearwater: 1.70 

Survival (%) 
69.00 78.00 L. vannamei 83 days [13] 
46.07 40.22 L. vannamei 80 days [31] 
86.20 80.20 L. vannamei 48 days [38] 
81.87 65.73 P. monodon 127 days [33] 
98.40 85.00 L. vannamei 42 days [40] 
65.70 52.30 M. japonicus 106 days [4] 
56.67 60.00 P. satiferus 45 days [35] 
82.20 86.90 L. vannamei 60 days [36] 
81.00 83.00 F. indicus 120 days [37] 
Summary: 

Biofloc: 78.31 % 
Clearwater: 74.74 % 

units converted from: a = kg.3 m− 3 to kg.m− 3; b = kg.ha− 1 to kg.m− 3; c = g.wk− 1to %.day− 1. 
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mortality, and economic losses. To facilitate efficient BFT, it is necessary to understand the fundamental water quality conditions, 
zootechnical variables, and microbial communities involved in the floc and amphibolic synthesis of nutrients from organic deposits. 
This review paper examines the crucial genera responsible for supporting a productive BFT system, and provides a functional char-
acterization of the most commonly reported microorganisms in BFT. 

2. Materials and methods 

Information presented in the review was obtained from relevant scholarly publications on BFT. The summary values for biofloc and 
clearwater in Table 1 are the means of the findings of various researchers. Values marked “a-c” presented in Table 2 are converted 
figures reported by the respective researchers in various units as indicated in the footnote. Figs. 1 and 4 were created by modifying 
templates obtained from MindPro drawing tool version 9.0.10 for windows (www.edrawmind.com) while Figs. 2 and 3 were plotted on 
MS Excel from information presented in Table 3. 

3. BFT vs clearwater shrimp culture 

Reports from research repositories have tested various aspects of comparison between BFT and clearwater in shrimp [111]. 
compared sugar beet molasses, refined sugar and corn starch in the grow-out culture of Cyprinus carpio and reported corn starch having 
the least total ammonia nitrogen concentration with corresponding higher fish yield. In a study by Ref. [112] Litopenaeus vannamei 
growth performance and water quality were observed after administering glucose, molasses, and starch [113]. The findings revealed 
that glucose and molasses were the most effective in both growth performance and water quality. Additional studies that investigated 
carbon sources are [114–116]. Similarly, more researchers studied the impact of certain bacteria species to show their efficacies in BFT 
[117]. inoculated Bacillus infantis in the culture of L. vannamei and recorded a significantly better water quality with corresponding 
lower population of Vibrio sp. than in the clearwater (control) unit [118]. inoculated the biofloc culture of L. vannamei with microalgae 
and probiotic bacteria and confirmed that better growth and lower infestation of Vibrio sp. was obtained from the treatment units than 
in the control that had no microalgae and probiotic bacteria [119]. isolated 125 bacteria in BFT and emphasized that Halomonas sp. 
and Bacillus sp. were crucial in biofloc formation. Other researches that have carried out extensive work on microbial composition in 
BFT are [34,120–124]. 

Another aspect of BFT that has received extensive research is stocking density [125]. tested water quality, growth performance and 

Fig. 1. Amphibolic pathway of TCA cycle by heterotrophic bacteria in biofloc system.  
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microbial community of L. vannamei at stocking densities of 2000, 4000 and 6000 m3. Findings from the research showed that the 
highest yield (0.133 kg m− 3) in the highest stocking density with corresponding least survival (71.66 %). Other reports on stocking 
density in BFT are those of [126–129]. Over 80 % of these reports have however dwelt on the water quality and growth performances 
of various species of cichlids and shrimps. Tables 1 and 2 are compilations of some research reports on the water quality and 
zootechnical parameters respectively of shrimps which is in focus in this review. Although not all the reports have clear-cut comparison 
between biofloc and clearwater in their designs, some values presented are extracted from biofloc units having conditions such as 
stocking density, C:N ratio, carbon source (molasses) and other experimental/culture conditions such as salinity level, type of rearing 
facilities, grow-out period etc. same as in the clearwater (control) units. 

Information from the water quality and zootechnical parameters summarily considers BFT having more acceptable figures as 
supported by the presence of microorganisms. Ammonia, nitrite and nitrate are expectedly higher in BFT as documented by researchers 
and keeping them as low as possible is one of the most important concerns for the practice of aquaculture [130]. Detoxification of 
ammonia and its intermediate products remains pivotal in BFT and indicative of the productive microbial composition in floc [77, 
131–133]. The application of probiotic has been confirmed to speed up the immobilisation of ammonia much faster than the tradi-
tional nitrifying bacteria. High turbidity in BFT system is usually due to the floc accumulation. The impact of turbidity in BFT is usually 
of less effect as biosynthesis does not largely depend on photosynthesis that would require the penetration of sunlight in the water 
columns. 

Fig. 2. Percentage roles of microorganisms in BFT.  

Fig. 3. Percentage roles of microorganisms in BFT.  
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4. Biochemical processes by microorganisms in BFT 

Biofloc is a composition of organic residue and a microbial community deliberately introduced into the culture system in order to 
attract benefits arising from their metabolic activities. The trophic activities of the heterotrophic bacterial in the cellular breakdown of 
carbohydrate yields energy in BFT with appreciable amount of protein in the glycolytic pathway that is commenced with the oxidation 
of the deposit of fecal materials and unconsumed feed. High-energy compounds namely ADP and ATP as well as compounds with 
thioester bonds (acetyl-CoA or succinyl-SCoA) are synthesized from the catabolic reaction. 

Amphibolic degradation by heterotrophic (or chemoorganotrophic) bacteria simultaneously produce energy and generates pre-
cursor molecules for the biosynthesis of new cellular constituents [134]. The amphibolic chain of reactions (Fig. 1) synthesizes fatty 
acids, glucose derivatives as well as proteins from the organic wastes in BFT to support the nutritional need of the culture animals and 
also rids the system of the accumulation of these residues. The carbon and nitrogen sources in the organic residue in the aquaculture 
system are biosynthesised into nicotinamide adenine dinucleotide (NADH + H+) which provides the chemical energy for further 
catabolic breakdown of organic sources. Pyruvate is produced from glucose in the glycolytic pathway through a two-stage phos-
phorylation to form the pivotal intermediary product in the biosynthetic process in biofloc system. Pyruvate oxidation occur in 
prokaryotic heterotrophic bacteria is enhanced by pyruvate dehydrogenase complex to yield acetyl-CoEnzyme A (Acetyl-CoA) [135]. 
reported that Pyruvate formate-lyase (PFL) specifically plays the role in the breakdown of pyruvate to acetyl-CoA in prokaryotic 
bacteria. The formation of acetyl-CoEnzyme A is from the decarboxylation of pyruvate and covalent connection to Co-enzyme A by a 
thioester linkage to form a molecule referred to as acetyl-CoA. 

Acetyl-CoA forms the base structure of entry into the Tricarboxylic Acid (TCA) cycle. As an electron acceptor, it reacts with 
oxaloacetate to form citrate. For prokaryotic heterotrophic bacteria in BFT, NADP-dependent enzyme, Isocitrate dehydrogenase 
(NADP+) catalyses the dehydrogenation of D-threo-isocitrate to oxoglutarate converse to other eukaryotes that have NAD+-dependent 
enzymes, Isocitrate dehydrogenase (NAD+) catalysing reaction [136]. Fatty acid biosynthesis which is catalysed by acetyl-CoA 
carboxylase commences with the carboxylation of acetyl-CoA to malonyl-CoA. During this reaction, protein-bound acyl carrier 

Fig. 4. Functional Characterisation of microbial community in BFT 
*Note that Acidovorax (Acid), Actinobacteria (Act), Aeromonas (Aero), Anabaena (Anab), Anureopsis (Anur), Aphanizomenon (Aph), Aphanocapsa 
(Apha), Arcella (Arc), Asplanchna (Aspl), Aspergillus (Aspr), Bacillus (Bac), Brachionus (Brach), Brucella (Bruc), Burholderia (Burh), Cedecea (Ced), 
Centropyixus (Cent), Cetobacterium (Ceto), Chaetoceros (Chae), Chlorella (Chlr), Citrobacter (Citr), Colurella (Col), Cyclotella (Cycl), Cytophaga (Cyto), 
Enterobacter (Ent), Erwinia (Erw), Euglena (Eugl), Filinia (Fil), Flavobacterium (Flav), Fragilaria (Frag), Gamphosphaeria (Gamp), Halomonas (Hal), 
Klebsiella (Kleb), Lactobacillus (Lact), Lecane (Lec), Microbacterium (Mcrb), Micrococcus (Mcrc), Microspora (Mcrp), Microcystis (Mcrt), Moraxella 
(Mcrx), Muricauda (Muric), Navicula (Nav), Nitrospira (Nitp), Nitrococcus (Nitr) Nitrobacter (Ntrb), Nitrosomonas (Ntrs), Ochrobactrum (Ochr), Oocystis 
(Ooc), Padiastrum (Padi), Palmella (Pal), Paramecium (Par), Pencillium (Pen), Pestalotiopsis (Pest), Petalomonas (Peta), Phacus (Phil), Plantomyces 
(Plto), Plantomicrobium (Pltm), Prolinoborus (Prol), Pseudoalteromonas (Psda), Pseudomonas (Psdo), Rhabsitis (Rhb), Rhodotorula (Rhd), Roseobacter 
(Rosb), Ruegeria (Rueg), Sacchromyces (Sacc), Salmonella (Salm), Scanedesmus (Scn), Sphaerocystes (Sph), Staphyloccocus (Stap), Tabellaria (Tab), 
Tetrahymena (Tetr), Thalassiosira (Thal), Trichocerca (Tri), Trichoderma (Trich), Tubifex (Tub), Ulothrix (Ulot), Vibrio (Vibr), Vorticella (Vort). 
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Table 3 
Microorganisms composition and functions in BFT.  

Family Genera Function in BFT Selected References 

Comamonadaceae Acidovorax v [37,42,43] 
Moraxellaceae. Actinobacteria v, vi, vii [4,44,45] 
Vibrionaceae Aeromonas v, vi, viii [17,46,47,48] 
Nostocaceae Anabaena i, ii [48–50] 
Brachionidae Anuraeopsis i,iii,iv [13] 
Nostocaceae Aphanizomenon i, ii [51,52,50] 
Merismopediaceae Aphanocapsa i, ii [53,52,49] 
Arcellidae Arcella i, iii, iv [50] 
Aspergillaceae Aspergillus i, vii, viii [54,55,56] 
Asplanchnidae Asplanchna i,iii,iv [47] 
Bacillaceae Bacillus i, iii. iv, viii [57,42,58,59] 
Brachionidae Brachionus i,iii,iv [12,47] 
Brucellaceae Brucella v [57] 
Burkholderiaceae Burholderia vi [60] 
Enterobacteriaceae Cedecea v, vi [61,62,63] 
Centropyxidae Centropyixus i, iii, iv [50] 
Fusobacteriaceae Cetobacterium iii [64,65] 
Chaetoceraceae Chaetoceros ii, iv [66,67,68] 
Chlorellaceae Chlorella i; ii [55,69,69] 
Enterobacteriaceae Citrobacter v, vi [64,70] 
Lepadellidae Colurella v, vi [12,64] 
Stephanodiscaceae Cyclotella i; ii [46,47] 
Bacteroidaceae Cytophaga i, iii, iv [4] 
Enterobacteriaceae Enterobacter v, vi, viii [4,58,71] 
Erwiniaceae Erwinia v [64] 
Euglenaceae Euglena i [4], [64], [1124] 
Trochosphaeridae Filinia vi [57,47,64], 
Flavobacteriaceae Flavobacterium i, vi [43,49] 
Fragilariaceae Fragilaria i [57,42] 
Gomphosphaeriaceae. Gamphosphaeria i, ii [42,47–49,52] 
Halomonadaceae Halomonas viii [72] 
Enterobacteriaceae Klebsiella vii [58,59] 
Lactobacillaceae Lactobacillus iv [4,73] 
Streptococcaceae Lactococcus iv [74] 
Lecanidae Lecane i, iii, iv, vii [12,54,56,71] 
Comamonadaceae Malikia v [43] 
Microbacteriaceae Microbacterium i, iii [75] 
Micrococcaceae Micrococcus viii [5,42,58] 
Microcystaceae Microcystis i, ii [42,47–49,52] 
Microsporaceae Microspora i [47] 
Moraxellaceae Moraxella v [59] 
Flavobacteriaceae Muricauda  [23,76] 
Naviculaceae Navicula i, ii [47,67] 
Nitrobacteraceae Nitrobacter i, iii [77,75,63] 
Ectothiorhodospiraceae Nitrococcus i, iii [75] 
Nitrosomonadaceae Nitrosomonas i, iii [72,75,63,78] 
Nitrospinaceae Nitrospira i, iii [71,79,75,63] 
Brucellaceae Ochrobactrum vi [80] 
Oocystaceae Oocystis i [47,81,82] 
Hydrodictyaceae Padiastrum i [5,47,83,84] 
Palmellaceae Palmella i [ [47,85] 
Parameciidae Paramecium i, vii [86,87,88] 
Trichocomaceae, Penicillium i, vii [54,55,56] 
Amphisphaeriaceae Pestalotiopsis i, vii [86,62,87] 
Euglenaceae Petalomonas i, vii [54,56] 
Euglenaceae Phacus i [47,89,88] 
Lewinellaceae Phaeodactylibacter i, iii [75,90,91] 
Philodinidae Philodina i, iii, iv [50] 
Planctomycetaceae Plantomicrobium i, ii, vi [57,92,91] 
Plantomycetaceae Plantomyces i, iii [70,75] 
Neisseriaceae Prolinoborus vi [93] 
Pseudoalteromonadaceae Pseudoalteromonas i, ii, [52,92,91] 
Pseudomonadaceae Pseudomonas i, vi, vii; viii [5,42] 
Rhabditidae Rhabsitis i, ii, vi [12,94,95] 
Sporidiobolaceae Rhodotorula iv [94] 
Rhodobacteraceae Roseobacter i, iii, iv [4,96,91] 
Rhodobacteraceae Ruegeria i, iii,viii [97,98,99] 
Saccharomycetaceae Saccharomyces iv [64,92] 

(continued on next page) 
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protein (ACP) is formed by acetyl-CoA transferring its acetyl group to the thiol group. A few series of carboxylation, hydrogenation, 
condensation and dehydrogenation produce series of intermediate products and eventually, b-hydroxydecanoyl-ACP dehydratase 
which produces the cis-b, y (or Δ3)-decanoyl ACP in anaerobic heterotrophic bacteria [137]. 

Amino acids are produced from alpha-ketoglutarate (AKG). The precursor product, glutamate is further converted to glutamine, 
proline, arginine and purines. Also called 2-oxoglutarate, AKG are considered essential metabolites necessary in regulating all 
metabolic reactions that condition the physiological and genetic modifications in animals [138]. The biosynthesis of AKG during 
amphibolic reaction plays a vital role in antioxidative defence and other critical functions that bother on the proper cellular perfor-
mance [139,140] and this serves a crucial role in the immunological functions of heterotrophic bacteria in BFT. Furthermore, 
succinyl-CoA syntheses porphyrin and hemes. Oxaloacetate synthesizes phosphoenolpyruvate (PEP) which is the intermediate product 
for glucose, serine, glycine, cysteine, phenylalanine, tyrosine and tryptophan as well as aspartate, asparagine which forms the 
pyrimidines. 

5. Microbial community and their roles in BFT 

BFT culture systems are driven by biofloc, which are communities of microbes namely bacteria, algae, fungi, protozoa, rotifers, 
grazing macroinvertebrates, and detritus [141,142] performing the overlying function of saprophytes, algae grazers and pathogenic 
bacteria, nitrifying bacteria and floc-farming organisms [54,57,61,143]. In an optimally functioning BFT system, all constituent 
species must be suspended in the water column, carrying out their roles and in a sustainably high connections with other microor-
ganisms [57]. The breakdown and reuse of chemical waste is boosted by the existence of chemo-phototrophic and autotrophic mi-
crobes in biofloc. Bacillus sp., Acinetobacter sp., Sphingomonas sp., Pseudomonas sp., Rhodopseudomonas sp., Micrococcus sp., 
Nitrosomonas sp., Nitrospira sp., Nitrobacter sp., Cellulomonas sp., and yeast constitutes a large population of heterotrophic beneficial 
microbial in biofloc system. An improved growth and complete well-being of the grown animals is resident on the microbial aggregate 
in floc that plays the role of providing nutrients in the system [57]. 

Bacillus sp often produces enzymes and proteins, that provide nutritional benefits in the breakdown of organic matter in BFT, hence 
contributing to the overall dynamics in the microbial community in BFT [144]. Saccharomyces cerevisiae, a species of yeast has a 
well-developed secretory pathway that makes it suitable for production of proteins needed to be synthesized by chemo-autotrophs in 
BFT [145,146]. Acinetobacter sp are known for their metabolic diversity that serves in the degradation of organic compounds, thereby 
detoxifying the biofloc system of the build-up of harmful ions and compounds generated from accumulated waste [147]. Sphingomonas 
sp plays a crucial role of degrading a wide spectrum of organic pollutants, thus assisting in the removal of harmful substances from 
systems generating organic waste [148]. Rhodopseudomonas sp are photosynthetic bacteria and may contribute to oxygen production 
in the biofloc, promoting aerobic conditions that support detoxification processes [149]. The activities of Nitrospira sp, Nitrobacter sp 
and Nitrosomonas sp during nitrification aids the conversion of ammonia to nitrite and nitrate which detoxifies the biofloc system of 
ammonia toxicity [150]. The metabolic diversity of Pseudomonas sp aids the decomposition of this organic material in biofloc to release 
nutrients back the system [151,152]. 

The roles of biofloc are closely linked to the interactions of the community of microorganisms in their trophic co-existence in terms 
of acquisition of nutrients and metabolic processes [42]. This is because these various species of microorganisms exploit various 
organic substrates in floc and perform varying metabolic actions yielding different amount and nature of protein product as well as 

Table 3 (continued ) 

Family Genera Function in BFT Selected References 

Enterobacteriaceae Salmonella iii, vi [58,100] 
Scenedesmaceae Scanedesmus i [48,101,102] 
Palmellaceae Sphaerocystes i [57,66,47] 
Sphingomonadaceae Sphingomonas vi [103] 
Staphylococcaceae Staphylococcus vi [4,58,98] 
Tabellariaceae Tabellaria i [47,64,92,99] 
Tetrahymenidae Tetrahymena i, vii [54] 
Thalassiosiraceae Thalassiosira ii [94] 
Trichocercidae Trichocerca vi, vii [88,100,101] 
Hypocreaceae Trichoderma i, vii [54,55,56] 
Tubificidae Tubifex vi, [57,47,64] 
Ulotrichaceae Ulothrix i [57,47,64] 
Vibrionaceae Vibrio v, vi [96,102,104–109] 
Vorticellidae Vorticella i, iii, iv [110] 

Roles in BFT. 
(i) maintenance of water quality by utilizing nitrogenous compounds (Organic detoxifiers). 
(ii) provision of natural food through photosynthesis (Photosynthetic). 
(iii) protein-synthesis from the breakdown of nitrogenous waste (Chemosynthetic). 
(iv) pathogen competition and inhibitory effect (Probiotic). 
(v) Carriers of Disease pathogens (Pathogenic). 
(vi) Saprophytic breakdown of organic residue (Organic decomposers). 
(vii) Sedimentation of floc residue (Bioflocculant). 
(viii) Solubilisation of nutrient to make bioavailable (Bio-leachers). 
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their capacities to detoxify in the biofloc system. Essentially, the activities of this large spectrum bacteria are known to exhibit 
antioxidant activity along with health benefits [86] and also role in creating a competition in the pathogenic bacteria [42]. 

Bacteria in closed biofloc systems offer many benefits, including improved water quality, enhanced growth performance, and better 
disease resistance for aquaculture animals. In the biofloc system, flocs formed by aggregation of microorganisms serve as natural 
bioremediation [57,153]. Beneficial bacteria in biofloc systems plays the role by extenuating the activities of pathogenic bacteria and 
improving the immunity of aquatic animals [42]. The enrichment of the diet with beneficial bacteria in biofloc systems can further 
enhance water quality, growth performance and disease resistance [42,46]. The use of biofloc technology can also reduce input costs, 
improve biosecurity and control the concentration of ammonia in aquaculture ponds [57,51]. 

Heterotrophic bacteria thrive on carbon for the metabolic breakdown of ammonia and its eventual uptake. Optimal C:N ratios 
encourages the spread of useful bacteria and suppress the growth of dangerous bacteria, leading to enhance water quality and disease 
control [22,154,155]. Furthermore, nitrogen uptake and breakdown of biotoxins are boosted under suitable C:N ratios. Biofloc pro-
duction, waste decomposition, and nitrogen uptake can be optimized by ensuring suitable C:N ratios, as highlighted in Ref. [57]. 
Maintaining these ratios is crucial in achieving success with biofloc technology in shrimp production. The trophic role of microbes in 
BFT is to aid the conversion of organic material into food sources for cultured animals during which time, lethal compounds and toxins 
are equally removed from the system [42]. Growth responses, digestibility of food, and enhancement of immunity against bacterial 
contaminations in cultured animals is reported to be improved by bacterial compound called poly-β-hydroxybutyrate (PHB) which is 
accumulated in biofloc [57]. Playing the role of nutrition and bio-accessible compounds, biofloc enhance aquatic growth and health 
[14]. However, if organisms begin to display signs of stress or disease, it may be an indication of harmful bacteria. As such, it is vital to 
regularly test the water quality and mount surveillance on the microbial community within the system to ensure optimal conditions for 
aquatic life [156]. By maintaining a robust microbial community and first-rate water quality, biofloc systems can facilitate effective 
and sustainable aquaculture. 

Aquatic animals grown under BFT are known to exhibit a more robust immune capacity. Aquatic organisms perform better when 
there is food abundance leading to lesser competition and self-enabling immunity to environmental perturbation [157]. These 
improved immune responses have been attributed to the presence of microorganisms that induce the immune system [53,74,157,158] 
and an enhancement of the enzyme activities in floc [153,74,158]. Several findings suggest that Bacillus sp have the potential to be a 
valuable bioagent for improving the health and productivity of aquatic cultured organisms [159–161]. This function distinguishes the 
BFT from other RAS as its performance is promoted by the probiotic bacterial community. An aggregation of these heterotrophic 
bacteria plays a role in the bioremediation of the harmful waste generated in the system. Considered as a complex community of 
bacteria and other microbes, BFT contains abundant bioactive compounds that boosts shrimp tolerance to stress and stimulate their 
antioxidant activity [162,163]. [164] emphasized the cohabitation of several classes of microorganisms in biofloc systems, which 
create a symbiotic relationship with cultured aquatic animals and other microbial species. The composition of bacterial populations in 
biofloc systems is influenced by several factors, including the type of aquatic animal being cultured, the quality of feed used, and 
environmental conditions such as water quality. 

Some microorganisms are however detrimental to biofloc technology, most commonly is Vibrio sp. which has been identified as the 
commonest bacteria that has caused serious economic loss in shrimp culture and particularly biofloc system of its culture [66,165]. 
Management of CN ratio has been confirmed to reduce acute hepatopancreatic necrosis disease (AHPND), a disease triggered by the 
presence of Vibrio parahaemolyticus in biofloc system [166]. A number of these vibrio diseases shown identifiable symptoms that are 
distinguishable from others. Generally, shrimps suffer from bacterial septicemia caused by Vibrio alginolyticus, V. anguillarium, and 
V. parahaemolyticus; necrosis with Vibrio sp as the pathogen, Pseudomonas sp, Aeromonas sp. and Flavobacterium sp; brown spot disease 
caused by Aeromonas sp. and Flavobacterium sp. filamentous bacterial disease caused by Leucothrix mucor. A range of challenges may 
arise in aquaculture when utilizing biofloc system. These include a rise in ammonia level, high turbidity, retarded growth, and the poor 
health of the grown aquatic animals. The aim of the BFT system is to convert ammonia into nitrate, with probiotic bacteria playing a 
key role in this process [167,168]. However, if the system experiences a sudden increase in ammonia or nitrite levels, it may indicate 
bacterial malfunction. Controlling ammonium levels is a significant concern in aquaculture, and chemoautotrophic bacterial nitrifi-
cation (CBN) is a crucial process in achieving this [169]. The biofloc system itself creates the ideal environment for nitrifying bacteria 
to grow by accumulating flocculated matter, as well as ammonia and nitrite [170]. 

Fig. 2 show the percentage role of the various microorganisms in BFT system. Researchers have reported that the entire spectrum of 
microorganisms in BFT system are either organic detoxifiers, photosynthetic, chemosynthetic, pathogenic, saprophytic, bioflocculants 
or bio-leachers (Table 3). The activities of some of the microorganisms in BFT detoxify the ammonia in the system and other toxins 
while others play the trophic roles the synthesizing food photosynthetically or chemosynthetically. Some microorganisms in BFT 
system are probiotic in their functions which are inhibitory or competitive to the pathogens in the system. The pathogenic micro-
organisms in BFT are active when conditions supporting their actions are made possible in the system. During these activities, sec-
ondary processes such as saprophytic breakdown of organic residue and their sedimentation as well as the solubilisation of nutrients in 
the decomposed floc residue are triggered by other categories of microorganisms known as bio-leachers. The seamless operation of 
these microorganisms yields a balanced BFT where detoxification, food synthesis, bio-flocculation of floc residue and immunity are 
spontaneously provided by the BFT system. 

The distribution and functional roles played by microorganisms in BFT is presented in Fig. 3. Out of the 82 genera reported in this 
review, 39.02 % are known to carry out only one role in BFT while 60.98 % played multiple roles in the system. Three genera: Bacillus 
sp., Lecane sp., and Pseudomonas sp., carried out four out of eight (50 %) in the multiplicity of these roles. This category of micro-
organisms occupies the most critical niche in the microbial composition in BFT. Bacillus sp, Lecane sp and Pseudomonas sp have been 
reported to be crucial microorganism in BFT [57,156,64]. 
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Amphibolic degradation often results in the synthesis of certain intermediates that are useful both in anabolic and catabolic 
pathways. Heterotrophic bacteria in a biofloc system usually influence these specific metabolic pathways and conditions that produce 
varying end products during amphibolic degradation. During catabolic processes, heterotrophic bacteria break down organic com-
pounds to produce ATP through oxidative phosphorylation (a source of cell energy and precursor) for the biosynthesis of synthesize 
amino acids, nucleotides, and other cellular building blocks [171,172]. The organic acids produced by Bacillus sp during the break-
down of organic matter in BFT generally serves as an energy source for other microorganisms in the system and biosynthesis of the 
various products in the pathway [14,173]. Lecane sp filter feeders whose activities contribute to the reduction of organic particles. This 
gives rise to the synthesis of organic acids such as acetic acid, lactic acid, or citric acid which are key intermediaries in the amphibolic 
pathway [83]. Some bacteria in biofloc systems produce complex extracellular polymers composed of proteins, polysaccharides, and 
nucleic acids that act in the formation and stability of floc. In addition, some heterotrophic bacteria in the biofloc system facilitate the 
nitrogen cycle in the system. This denitrification process facilitated by Pseudomonas sp supports the maintain proper nitrogen balance 
and prevents the accumulation of excess nitrate in the BFT system, which is harmful to shrimp and other aquatic organisms [82,84]. 

6. Detecting the borderline between the beneficial and harmful microbial community in BFT 

The diversity of microorganisms, their relative abundance, and the changes in their numbers over time in biofloc technology 
aquaculture systems are impacted by several factors. Understanding these factors is crucial for farmers as they can use this knowledge 
to manage their systems better and promote healthier animals [95]. This is a critical aspect that has proved elusive to most farmers and 
researchers, thus posing significant management challenges in BFT. It is therefore essential to maintain an equilibrium within the 
biofloc system to ensure proper functioning of probiotic bacteria and to keep ammonia and other noxious intermediate products within 
acceptable limits [174]. The success of biofloc technology is dependent on the maintenance of proper water quality and the 
acknowledgment of the importance of microorganisms [175,176]. Water quality conditions serve as useful indicators of the pro-
ductivity of the microbial community in a BFT system. Accordingly, a beneficial microbial community in biofloc can be inferred when 
optimum water quality conditions are maintained. Conversely, poor and unstable water quality conditions are triggered by the failure 
of the microbial community to maintain the concentration and ionic balancing of all the constituent nutrients in BFT. 

Considering the roles played by microorganisms as reported by several researches, certain genera of microorganisms could be 
considered fundamental due to their ability to undertake multiple roles in effective functioning of BFT. Fig. 4 depicts such genera of 
microorganisms to include Anureopsis sp., Arcella sp., Asplanchna sp., Aspergillus sp., Bacillus sp., Brachionus sp., Centropyixus Cytophag 
sp., Enterobacter sp., Lecane sp., Microbacterium sp., Plantomyces sp., Phacus sp., Pseudomonas sp., Rhabsitis sp., Ruegeria sp., Roseobacter 
sp. and Vibro sp. Although other microorganisms may not be considered less important, the over-lapping roles of these so-called 
fundamental microorganisms may significantly cover for other microorganisms absent in BFT. In addition, their absence in floc 
might indicate a dysfunctional BFT, which might impair nutrient synthesis, system health, detoxification, organic breakdown and 
sedimentation, as well as nutrient extraction from organic deposits to release nutrients for additional biosynthesis in the BFT system. 
Due to their reported roles in nearly all of the metabolic activities that take occur in the BFT system, Bacillus sp., Lecane sp., and 
Pseudomonas sp. could be regarded as the three primary genera in BFT [177]. With a sufficient population of Bacillus sp., Lecane sp., and 
Pseudomonas sp. in the microbial community, a highly efficient BFT may be considered. Efficient BFTs can be considered as BFTs with 
sufficient numbers of Bacillus sp., Lecane sp. and Pseudomonas spp. in microbial communities. Vibrio spp. and Enterobacter spp. Under 
unsuitable water conditions, they can transform into harmful pathogens that thrive in nutrient-rich BFT systems. Under certain 
conditions, such as low oxygen and high temperatures, bacteria can multiply rapidly and cause fish diseases [178]. To avoid such 
consequences, it is important to monitor key water quality parameters such as dissolved oxygen, pH, and ammonia, nitrite, and nitrate 
levels. Closely related is the genus Pseudomonas, which poses a threat to biofloc under unfavourable water conditions, leading to 
reduced growth rates and disease outbreak [179]. 

7. Conclusion 

BFT has proven to be a sustainable aquaculture system with enormous advantages. By promoting the growth of helpful bacteria, 
biofloc systems keep harmful bacteria at bay, resulting in improved growth and health of shrimp and other aquatic animals. As a 
veritable measure towards maintaining a healthy BFT system, optimum water quality condition is imperative in order to impede the 
thrive of pathogenic microorganisms. Furthermore, probiotic bacteria are reported to inhibit the activities of pathogenic bacteria and 
so, deliberate augmentation in the population of probiotic such as Bacillus sp. through inoculation could enhance a healthy BFT system. 

A swing from the beneficial to harmful roles of microorganisms is inimical to an efficient BFT. Close attention on the water quality 
provides quite useful signal indicating when the microbial community no longer supports the effective operation of the system. Sharp 
alteration from acceptable ranges should prompt quick action by immediately incorporating probiotics if not already in use. Regular 
evaluation of the microbial community in BFT is equally valuable with a deliberate effort to keep the population of Vibrio and 
Enterobacter to the minimum (<5 %) in the microbial community of BFT system. 
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[120] J.A. Pérez-Fuentes, C.I. Pérez-Rostro, M.P. Hernández-Vergara, M. del C. Monroy-Dosta, Variation of the bacterial composition of biofloc and the intestine of 
Nile tilapia Oreochromis niloticus, cultivated using biofloc technology, supplied different feed rations, Aquac Res 49 (11) (Nov. 2018) 3658–3668, https://doi. 
org/10.1111/ARE.13834. 

[121] Z. Qiu, et al., Effects of probiotics on the water quality, growth performance, immunity, digestion, and intestinal flora of giant freshwater prawn 
(Macrobrachium rosenbergii) in the biofloc culture system, Water 15 (6) (Mar. 2023) 1211, https://doi.org/10.3390/W15061211, 2023, Vol. 15, Page 1211. 

[122] S.M. Gutiérrez, C. Monroy, H. Partida, J.C. Mejía, G.A. Rodríguez, Effect of two carbon sources in microbial abundance in a Biofloc culture system with 
Oreochromis niloticus (Linnaeus, 1758), Int J Fish Aquat Stud 4 (June) (2016). 

[123] H. Zheng, G. Luo, G. Abakari, G. Lv, H. Tan, W. Liu, Effect of seeding biofloc on the nitrification establishment in moving bed biofilm reactor (MBBR), Aquac 
Fish (2022), https://doi.org/10.1016/j.aaf.2022.10.004. 

[124] N.F. Che Hashim, et al., Inoculation of bioflocculant-producing bacteria for enhanced biofloc formation and pond preparation: effect on water quality and 
bacterial community, Aquac Res 53 (4) (2022), https://doi.org/10.1111/are.15678. 

[125] W.A. da Silva, J.L. da Silva, C.Y.B. Oliveira, A.P.M. de Morais, R.A. Shinozaki-Mendes, U.L. Silva, Effect of stocking density on water quality, plankton 
community structure, and growth performance of Litopenaeus vannamei post-larvae cultured in low-salinity biofloc system, Int. Aquat. Res. 14 (2) (2022), 
https://doi.org/10.22034/IAR.2022.1936674.1176. 

[126] M. Shamsuddin, et al., Application of Biofloc Technology for the culture of Heteropneustes fossilis (Bloch) in Bangladesh: stocking density, floc volume, growth 
performance, and profitability, Aquacult. Int. 30 (2) (2022), https://doi.org/10.1007/s10499-022-00849-z. 

[127] E.C. Legarda, et al., Effects of stocking density and artificial substrates on yield and water quality in a biofloc shrimp nursery culture, Rev. Bras. Zootec. 47 
(2018), https://doi.org/10.1590/RBZ4720170060. 

[128] S. Debnath, M.U. Ahmed, M.S. Parvez, A.K. Karmokar, M.N. Ahsan, Effect of stocking density on growth performance and body composition of climbing perch 
(Anabas testudineus) in biofloc system, Aquacult. Int. 30 (3) (2022), https://doi.org/10.1007/s10499-021-00812-4. 

[129] A. Eid, et al., Effects of stocking density on growth performance of nile Tilapia fingerlings under biofloc system, Abbassa International Journal of Aquaculture 
13 (2) (2020). 

[130] Y. Deng, et al., Effect of stock density on the microbial community in biofloc water and Pacific white shrimp (Litopenaeus vannamei) gut microbiota, Appl. 
Microbiol. Biotechnol. 103 (10) (May 2019) 4241–4252, https://doi.org/10.1007/S00253-019-09773-4/FIGURES/5. 

[131] M. Irani, H. Rajabi Islami, M. Nafisi Bahabadi, S.P. Hosseini Shekarabi, Production of Pacific white shrimp under different stocking density in a zero-water 
exchange biofloc system: effects on water quality, zootechnical performance, and body composition, Aquac Eng 100 (2023), https://doi.org/10.1016/J. 
AQUAENG.2022.102313. 

[132] G. Liu, S. Zhu, D. Liu, X. Guo, Z. Ye, Effects of stocking density of the white shrimp Litopenaeus vannamei (Boone) on immunities, antioxidant status, and 
resistance against Vibrio harveyi in a biofloc system, Fish Shellfish Immunol. 67 (Aug. 2017) 19–26, https://doi.org/10.1016/J.FSI.2017.05.038. 

[133] R.R. Ghimire, A. Ghimire, D. Karki, D. Basyal, K.B. Rai, Determination of ammonia level and its protein conversion in the water of biofloc fish farming 
technology, Prithvi Academic Journal (2023), https://doi.org/10.3126/paj.v6i1.54572. 

[134] J. Artigas, I. Batisson, L. Carles, Dissolved organic matter does not promote glyphosate degradation in auto-heterotrophic aquatic microbial communities, 
Environ Pollut 259 (2020), https://doi.org/10.1016/J.ENVPOL.2020.113951. 

[135] A. Atteia, R. Van Lis, A.G.M. Tielens, W.F. Martin, Anaerobic energy metabolism in unicellular photosynthetic eukaryotes, Biochimica et Biophysica Acta - 
Bioenergetics 1827 (2) (2013), https://doi.org/10.1016/j.bbabio.2012.08.002. 

[136] J.G. Vallarino, S. Osorio, Organic Acids, Postharvest Physiology and Biochemistry of Fruits and Vegetables, Jan. 2018, pp. 207–224, https://doi.org/10.1016/ 
B978-0-12-813278-4.00010-5. 

[137] S. Zhang, X. Qian, S. Chang, G.C. Dismukes, D.A. Bryant, Natural and synthetic variants of the tricarboxylic acid cycle in cyanobacteria: introduction of the 
GABA Shunt into Synechococcus sp. PCC 7002, Front. Microbiol. 7 (DEC) (2016), https://doi.org/10.3389/fmicb.2016.01972. 

[138] F. Legendre, A. MacLean, V.P. Appanna, V.D. Appanna, Biochemical pathways to α-ketoglutarate, a multi-faceted metabolite, World J. Microbiol. Biotechnol. 
36 (8) (2020) 1–11, https://doi.org/10.1007/S11274-020-02900-8/FIGURES/8. 

[139] R.J. Mailloux, R. Gill, A. Young, Protein S-Glutathionylation and the Regulation of Cellular Functions, Eustress and Distress, Oxidative Stress, Jan. 2019, 
pp. 217–247, https://doi.org/10.1016/B978-0-12-818606-0.00013-4. 

[140] L.R. Engelking, Leaks in the Tricarboxylic Acid (TCA) Cycle, Textbook of Veterinary Physiological Chemistry, 2015, pp. 214–218, https://doi.org/10.1016/ 
B978-0-12-391909-0.50035-9. 
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