
Citation: Mo, Y.; Feng, Y.; Huang, W.;

Tan, N.; Li, X.; Jie, M.; Feng, T.; Jiang,

H.; Jiang, L. Liquid–Liquid Phase

Separation in Cardiovascular

Diseases. Cells 2022, 11, 3040.

https://doi.org/10.3390/

cells11193040

Academic Editor: Yaling Liu

Received: 31 July 2022

Accepted: 26 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Liquid–Liquid Phase Separation in Cardiovascular Diseases
Yuanxi Mo 1,†, Yuliang Feng 2,†, Wei Huang 3,†, Ning Tan 1,*, Xinyi Li 1, Minwen Jie 4 , Tong Feng 5 , Hao Jiang 4,*
and Lei Jiang 6,*

1 Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Department of Cardiology,
Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of
Medical Sciences, Guangzhou 510080, China

2 Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences,
University of Oxford Old Road, Headington, Oxford OX3 7LD, UK

3 Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine,
Cincinnati, OH 45267, USA

4 Laboratory for Aging and Cancer Research, National Clinical Research Center for Geriatrics,
West China Hospital, Sichuan University, Chengdu 610041, China

5 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
6 Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of

Medical Sciences, South China University of Technology, Guangzhou 510080, China
* Correspondence: ningtan888@yeah.net (N.T.); sjianghao@icloud.com (H.J.); jianglei@smu.edu.cn (L.J.)
† These authors contributed equally to this work.

Abstract: Liquid–liquid phase separation (LLPS) is a biochemical process in cells that can drive
proteins, RNA, and other molecules to concentrate into droplets. These droplets do not have a lipid
membrane but rather exist as distinct organelles relative to the surrounding environment, and act
as biochemical reaction chambers. In recent years, significant progress has been made in the study
of LLPS, especially in the neurodegenerative disease, cancer, and virology fields, but little is known
about LLPS in cardiovascular disease (CVD). In this review, we discuss the current understanding of
the mechanism and biological functions of LLPS, particularly its roles in regulating CVD.

Keywords: liquid–liquid phase separation; cardiovascular disease; membrane-free organelle

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide. Prevention of
CVDs has been a focus of interest. In the past 10 years, cardiovascular disease research has
mainly focused on non-coding RNA [1]. However, the molecular mechanisms leading to
CVDs are still not fully understood.

Liquid–liquid phase separation (LLPS), a process that facilitates protein–protein and
protein–RNA interactions, has an important role in many diseases. However, the role of
LLPS in the cardiovascular system has yet to be extensively studied. In this article, we
review the potential connection between phase separation and CVD and provide new
solutions for the prevention or treatment of CVD.

2. Characteristics of LLPS

The germ granules/P granules found in Caenorhabditis elegans (C. elegans) in 2009
were found to undergo LLPS, thus, introducing LLPS research [2]. Over the years, the
LLPS characteristics have gradually been realized. Specifically, LLPS is a phenomenon
underlying the formation of membrane-less organelles in the cytoplasm and nucleoplasm
via weak multivalent interactions. The surrounding cytoplasm responds by forming a
distinct membrane-free compartment. Identifying the characteristics of LLPS is essential
for evaluating whether LLPS has occurred. In fact, the droplets formed by LLPS exhibit
two physical characteristics. First, the droplets are spherical in isolation due to surface
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tension, and proteins that undergo phase separation show round droplets after in vitro pu-
rification [3]. In vivo, the spherical droplets appear as punctate aggregates after staining [4].
Second, the droplets undergo fusion, and several droplets can fuse to form a larger droplet.
Tools used to identify LLPS include differential interference phase contrast microscopy
and fluorescence recovery after photobleaching (FRAP) experiments [3]. Additionally,
some scientists have found a way to observe phase separation in vivo. For example, local
signal enhancement of P bodies was observed in the germ cells of C. elegans, indicating
that the P bodies underwent local coagulation, similar to droplets observed under a micro-
scope [2]. Subsequent studies have increasingly revealed that phase separation occurs in
other prokaryotic and eukaryotic cells [5].

Under pathological conditions, various proteins can aggregate through LLPS, which
hinders normal cellular function and accelerates the development of diseases. For exam-
ple, TDP-43 and FUS were found to accumulate in the degenerative motor neurons of
amyotrophic lateral sclerosis (ALS) patients through LLPS [6].

In recent years, studies have found that some specific particles are formed by LLPS.
For example, ribonucleoprotein (RNP) particles [7], also known as RNA/protein or RNA
particles, are crucial structures found in the cytoplasm and nuclei of living cells involved
in a variety of diseases, including neurological, cardiovascular, and reproductive diseases
and cancer, through their role in the processing and storage of RNA. Cellular RNPs are
mainly divided into the following two types: nuclear granules, such as Cajal bodies and
nucleoli, and cytoplasmic granules, such as stress granules (SGs) and P-bodies. Because
RNPs are rich in RNA and proteins, RNA–protein and protein–protein interactions oc-
cur in these structures. Among RNPs, those that contain mRNA at their core are called
messenger ribonucleoprotein (mRNPs), which can regulate the translation, localization,
and conversion of mRNA. These mRNPs have been shown to be closely associated with
neurodegenerative diseases. The persistence of mRNP complexes, such as SGs and P
bodies, is related to neurodegenerative diseases, such as ALS, frontotemporal dementia
(FTD), and frontotemporal lobar degeneration (FTLD) [8]. In the cardiovascular system,
mRNPs can reach the sites of myofibril synthesis in cardiomyocytes through microtubule
transport to mediate cardiac hypertrophy [9], which suggests that mRNPs participate in
the formation of the membranous septum in the synthesis of myofibrils.

3. Regulation of LLPS

The assembly of membrane-less organelles by LLPS is a dynamic process that relies on
the weak interaction between protein and protein or protein and RNA. This effect is often
provided by specific regions between molecules, including the IDR region, hydrophobic
amino acid region, charged region, etc. The assembly starts by forming an unstable core
through weak interactions and then recruiting proteins to stabilize the core [10]. In neurons,
this process relies on cytoskeletal proteins and molecular motors. It can transport and
aggregate individual mRNPs/small mRNP particles into larger structures. That is to say,
the entire RNPs are regarded as membrane-less organelles. Similar to membrane organelles,
different organelles reach designated locations along microtubules and microfilaments
through the action of actin, myosin, and ATP.

The LLPS is easily affected by many factors, such as light intensity, temperature, salt
concentration, ATP concentration, post-translational modifications (PTMs), and chaperone
proteins. In their study, Brangwynne et al. [11] developed a new optogenetics platform that
regulates phase transition in living cells by controllable light; this platform induces phase
separation by connecting the photosensitive protein PHR to the intrinsically disordered
regions (IDRs) terminal by blue light irradiation. This method can help explore LLPS
in cells.

Temperature is involved in controlling phase separation [12,13], and an upper crit-
ical solution temperature (UCST) for LLPS has been identified. In vitro, protamine and
protamine–multivalent ion complexes that had originally condensed were found to disso-
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ciate with increasing temperature, but when the temperature dropped, their aggregation
resumed [14]. This shows that LLPS requires certain temperature conditions.

Changing the concentrations of salt ions in solution is a widely studied method
to induce LLPS. This is because DDX3X is more prone to phase separation in high-salt
solutions, as salt ions change weak interactions between molecules, affecting the occurrence
of phase separation. Moreover, ATP can affect the assembly of aggregates and act as a water-
soluble growth aid to reduce the protein aggregation caused by LLPS [15]. Furthermore,
some results suggest that various ATP-driven remodeling complexes regulate SGs [16].
First, ATP is the key driving force for phase separation. Moreover, ATP can maintain the
protein concentration in the particles and, when proteins are present at a high concentration,
ATP may counteract the tendency of IDRs to form amyloid fibers.

Here, PTMs are the main mechanism regulating phase separation. Currently known
PTMs affecting phase separation include methylation, phosphorylation, acetylation, and
ubiquitin [17–19]. These PTMs promote or inhibit LLPS by changing disordered regions’
charge distributions and hydrophobic properties.

In vitro, the turbidity of a solution of acetylated DDX3X-IDR1 was lower than that
of unacetylated IDR1 in the solution, indicating that the acetylation of DDX3X-IDR1 can
weaken its LLPS [18]. For the same protein, different post-translational modifications will
have different effects on LLPS. For example, a high level of tau acetylation is not conducive
to LLPS and affects its interaction with microtubules [20], but phosphorylation of tau
contributes to LLPS [21]. Interestingly, it has recently been discovered that ubiquitin is
important for the regulation of LLPS. The ubiquitin-like protein ubiquilin 2 (UBQLN2)
was found to regulate LLPS by directly regulating the fluidity of FUS–RNA complexes
and kinetics of SG formation in the neurodegenerative diseases ALS and FTD [22]. Phos-
phorylation changes the frequency of LLPS by affecting the difference in charges between
proteins, while ubiquitination can affect mRNA splicing. In most nuclear body proteins,
ubiquitination can control splicing and promote the assembly of spliced aggregates through
protein–protein interactions.

Molecular chaperones are also important factors in regulating phase separation [23].
Chaperones affect phase separation mainly by inhibiting the formation of abnormal phase
separation. High levels of the chaperone proteins HSP27 and heat shock protein 70 (HSP70)
were found in SOD1-positive SGs, and HSP70 was able to prevent the formation of abnormal
SGs [24]. This may be related to the fact that molecular chaperones bind to disordered
regions of proteins, reducing the weak interaction between proteins. This protective
mechanism of cellular evolution may prevent abnormal phase transition formation through
the recruitment of chaperones (Figure 1).
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modification; IDR, intrinsically disordered region; UCST, upper critical solution temperature.
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4. Potential Role of LLPS in the Cardiovascular System

At present, exploring the biological function of LLPS is a critical task, and the explo-
ration of its physiological function and its significance in diseases is required. Based on
current evidence, phase separation is one of the mechanisms by which compartments form.
Phase separation also mediates various biological functions, such as mitosis, growth, and
development [25]. At present, phase separation is believed to cause the accumulation of
proteins and diseases and to exert a protective role in organisms [26]. The main evidence for
these functions is mostly from studies on neurodegenerative diseases. Most neurodegenera-
tive proteins contain prion-like domains; although sufficient in vivo experimental evidence
is lacking, these proteins, which have an important role in Alzheimer’s disease and ALS,
may form LLPS in vitro. However, the biological function of LLPS in other systems has
not been revealed. However, some evidence suggests that proteins may be capable of
undergoing phase separation in CVDs. For example, Liao et al. used RBDmap to capture
1148 RBPs in cardiomyocytes and found 393 unique RBPs in cardiomyocytes [27] This
indicates that, in CVDs, a considerable portion of proteins may undergo LLPS, because
the interaction between proteins and RNA is an important form of phase separation. At
present, two protein databases, LLPSDB and PhaSePro, contain data specific to LLPS; many
proteins in these databases have been proven to undergo phase separation in vitro and have
an important role in CVDs (Table 1) [28]. These databases provide the possibility to explore
LLPS in the cardiovascular system. For example, HnRNPA1 is a key protein that regulates
RNA metabolism in cytoplasmic RNP particles, and its C-terminal region is a key region
for mediating dynamic LLPS. It may serve as a core scaffold to recruit miR-124, Drosha,
and DGCR8 to coordinate the proliferation of vascular smooth muscle cells (VSMCs) and
endocardium formation [29,30]. Moreover, BRD4 is a protein that phase-separates under
high-salt conditions. It has been studied in cancer in the past. In recent years, its unique
regulatory function has been found in heart failure and atherosclerosis. Additionally,
BRD4 may have a regulatory role at the transcriptional level by recruiting transcription
factors through phase separation. For example, the lack of BRD4 at the transcription level
can cause the occurrence of dilated cardiomyopathy [31,32]. Furthermore, MED1 is also
an important transcription factor for the heart. It has been able to form droplets on the
super-enhancer. At the same time, it acts as a bridge between the cardiac enhancer and the
promoter, directing the specific expression of more than 5000 genes. Mutations in MED1
can cause acute heart failure in the heart [33–35].

Table 1. Proteins that are phase-separated in the cardiovascular system.

Protein Name Cellular Location Database Function

hnRNPA1 Nucleus LLPSDB

1. Promotes the proliferation of VSMCs and the
formation of new intima [29].

2. Acts as an important protein that maintains the
development of human embryos whose mutations can
cause congenital heart defects [30].

P63 Nucleus LLPSDB

1. Regulates the development of embryonic stem cells in
the heart [36].

2. Participates in the proliferation of smooth muscle cells
regulated by microRNA [37].

hnRNPA2 Nucleus LLPSDB Promotes stem cell smooth muscle differentiation and
embryonic arteriogenesis [38].
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Table 1. Cont.

Protein Name Cellular Location Database Function

BRD4 Nucleus LLPSDB

1. Accelerates the uptake of lipids in the blood vessel
wall during the aging process and aggravates
atherosclerosis [31].

2. Regulates endothelial-mesenchymal transition and
cardiac fibrosis [32].

MED1 Nucleus LLPSDB

1. Affects heart development and DCM [33].
2. Has an anti-atherosclerotic effect [34].
3. Prevents myocardial ischemia-reperfusion injury [35].

Numb Cell membrane LLPSDB Maintains cardiac morphology and the differentiation of
cardiac progenitor cells [39].

MEG3 Nucleus LLPSDB

1. Participates in cardiac fibrosis and diastolic
dysfunction [40].

2. Regulates angiogenesis [41].

FMR1 Nucleus PhaSePro

1. Participates in myocardial cell injury during ischemia
and reperfusion [42].

2. Protects cardiomyocytes from myocardial injury
induced by lipopolysaccharide [43].

NONO Nucleus PhaSePro

1. Prevents the excessive proliferation of cardiac
fibroblasts [44].

2. Promotes the instability of atherosclerotic plaque and
increases the incidence of plaque destruction [45].

DAXX Nucleus PhaSePro

1. Inhibits the proliferation of vascular smooth muscle [46].
2. Mediates endothelial cell apoptosis [47].
3. Mediates myocardial apoptosis during stress or

ischemia-reperfusion [48].

dyrk1a Nucleus PhaSePro

1. It may play a role in myocardial changes in Down
syndrome [49].

2. Inhibits cardiomyocyte hypertrophy [50].

GATA3 Nucleus PhaSePro Mediates endothelial cell migration [51].

AGO2 Nucleus PhaSePro Mediates diabetic cardiomyopathy [52].

4.1. CVD and Intrinsically Disordered Proteins

Inherently disordered regions of proteins do not adopt a fixed tertiary structure, which
contributes to the formation of multivalent interactions or misfolding in LLPS. Multivalent
interactions are various non-covalent interactions formed when two molecules are com-
bined. The IDRs of proteins are important factors driving phase separation. When proteins
aggregate, an IDR undergoes a disorder-to-order transition [53] When all lysine residues in
DDX3X-IDR1 were mutated to glutamine, a decrease in turbidity during LLPS in vitro was
observed [18]. This showed that IDRs have an important role in phase separation.

Currently, there are more than 15,000 know proteins with an IDR. The IDRs can help
proteins recognize and accelerate their interaction with other proteins and carry out alter-
native splicing, PTM, protein fusion, and insertion or deletion functions. Through database
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analysis of 487 proteins whose sequences were extracted from Swiss-Prot, 198 disordered
regions among 101 proteins were predicted, and CVD-related proteins with disordered
regions were very abundant [54]. Among these proteins, PDE4D may be involved in the
occurrence of stroke through atherosclerosis. According to predictions, both the N-terminus
and C-terminus of PDE4D contain disordered regions. The N-terminus participates in
functions, such as phosphorylation and multimer formation, and the C-terminus is mainly
related to dimer formation. Disordered regions can bind the SH3 domains of certain pro-
teins, such as the Src family tyrosyl kinases lyn, fyn, and src. Furthermore, the SH3-binding
domain of fyn kinase can bind proteins to induce LLPS [55]. Additionally, PDE4D may also
interact with the SH3-binding domain of the kinase Fyn and induce phase separation.

4.2. LncRNAs-Associated Phase Separation in CVD

As non-coding RNAs, lncRNAs regulate epigenetic, transcriptional, and translation
processes in organisms. Interestingly, lncRNAs can form the core of the separated droplets
(Figure 2a). Furthermore, SGs often use untranslated mRNA as a scaffold and nucleosomes
in the nucleus cluster with lncRNAs or pre-mRNA scaffolds [56]. Architectural RNAs (Ar-
cRNAs) have a key role in particle assembly. The currently known arcRNAs are primarily
mRNAs, and only five lncRNAs can act as arcRNAs, as follows: (1) the cores of nucleosome
paraspeckles contain NEAT1, which mainly inhibits apoptosis and induces antiviral genes
during viral infection and pregnancy establishment [57]. (2) Amyloid (amyloid bodies) uses
IGS as its core and function to repair proteins in the body and regulate ribosome formation.
(3) Satellite III in nuclear SGs is mainly involved in the separation of RBPs and transcription
factors. (4) A heat shock RNA (hsr-omega) in omega speckles in Drosophila melanogaster is
involved in normal development [58]. (5) Saccharomyces cerevisiae meiRNA in the Mei2 site
is involved in the process of meiosis [59]. At the same time, lncRNA can also promote the
phase separation of other proteins and recruit more proteins into the droplets, which also
shows that lncRNA has an important role in phase separation [60].

Many lncRNAs have been reported to be closely related to CVD [40,61], and these
relationships are usually related to the sponge function of microRNAs. So far, these
lncRNAs have not been reported to undergo phase separation in cardiovascular disease.
These lncRNAs may also help the formation of phase separation cores in cardiovascular
diseases and may act as auxiliary tools to promote the formation of other phase separations.
Whether these lncRNAs can also be used as arcRNAs to regulate downstream genes is
worth investigating. Mannen et al. and Chujo et al. explored two methods to identify
new nuclear bodies, namely RNase sensitivity screening and transcriptome screening of
semi-extractable RNA, respectively [62,63]. These two methods can identify lncRNAs to
assist in stent formation in CVDs.

4.3. Protein Misfolding in Cardiomyopathy

Protein folding is an important step by which proteins adopt a three-dimensional
tertiary structure. To ensure normal operation in the body, proteins must be correctly folded
to carry out their normal biological roles. Misfolded proteins are eliminated through the
autophagy system. When regulation of protein expression or degradation pathways fails
and degradation pathways are destroyed, proteins accumulate, and pathological changes
occur. Interestingly, proteins that are not eliminated due to failure of the autophagy system
may cause proteasome disease through phase separation (Figure 2b). In FTD and ALS,
proteins accumulate due to targeted damage to degradation pathway proteins, such as
FUS and TDP-43 [64,65]. Proteins may incorrectly accumulate for the following reasons:
(1) autophagy and protein quality control (PQC) disorder can cause incorrect protein
accumulation. When PQC proteins mutate, misfolded proteins cannot be cleared and
accumulate, resulting in phase separation. For example, when BAG3 is deleted, or a residue
in the BAG domain is mutated from glutamate to lysine (E455K), the interaction between
BAG3 and HSP70 is reduced, thus, decreasing the stability of the PQC system [66]. (2) Mu-
tated proteins cannot be eliminated by autophagy. The RNPs can cause protein aggregation
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through LLPS. Pathological aggregation is often caused by structural misfolding due to
protein mutation [67]. (3) The mislocalization of proteins is caused by protein mutations,
e.g., the FUS protein accumulates in ALS because most missense point mutations in FUS are
concentrated on fragments that encode the nuclear localization sequence at the C-terminus.
These mutations affect the nuclear localization of FUS and cause FUS to aggregate in the
cytoplasm [65].
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Figure 2. Potential role of LLPS in the cardiovascular system. (a) When stress occurs, lncRNAs become
the core of droplets formed by liquid–liquid separation. (b) A correctly translated protein (blue) will
perform its normal biological activities. Some misfolded proteins (green) are eliminated by autophagy
to protect against atherosclerosis. Mutated or excessively produced proteins (red) accumulate, causing
DCM. (c) The accumulation of a large number of misfolded proteins in the endoplasmic reticulum
leads to endoplasmic reticulum stress, which can affect aortic valve calcification, ischemic heart
disease, and metabolic syndrome. (d) Mistranscribed or modified mRNAs are eliminated by SG
formation in the cytoplasm. This process can affect the progression of hypertrophic cardiomyopathy,
atherosclerosis, and atrial fibrillation. Abbreviations are as follows: ER stress, endoplasmic reticulum
stress; MLOs, membrane-free organelles.

Recent studies have shown a close relationship between dilated cardiomyopathy
(DCM) and protein mutation. For example, homozygous disruption of the Bag3 gene
causes the fulminant form of DCM, and mutated CRYAB, which encodes α B-crystallin,
was detected in patients with DCM [68,69]. A recent study showed a phase separation



Cells 2022, 11, 3040 8 of 14

phenomenon caused by abnormal RNP particle accumulation in DCM caused by RBM20
mutation [70]. This also revealed a certain association between protein mutation and phase
separation. It is known that BAG3, a multidomain chaperone protein, is a component of
the HSP70-BAG3 complex. In addition, as an important signal transduction node, BAG3
is part of the Hippo-2 signal transduction complex in the Hsp70–Bag3–LATS1 pathway,
which regulates protein aggregation [71]. Interestingly, the mutation of BAG3 can cause
BAG3 to accumulate and HSP70 to aggregate [72]. This aggregation is induced because
BAG3–HSP70–HSPB, a key complex, acts as a retrograde transport in autophagy in normal
cells to promote the isolation and removal of irreversibly misfolded proteins in the PQC
system. The mutation of BAG3 destroys the complex and prevents cells from carrying out
normal PQC, resulting in misfolded protein accumulation and protein-related diseases.

4.4. The Cardiovascular System and Endoplasmic Reticulum Stress

Endoplasmic reticulum stress refers to the destruction of endoplasmic reticulum
homeostasis and the accumulation of unfolded or misfolded proteins in the endoplasmic
reticulum, leading to dysfunction of the endoplasmic reticulum and affecting cell functions,
such as cell cycle regulation [73]. Atherosclerosis and ischemic heart disease are common
CVDs and the main causes of myocardial ischemia. Endoplasmic reticulum stress may be an
important mechanism for the further aggravation of myocardial ischemia. A recent study
showed that the inhibition of endoplasmic reticulum stress could reduce the hypertrophy
of cardiomyocytes and cardiomyocyte damage [74].

Wang et al. demonstrated that aortic valve calcification caused by hypercholes-
terolemia is related to endoplasmic reticulum stress in animal experiments [75]. It has also
been reported that endoplasmic reticulum stress can downregulate HDAC6 and promote
aortic valve calcification [76], which may be because the endoplasmic reticulum is an im-
portant intracellular calcium reservoir in cells. When endoplasmic reticulum stress occurs,
endoplasmic reticulum dysfunction leads to disordered calcium regulation and aortic valve
calcification (Figure 2c).

In addition, endoplasmic reticulum stress is related to metabolism. A high-fat diet
may cause excessive production of oxidative free radicals through high levels of low-
density lipoproteins (LDLs), destroying the homeostasis of the endoplasmic reticulum and
causing endoplasmic reticulum stress [77]. A high-sugar diet can also damage endothelial
cell function through endoplasmic reticulum stress. All these results prove the close
relationship between endoplasmic reticulum stress and CVD.

4.5. Atherosclerosis and Autophagy

Phase separation plays an important role in promoting the formation of autophago-
somes and the process of autophagy (Figure 2b) [78]. Atherosclerotic heart disease is a CVD
with a high incidence, and the accumulation of abnormal protein promotes the progression
of atherosclerosis and heart failure; therefore, the removal of these organelles and proteins
by autophagy exerts protective effects against atherosclerosis. Autophagy has dual effects
on the progression of atherosclerosis. Excessive autophagy or a delay in the macrophage
autophagy response will aggravate the occurrence of atherosclerosis [79]. The ATG fam-
ily genes are autophagy-related genes that play an important role in vascular regulation.
When the ATG5 gene was knocked out, atherosclerosis in mice was aggravated [80]. Recent
studies have also found that this gene and other ATG family genes can regulate protein
autophagy through phase separation [81]. Therefore, we speculate that autophagosomes
are formed through phase separation, which recruits abnormal proteins to autophagosomes
to achieve degradation, thereby affecting the process of atherosclerosis. In the future,
exploring the role of phase separation in atherosclerosis will help delay the progression of
the disease.
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4.6. Atherosclerosis and SGs

Stress granules, particles that form in response to stress, are involved in regulating
CVD (Figure 2d). For example, the accumulation of SGs can be observed in VSMCs
and macrophages and affects the process of atherosclerosis [82]. Oxidized LDL (oxLDL)
promotes the formation of such stress particles. As the first barrier in blood vessels,
endothelial cells are most susceptible to stress caused by atherosclerotic stimulation, such
as the modification of LDL levels and inducers of mitochondrial and oxidative stress,
making it possible to explore the formation of pressure particles in endothelial cells.

Atrial fibrillation is the most common clinical arrhythmia and is also an important
culprit of strokes caused by cardiovascular and cerebrovascular diseases. Enhanced car-
diomyocyte activity is considered a strong stimulus for atrial fibrillation, and the heart
may form SGs in response to such stimulation. The production of SGs was observed in
primary cardiomyocytes and HL-1 cells after 1 h of pacing [83], which may be due to the
excessive activity of cardiomyocytes that increases the oxidative stress of the myocardium
and induces the production of SGs.

Hypertrophic cardiomyopathy is a genetic mutation-related disease. Some of these
proteins, such as CALR3, NEXN, and TPM1, are also contained in SGs, which indicates
that these proteins may regulate hypertrophic cardiomyopathy through phase separation.
These proteins may have a role in the disease process through phase separation. For
example, NEXN, a key heart-specific Z disc protein, can protect the Z disc from mechanical
trauma [84]. Recent research shows that mutations in this protein could cause hypertrophic
cardiomyopathy in zebrafish, and mutations in the corresponding gene can cause DCM
in humans. The NEXN protein contains two actin-binding domains (ABDs) and a coiled-
coil (CC) domain, and N-terminal ABD and CC domain mutants have been observed.
These mutants exhibit local accumulation in the cytoplasm, while the ABD fragment from
wild-type NEXN accumulates in the nucleus [85]. Thus, the mutation of NEXN causes an
error in its localization, similar to the effect of FUS mutation.

5. Discussion

Research interest in phase separation is growing, and phase separation is expected
to become a new form of epigenetic regulation. In the past few years, related research
has focused mainly on the biological mechanisms of phase separation, while few studies
have revealed the function of phase separation. However, unlike the function of phase
separation in the nervous system, cancer, and aging, its function in other systems is still
unclear. Although no direct evidence has revealed phase separation in the cardiovascular
system, current evidence suggests a connection between phase separation and CVD. For
example, lncRNAs can act as arcRNAs to recruit proteins, affecting the progression of
CVD. In addition, misfolded proteins may accumulate in cells due to mutations and cause
diseases, such as DCM. Furthermore, the occurrence of autophagy affects the progression
of atherosclerosis, and aortic valve calcification, ischemic cardiomyopathy, and metabolic
syndrome are caused by network stress. Moreover, SGs can form in diseases, such as
hypertrophic cardiomyopathy and atrial fibrillation. These studies provide a basis for
exploring LLPS in CVDs. Additionally, phase separation may become a bridge to connect
drugs and diseases. Phase separation is also an important link between drug production
and drug transportation. Adding a water-soluble antagonist to a drug could be used to
promote phase separation of the drug to maintain its stability [86]. Research has shown that
phase separation has an important role in diseases and drug preparation. Phase-change
materials may act as a medium for drugs in the future. Therefore, the design of related
drugs from the perspective of phase change has great potential in the cardiovascular field.
Herein, we highlight two factors related to the future of drug design (Figure 3). First,
if protein phase separation exacerbates a disease, in the future, we could develop short
peptides to inhibit phase separation by competitively binding sites of phase separation
or other key proteins that are expressed during phase separation. This will inhibit phase
separation and, thus, the effects of these proteins. Second, if protein phase separation has an
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important biological role in diseases, we can use drugs to adjust the external environment
of droplets containing these drugs, such as the salt concentrations and pH, or adjust key
proteins to achieve stable phase separation.
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In basic research, the methods used to adjust phase separation still have limitations,
which mainly include the following: (1) the mechanism of phase separation is still not
fully understood; (2) the ability to interfere specifically with phase separation is difficult;
(3) in vitro experiments still have technical limitations, and good in vivo experimental
models are lacking. Therefore, the ability to study phase separation is limited, and much
work remains to be carried out before drugs that transform phase separation are made. In
the future, the following work should be performed: (1) to prove that the technology of
phase separation is in need of a breakthrough; (2) the means of interfering phase separation
are in need of a breakthrough, such as finding specific interfering phase separation drugs or
protein mutants is important; (3) the application of phase separation in drug transformation
is of great clinical significance.

Despite its many limitations, phase separation has become a potentially important
method of protein regulation and new regulatory mechanism in the field of proteomics.
We believe these limitations can be resolved in the future and that phase separation can
exert a major role in regulating CVDs.
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