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States of consciousness have been associated with information integration in the brain
as modulated by anesthesia and the ascending arousal system. The present study was
designed to test the hypothesis that electrical stimulation of the oral part of the pontine
reticular nucleus (PnO) can augment information integration in the cerebral cortex of
anesthetized rats. Extracellular unit activity and local field potentials were recorded in
freely moving animals from parietal association (PtA) and secondary visual (V2) cortices via
chronically implanted microwire arrays at three levels of anesthesia produced by desflurane:
3.5, 4.5, and 6.0% (where 4.5% corresponds to that critical for the loss of consciousness).
Information integration was characterized by integration (multiinformation) and interaction
entropy, estimated from the statistical distribution of coincident spike patterns. PnO
stimulation elicited electrocortical activation as indicated by the reductions in δ- and θ-band
powers at the intermediate level of anesthesia. PnO stimulation augmented integration
from 1.13 ± 0.03 to 6.12 ± 1.98 × 103 bits and interaction entropy from 0.44 ± 0.11 to
2.18 ± 0.72 × 103 bits; these changes were most consistent in the PtA at all desflurane
concentrations. Stimulation of the retina with discrete light flashes after PnO stimulation
elicited an additional 166 ± 25 and 92 ± 12% increase in interaction entropy in V2 during
light and intermediate levels.The results suggest that the PnO may modulate spontaneous
ongoing and sensory stimulus-related cortical information integration under anesthesia.
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INTRODUCTION
Information integration is fundamental to the proper functioning
of the cerebral cortex in the wakeful conscious subject (Tononi,
2004). It has been proposed that two components are associ-
ated with the presence of consciousness: an immense repertoire
of causal brain states (representing information), and the abil-
ity to functionally integrate this information (integration; Tononi
et al., 1998; Alkire et al., 2008). Information integration in the
brain is presumed to be disrupted in diminished states of con-
sciousness such as anesthesia (Alkire, 1998; Schrouff et al., 2011),
sleep (Tononi and Massimini, 2008), absence seizures (Blumen-
feld and Taylor, 2003), vegetative state (Zhou et al., 2011; Boly
et al., 2012), and coma (Noirhomme et al., 2010). Conversely, a
restoration of information integration may be a requisite for the
return of consciousness (Rosanova et al., 2012).

One way to examine information integration in neuronal net-
works is through multichannel extracellular recording of unit
activity (UA) in vivo. Such recordings provide useful data on the
distribution of extracellular spike firing rates as well as detailed
spatiotemporal patterns of spike configurations relevant to neu-
ral information coding (Berry et al., 1997; Grun et al., 2002;
Uzzell and Chichilnisky, 2004; Lawhern et al., 2011). In partic-
ular, coincident spike firing patterns (temporally synchronized
firing) between neuronal populations may represent informa-
tion flow (Mainen and Sejnowski, 1995) that leads to sensory
processing and behavioral manipulations (Grun et al., 1999, 2002).

Information processing that enables sensory perception, language
generation, memory encoding and retrieval, and presumably con-
scious awareness, therefore, is influenced by the synchronization
between neuronal circuits and networks (Singer and Gray, 1995;
Engel et al., 1999a,b; Gray, 1999).

Cortical state, traditionally viewed as a function of the wake-
sleep cycle, is under the precise control of the ascending arousal
system (AAS; Lee and Dan, 2012) with origins in brainstem
nuclei and extensive projections to the thalamus, basal forebrain,
hypothalamus, and neocortex via ventral and dorsal pathways
(Jones and Yang, 1985; Holstege and Kuypers, 1987). These states
fall on a continuum that is heavily influenced and determined by
fluctuations in spontaneous neuronal activity (Harris and Thiele,
2011). A major source of ascending projections from the AAS is
the oral part of the pontine reticular nucleus (PnO; Moruzzi and
Magoun, 1949; Jones and Yang, 1985; Jones, 2003). Microinjection
of neostigmine or carbachol into the pontine reticular formation
elicits an enhancement of rapid-eye-movement-sleep-like state in
mouse and rat models, respectively (Bourgin et al., 1995; Lydic
et al., 2002). Moreover, PnO efferent activity may be reduced
during anesthesia (Sukhotinsky et al., 2006).

If cortical information processing is under the control of the
AAS, and anesthesia suppresses AAS activity (Mashour et al., 2005;
Brown et al., 2011; Lee and Dan, 2012), then a plausible question
is whether exogenous activation of the AAS, in particular that
of the PnO, during anesthesia may augment cortical information
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integration and presumably, shift the cortical state toward waking
consciousness. To-date, no study has been performed to examine
whether electrical stimulation of the PnO can increase information
integration during continued anesthetic administration. Here we
test the hypothesis that electrical stimulation of the PnO increases
information integration in cortical neuronal networks of the rat
in vivo at various depths of desflurane anesthesia from light seda-
tion to a near surgical level. In order to gain information about
higher order sensory integrative processing, multisite extracellular
UA was recorded simultaneously from the secondary visual area
(V2) and the adjacent parietal association cortex (PtA). To exam-
ine the effect of PnO stimulation on sensory integration, both
spontaneous and visual evoked UA was tested on separate days.
To characterize the depth of anesthesia and its effect on cortical
state, local field potentials (LFP) were measured simultaneously
with UA using the same electrode array. As we show, PnO elec-
trical stimulation had a significant modulatory effect on cortical
information integration under anesthesia.

MATERIALS AND METHODS
ANIMALS
All experimental procedures and protocols were approved by the
Institutional Animal Care and Use Committee of the Medical
College of Wisconsin (Milwaukee, Wisconsin). All procedures
conformed to the Guiding Principles in the Care and Use of
Animals of the American Physiologic Society and were in accor-
dance with the Guide for the Care and Use of Laboratory Animals
(National Academy Press, Washington, DC, USA, 1996).

Experiments were performed on eight adult (250–360 g), male,
Sprague-Dawley rats (Harlan Laboratories, Madison, WI, USA).
All animals were housed in a reverse light-dark cycle room for at
least 10 days prior to surgical implantation, and remained there
until all experiment protocols were completed. Food and water
access was ad libitum.

SURGICAL PREPARATION
Aseptic technique was used during surgical preparation. Ani-
mals were anesthetized, through spontaneous breathing, with
1.9 ± 0.2% isoflurane, vaporized into a mixture of 30% O2, 70%
N2 and delivered at a flow rate of 5 L/min. Anesthesia was dis-
tributed through a gas anesthesia mask (Model 929-B Rat Gas
Anesthesia Head Holder, David Kopf Instruments, Tujunga, CA,
USA). Anesthetic concentration was monitored (POET IQ2 mon-
itor; Criticare Systems, Inc., Waukesha, WI, USA) through a
sampling line connected to the anesthesia mask. Core body tem-
perature was rectally monitored (model 73A, YSI, Yellow Springs,
OH, USA) and maintained at 37◦C with a thermostat-controlled,
electric (TC-1000, CWE Inc., Ardmore, PA, USA) heating pad.

To prepare the animal for surgery, Betadine (VWR, Radnor, PA,
USA) and alcohol were repeatedly applied to the dorsal surface of
the head. Sterile, 0.5% bupivacaine was administered subcuta-
neously to provide local anesthesia. A midline incision was made;
the skin and connective tissue were reflected laterally to reveal the
cranium. Hydrogen peroxide (in some cases a cautery) was used
to stop any bleeding.

A low-speed, compressed air driven dental drill (DENTSPLY
Professional, Des Plaines, IL, USA) was used to create a craniotomy

(2 mm × 4 mm) above the PtA and V2 for the recording microelec-
trode array; the dura mater was resected to allow for penetration
of the electrode array. For extracellular UA and LFP recording, a
multi-shank 16-contact microwire array (wire diameter = 33 μm,
electrode spacing = 500 μm, row separation = 1000 μm, tip
angle = 45◦; Tucker-Davis Technologies, Alachua, FL, USA) was
implanted such that one row resided in V2 (4.8 mm posterior, +2.5
mm lateral, and −1.5 mm ventral from bregma) and the other row
in PtA (3.8 mm posterior, +2.5 mm lateral, and −1.5 mm ven-
tral from bregma). The reference wire, attached to the electrode
array, was wrapped around a stainless-steel epidural screw (1 mm
posterior, −3 mm lateral from bregma). Gel foam and silicone gel
were applied around the periphery of the electrode array (Kwik-Sil,
World Precision Instruments, Sarasota, FL, USA).

For brainstem stimulation, a concentric bipolar electrode
(SNEX-100, David Kopf Instruments, Tujunga, CA, USA) was
implanted into the PnO (8 mm posterior, −1.3 mm lateral, ven-
tral = 8.2, and insertion angle = 15◦) through a cranial burr hole.
For visual stimulation, an 8-mm diameter light emitting diode
(LED; Szabo-Salfay et al., 2001; peak wavelength = 660 nm, Amer-
ican Bright Optoelectronics Corp, Chino, CA, USA) was secured
to the cranium posterior to the contralateral eye (approximately
4–5 mm anterior to bregma). At the chosen wavelength, light pen-
etrates through the scalp, bone, and brain tissue (Maarek et al.,
1984) and stimulates the retina directly, bypassing the optics of
the eye. This obviates the need for eye lubrication and ensures
the constancy of retinal illumination independent of the animal’s
posture. Transcranial flash stimulation with a red LED has been
shown to produce standard visual evoked potentials in rodents
(Szabo-Salfay et al., 2001).

Additional anchoring screws were implanted immediately ante-
rior to the interaural line and posterior to the LED. A schematic
of the locations of the recording and stimulating electrodes, as
well as the LED is displayed in Figures 1A,B. The assembly was
secured in place with a gentamicin-enriched bone cement (Pala-
cos R&G, Zimmer Orthopaedic Surgical Products, Dover, OH,
USA) and cerebond skull adhesive (Leica Microsystems, Bannock-
burn, IL, USA). The analgesic carprofen (5 mg/kg subcutaneously
once daily) and the antibiotic enrofloxacin (10 mg/kg subcuta-
neously once daily) were administered post-operatively for 2 and
7 days, respectively. Animals were housed individually to reduce
the chance of inadvertent removal of the skullcap.

EXPERIMENTAL PROTOCOL
Testing commenced no earlier than 7–10 days post-operatively.
On the experimental day, rats were placed into a custom-
built, transparent, plexiglass anesthesia experimental box
(46 cm × 23.5 cm × 23 cm). Rats retained the ability to breathe
spontaneously throughout the experiment. Desflurane and O2

(30%) were delivered at a flow rate of 5 L/min and carefully
monitored (POET IQ2; Criticare Systems, Inc., Waukesha, WI,
USA), and rat body temperature was controlled at 37◦C through-
out the duration of the experiment. Prior to testing, the rats
were allowed 45 min to accommodate to a darkened room. The
microelectrode array was then connected to a preamplifier via
a headstage (Blackrock Microsystems, Salt Lake City, UT, USA)
outside the anesthesia chamber. LFPs, UA, and time markers
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FIGURE 1 | Schematic of electrode placement and timelines of PnO and

light flash stimulation experiments. (A) Placement of the 16-wire electrode
array in the rat secondary visual area (V2) and parietal association area (PtA),
and light emitting diode (LED) behind the left eye. Schematic is overlaid on a
dorsal view of the rat brain. Each green dot represents the location of a
micro-wire. (B) Schematic overlaid, with permission, on a sagittal view of the
rat brain from the Paxinos (Paxinos and Watson, 2007) rat brain atlas. The
electrode array and concentric bipolar electrode, implanted in the oral part of
the pontine reticular nucleus (PnO) for electrical stimulation, are illustrated.
(C) Testing on day 1. Illustrated here is the progression of the experiment
once steady state was reached at one desflurane concentration. This was

repeated for all desflurane concentrations. Unit activity (UA) and local field
potentials (LFPs) were recorded for the duration of the experiment. Electrical
stimulation commenced 10 min after steady-state was reached at each
desflurane concentration. (D) Testing on day 2. As with day 1, steady-state
desflurane was reached at each concentration prior to testing. Light flashes,
alone, were delivered 10 min after reaching steady-state desflurane. This was
followed by paired stimulation, light flashes presented immediately after PnO
stimulation, 10 min later. The desflurane concentration order was randomized
on both days of testing. Green vertical lines represent the electrical
stimulation. Gray bars represent the segments of data that were used in the
analyses. Red bars represent the light flashes.

from both the visual and electrical stimuli were recorded using a
128-channel neural acquisition system (Blackrock Microsystems,
Salt Lake City, UT, USA). LFPs were analog bandpass-filtered at
1–250 Hz, notch-filtered at 60 Hz, and digitally sampled at 1 kHz.
Extracellular UA was auto-thresholded using a root mean square
multiplier of −6.25. They were analog bandpass filtered from
250 to 7500 Hz, and digitally sampled at 30 kHz. Visual stim-
uli (30 flashes/min, 5 ms duration) were computer generated and
delivered randomly with an interstimulus interval of 2 ± 1 s. LED
flashes were generated by square-wave pulses slightly exceeding the
LED saturation current (56 mA) so the luminance of the flash was
always the same (1200 mcd/mm2). PnO stimulation parameters
were guided by previous work (Antognini et al., 2003), and refined
to fit our experimental design. Pilot data obtained from six rats

suggested that a current intensity of 0.8 mA produced EEG desyn-
chronization in the absence of gross behavioral movement (data
not shown). PnO stimulation consisted of a 3 s train of 0.1 ms
pulses delivered at 300 Hz at a current intensity of 0.8 mA using
a constant current generator (Rys-Williams, Medical College of
Wisconsin).

Each rat was tested under three desflurane concentrations:
3.5, 4.5, and 6%. These concentrations were chosen because loss
of consciousness (LOC) is believed to occur within this range.
The righting reflex, a surrogate measure of consciousness in rats
(Franks, 2008), was barely present at 3.5% and was immediately
lost at 4.5%. At 6% it was presumed that rats were unconscious.
The order of concentrations was randomized for each rat on both
testing days.
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Summarized in Figures 1C,D are the protocols used for testing
on day 1 (PnO stimulation alone) and day 2 (light flashes and
PnO stimulation), respectively. Rats were allowed to equilibrate at
each desflurane concentration for 20-min prior to testing and data
acquisition. All eight rats were tested at 3.5 and 4.5% desflurane.
Two animals were euthanized due to removal of the skullcap and,
therefore, six rats were tested at 6% desflurane.

DAY 1 – PnO STIMULATION ALONE
After the equilibration period at each desflurane concentration,
spontaneous UA and LFP were acquired for 10 min. This was
followed by PnO electrical stimulation: electric current was deliv-
ered once (3 s-on, 57 s-off) every minute for 10 min. Finally, 10
more minutes of spontaneous UA and LFP were recorded after
PnO stimulation ceased. This process was repeated once at each
desflurane concentration.

DAY 2 – COMBINED STIMULATION (LIGHT FLASHES PRESENTED AFTER
PnO STIMULATION)
To investigate how PnO stimulation would modulate the neuronal
response to a visual stimulus, and subsequently the information
integration of the system, a combined stimulation paradigm was
used. Spontaneous UA and LFP, as in day 1, were acquired for
10 min after the initial equilibration period. This was followed by
the presentation of the visual stimulus alone: light flashes (∼5 ms
duration) were delivered randomly, with an interstimulus interval
of 2 ± 1 s, at a rate of 30/min throughout a 10-min recording ses-
sion. Spontaneous UA and LFP were recorded for another 10 min.
This was followed by the combined stimulation: light flashes (same
parameters as above) were delivered immediately after PnO stim-
ulation (same parameters used on Day 1): one cycle = 30 light
flashes after each PnO stimulation. This was repeated for 10 cycles.
Finally, 10 min of spontaneous UA and LFP were acquired after
stimulation. This process was repeated once at each desflurane
concentration.

HISTOLOGICAL VERIFICATION
At the end of experimental testing, electrode placement was con-
firmed histologically on chemically fixed coronal sections. The rats
were cardio-perfused with 300 ml 0.9% saline, followed by 250 ml
4% paraformaldehyde solution, through the heart ventricle. The
brains were harvested and stored in the paraformaldehyde solu-
tion for 24 h, and subsequently transferred to 0.01 M phosphate
buffered saline (pH 7.4). The 80 μm-thick coronal brain sections
were cut by a vibratome (Vibratome Series 3000 Plus, Ted Pella,
Inc., Redding, CA, USA). Brain slices were stained with cresyl
violet Nissl and imaged, using a Nikon Eclipse E600 (Nikon Inc,
Melville, NY, USA) microscope, to visualize the location of the
electrode sites.

DATA ANALYSES AND STATISTICS
The LFPs were used to gauge the state of anesthesia and the
effectiveness of the PnO stimulation. Specifically, band powers
(δ = 1–4 Hz, θ = 5–7 Hz, α = 8–12 Hz, β = 13–30 Hz, low-
gamma L − γ = 30–50 Hz, and high-gamma H − γ = 70–140 Hz)
were obtained from the spectra by averaging signal power in the
respective frequency ranges.

SPIKE SORTING
At each concentration, and for each recording from both test-
ing days, the spike waveforms were sorted offline with PowerNAP
(OSTG, Inc., Fremont, CA, USA) into individual neuronal units
using principal component analysis. Cluster boundaries of discrete
units were determined by K-means clustering. Remaining out-
liers were manually removed. Any movement and stimuli related
artifacts were easily identified (synchronized across all recorded
channels) and removed. An example of sorted spike waveforms is
displayed in Figure 2A. The electrical stimulation elicited an arti-
fact on both LFPs and UA; a representative spike train from one
rat at 4.5% desflurane is displayed in Figure 2B to illustrate this
artifact.

DATA SEGMENTATION
To further prepare the data for subsequent analyses, pre-stimulus
and post-stimulus components were classified for both the electri-
cal and visual stimuli by using the timestamps of each respective
stimulus as the reference time-series. More specifically, data were
segmented as follows: pre-PnO stim (−14 to 0 s), post-PnO stim
(3–17 s), pre-Flash (−500 to 0 ms), post-Flash (0–500 ms). Similar
time-points were chosen to segment the spontaneous recordings.
All segments were then concatenated for each of the spontaneous,
pre-stimulus and post-stimulus recordings (yielding a total of 140 s
of data/condition). As a result, one spike train was generated at
each condition for every active unit. The data acquired during the
electrical stimulation (3 s) was not used because of the presence
of an induced artifact (see Figure 2B).

VISUAL EVOKED RESPONSES
Sorted spike waveforms from both regions were used to character-
ize neuronal responses to the visual stimulation. Specifically, the
conditional probability of a spike relative to the visual stimulus was
determined using perievent histograms from −0.5 to 1 s (relative
to stimulus onset), with a bin size of 10 ms, for each individ-
ual unit using NeuroExplorer (Version 4.091, Nex Technologies,
Madison, AL, USA). In order to delineate responsive from unre-
sponsive units, the mean firing rate and 95% confidence intervals
were used. Units crossing the confidence intervals were consid-
ered responsive. In order to create an average perievent histogram
from populations of neurons in V2 and PtA, population vectors
were calculated. These vectors are weighted linear combinations
of the histograms from each neuron. The time to peak response
was calculated from V2 responsive units. The amplitude of the
visual evoked responses was normalized to the maximum value in
each rat in each condition in order to more clearly see temporal
changes.

SPIKE PATTERNS
The number of distinct (unique) spike patterns observed over a
given period of time was considered an approximate measure of
a subset of the repertoire of local brain states. For this calcula-
tion, the original concatenated time-series was transformed into a
binarized one (1 ms bin size); a value of 1 was assigned to each bin
where a spike occurred, and a value of 0 when no spike occurred.
The number of times each pattern appeared, across all active
units, in the time series was normalized to the total number of
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FIGURE 2 | Local field potentials and unit activity before and after PnO

electrical stimulation. (A) Representative waveforms of extracellular
discharge recorded from 4 electrode wires in one animal. Each quadrant is
from one electrode wire. A single electrode wire was able to record from
multiple neurons. Colored waveforms represent distinct units after offline
spike sorting. (B) Representative spike trains and local field potentials (LFPs)
before, during and after PnO electrical stimulation at 4.5% desflurane in one
rat. An induced artifact was present during the 3-s stimulation ON period, and
analyses were carried out on data devoid of this artifact. (C) Example LFP and
unit activity (UA) from one representative rat at 4.5% desflurane before and
after PnO stimulation. At 4.5% desflurane the LFP was characterized by

mostly high-amplitude activity, but became more desynchronized after PnO
stimulation. The two LFP traces were chosen from each region (PtA = top
waveform, V2 = bottom waveform). The spike raster plots show all active
units from this rat. (D) LFP band power percent change from pre-stimulation.
PnO stimulation elicited cortical arousal, as determined by the induced
significant reductions in delta and theta band powers in the PtA at 4.5%
desflurane. Delta band power was also reduced in V2 after PnO stimulation at
4.5% desflurane. No change in band powers was observed at 6.0%
desflurane. *p < 0.05 for post- vs. pre-PnO stimulation. δ = 1–4 Hz, θ = 5–7
Hz, α = 8–12 Hz, β = 13–30 Hz, low-gamma L − γ = 30–50 Hz, and
high-gamma H − γ = 70–140 Hz. PSD = power spectral density.
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patterns in the system. The resultant distribution was then used to
calculate, via information-theoretic measures, the informational
content within each cortical region (PtA and V2).

INFORMATION INTEGRATION
Two closely related quantities were used to measure instantaneous
information integration for coincidently firing units. Integration
(Tononi et al., 1998), also known as total correlation or multi-
information (Watanabe, 1960) is defined as:

I(X) =
N∑

i=1

H(xi) − H(X)

where xi is the activity of an individual unit, H (xi) is the entropy
of the firing probability of each unit, and H(X) is the joint entropy
probability of coincident spike patterns of all units in the system.
Integration as defined above quantifies the average information
shared among the units of a system. If the system is composed of
units, which are statistically independent, then I(X) = 0. I(X) is
maximum when all spikes are synchronized.

Information integration was also quantified as interaction
entropy (Shew et al., 2011).

E(X) = H(Xs) − H(X)

where Xs is a set of coincident firing patterns obtained from
the randomized (shuffled) version of the measured spike trains.
The uncorrelated spike firing events were removed by shuffling
the data. The shuffling by a random time lag of spikes decreases
the spike correlations while the average spike rate of each unit is
preserved. E(X) quantifies the portion of entropy accounted for
by the spike correlations. Thus, I(X) and E(X) provide two dif-
ferent approximations of an information-based measure of unit
interactions. Interaction entropy quantifies the amount of redun-
dancy, owing to correlation within the neuronal population, in a
system. As with I(X), E(X) = 0 if the system consists of statistically
independent units.

DYNAMIC CORRELATION
Coordination in unit activity was also characterized by calculating
a more conventional measure, dynamic correlation (Beggs and
Timme, 2012):

Cxy = 〈(x − 〈x〉)(y −〈y〉)〉

where x and y are the binary activities of single units at a given
time, 〈x〉 and 〈y〉 are the time-averaged firings of these two indi-
vidual units. The fluctuation in firing of two individual units from
their average at a particular time, is thus represented by the terms
(x − 〈x〉) and (y − 〈y〉). Multi-channel spike correlation was
computed by subtracting the mean of each channel, creating a
correlation matrix, zeroing the diagonal, and computing the all
pair-wise dynamic correlation for neurons in each brain region.
This was done for each rat at all conditions from day 2 of testing
and then averaged.

STATISTICS
Data from day 1 and 2 were analyzed separately. The effect of
PnO stimulation alone on LFP band powers was first tested with
repeated measures ANOVA, with condition (pre-PnO, post-PnO),
concentration, and region as independent variables, rat as the sub-
ject variable, and band powers (δ, θ, α, β, L − γ, H − γ) as response
variables. This was then followed by examining the effect of PnO
stimulation (day 1) on information integration with repeated mea-
sures ANOVA, with the condition (baseline, pre-PnO, post-PnO
and recovery), concentration, and region as independent vari-
ables, rat as the subject variable, and number of unique patterns,
the number of spikes, integration, and interaction entropy as
dependent variables.

The effect of PnO stimulation on the visual stimulus-related
information integration (day 2) was tested with repeated measures
ANOVA with condition (baseline, recovery after PnO, recovery
after Flash w/PnO, pre-Flash w/out PnO, post-Flash w/out PnO,
pre-PnO, post-PnO, pre-Flash w/PnO, post-Flash w/PnO), con-
centration, and region as independent variables, rat as the subject
variable, and the number of unique patterns, the number of spikes,
integration, and interaction entropy as dependent variables.

The effect of PnO stimulation of the visual evoked response
was tested with repeated measures ANOVA with condition (Flash,
Flash w/PnO), and concentration as independent variables, rat as
the subject variable and time to peak response as the dependent
variable. Responsive neurons with post-flash firing exceeding the
95% confidence interval only were included in this test.

The effect of PnO stimulation on dynamic spike correlation
was tested with condition (pre-PnO, post-PnO, pre-Flash, post-
Flash, pre-Flash w/PnO, and post-Flash w/PnO), concentration,
and region as independent variables, rat as the subject variable
and dynamic correlation as the dependent variable.

All data were analyzed using custom scripts in MATLAB ver-
sion 7.3.0 (MathWorks Inc., Natick, MA, USA). Statistical analyses
were performed using NCSS 2007 (NCSS, Kaysville, UT, USA). All
inferential statistics were performed on raw data. The data were
tested for normality using the Shapiro–Wilk test, which yielded
no reason to reject the normality assumption. For all data ana-
lyzed via repeated measures ANOVA, the sphericity assumption
was determined; the Geisser–Greenhouse adjustment was made
if the sphericity assumption was violated. All analyses were two
tailed and a p < 0.05 served as the criterion for statistical sig-
nificance. Statistical results are reported as either main effects
or interaction from repeated measures ANOVA unless otherwise
specified. All data are presented as ± standard deviation from
the mean.

RESULTS
CORTICAL STATE AT DIFFERENT ANESTHETIC LEVELS
At 3.5% desflurane, the LFP was characterized by relatively
low-amplitude, high-frequency (desynchronized) activity. As the
desflurane concentration was increased, slower waves predomi-
nated at 4.5 and 6.0%. Power spectral analysis of the spontaneous
LFPs revealed that δ power was highest at 4.5% [F(2,31) = 3.52,
p = 0.042, and p < 0.05, T–K test] β power was reduced at des-
flurane concentrations exceeding 3.5% in both cortical regions
[F(2,31) = 17.72, p < 0.0001, and p < 0.05, T–K test). None of
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the other band powers were affected by desflurane concentration,
or region.

EFFECT OF PnO STIMULATION ON CORTICAL STATE AND INFORMATION
INTEGRATION
PnO stimulation modified the LFP such that a desynchronized
pattern was observed in both PtA and V2 at the intermediate des-
flurane concentration of 4.5% (Figure 2C). This typically persisted
for 14 s. The δ- and θ-band powers were reduced [F(2,69) = 8.28,
p = 0.0006 and F(2,69) = 3.17, p = 0.048, respectively] at 4.5%
desflurane in both regions (NS at 3.5 and 6%). Post hoc test-
ing showed that δ-band power was suppressed by 84 ± 3 and
62 ± 9% in the PtA and V2, respectively (p < 0.05, T–K test).
However, only θ-band power was reduced, from 0.006 ± 0.002 to
0.0025 ± 0.0021 μv2/Hz, in PtA (p < 0.05, T–K test) as illustrated
in Figure 2D. None of the other band powers were affected by
PnO stimulation.

PnO stimulation produced no change in the average spike
rate [F(7,328) = 0.44, p = 0.88], or the number of active units
[F(7,328) = 0.15, p = 0.99] at any desflurane concentration, sug-
gesting that PnO stimulation influenced cortical synchrony, but
not the overall level of neuronal activity. In contrast, PnO pro-
duced a substantial increase in the number of unique spike patterns
in PtA (67 ± 8.5 to 86 ± 11.5) and in V2 (65 ± 14.7 to 82 ± 7),
indicative of a rise in the repertoire of local brain states.

The analysis of UA from data obtained on day 1 revealed a
significant overall effect of PnO stimulation on integration I(X).
ANOVA revealed a significant interaction between desflurane con-
centration and PnO stimulation [F(6,145) = 3.24, p = 0.005] and
between cortical region and PnO stimulation [F(3,145) = 3.73,
p < 0.012). The effect of PnO stimulation was generally larger in
PtA than in V2 (p < 0.05, T–K test). As displayed in Figure 3A,
PnO stimulation increased overall integration, from 1.13 ± 0.03
to 6.12 ± 1.98 × 103 bits, in PtA at all desflurane concentra-
tions. In V2, a significant increase was evident at 4.5% desflurane
only (p < 0.05, T–K test). Integration after PnO stimulation was
58 ± 4% higher in PtA than in V2 at 4.5% desflurane (p < 0.05,
Student t-test).

Interaction entropy E(X) was also significantly altered by PnO
stimulation. The effect depended on both desflurane concen-
tration and brain region [F(6,145) = 2.27, p = 0.04 ANOVA
interaction]. As displayed in Figure 3B, PnO stimulation increased
overall interaction entropy, from 0.44 ± 0.11 to 2.18 ± 0.72 × 103

bits, at all desflurane concentrations in PtA, and at 3.5 and 6.0%
in V2 (p < 0.05, T–K test). Interaction entropy after PnO stimu-
lation was 57 ± 6% smaller in V2 than in PtA at 3.5% desflurane
(p < 0.05, Student t-test).

FLASH-EVOKED RESPONSE BEFORE AND AFTER PnO STIMULATION
Light flashes, presented to the retina, elicited stereotypic neu-
ronal responses in V2 at all desflurane concentrations. Regional
population vector responses to light flashes at 4.5% desflurane
are illustrated in Figure 4A. The number of responding units
was dependent on an interaction between brain region and des-
flurane concentration [F(2,69) = 3.36, p = 0.04]. As shown in
Figure 4B, V2 units (5.7 ± 1.5) were more responsive than PtA
units (0.91 ± 0.52) to light flashes at all desflurane concentrations

(p < 0.05, T–K test). The time to peak response in responding V2
units to light flashes alone was dependent on desflurane concen-
tration [F(2,31) = 3.31, p = 0.049). Responsive units took longer
to respond at the highest (236.6 ± 135.4 ms) than at the interme-
diate (125 ± 81.8 ms) desflurane concentration (p < 0.05, T–K
test), and this is illustrated in Figure 4D. As seen in Figures 4A–D,
PnO stimulation did not alter the unit response to light flashes.

EFFECTS OF PnO STIMULATION ON FLASH-EVOKED INFORMATION
INTEGRATION
However, PnO stimulation greatly augmented the flash-induced
increase in the number of unique patterns in V2 from 65 ± 11.6 to
128 ± 49.2 [F(7,328) = 2.74, p = 0.008 interaction, and p < 0.05,
T–K test]. Consistent with this effect, PnO stimulation altered the
integration values before and after flash stimulation (Figure 5A).
There was a significant interaction between desflurane concentra-
tion and stimulation condition [F(16,332) = 2.26, p = 0.0039].
The presentation of light flashes alone failed to alter integration in
either cortical region at any anesthetic concentration when com-
pared with pre-Flash without PnO. Light flashes presented after
PnO stimulation led to a 90 ± 16 and 114 ± 32% increase in
integration at 3.5 and 4.5 % desflurane in V2 (p < 0.05, T–K test).

Interaction entropy values (Figure 5B) were dependent on the
stimulus condition, desflurane concentration and cortical region
[F(14,325) = 2.60, p = 0.001, ANOVA interaction]. As with
integration, the presentation of light flashes alone failed to alter
interaction entropy in either cortical region at any anesthetic con-
centration (p < 0.05, T–K test). However, light flashes presented
after PnO stimulation elicited a 141 ± 17 and 183 ± 20% increase
in interaction entropy at 3.5 and 4.5% desflurane, respectively in
V2; an increase in interaction entropy was also observed at 4.5%
in PtA.

To explore whether the presentation of light flashes after PnO
stimulation could lead to a further increase in integration and
interaction entropy, we compared Flash w/PnO vs. post-PnO.
In general, light flashes presented after PnO stimulation were
able to significantly increase interaction entropy by 166 ± 25
and 92 ± 12% in V2 at 3.5 and 4.5% desflurane, respectively
[F(1,69) = 5.03, p = 0.048, and p < 0.05, T–K test].

In order to characterize unit interactions with a more tradi-
tional measure, we also calculated the dynamic spike correlation
across all units from testing on day 2. Dynamic spike correlation
was examined before and after stimulation. Changes in the aver-
age of all pair-wise dynamic spike correlations were dependent
on condition [F(5,107) = 8.08, p = 0.000002] and concentra-
tion [F(2,107) = 3.31, p = 0.04]. As illustrated in Figure 6, PnO
stimulation led to an increase in dynamic correlation in the PtA
at 3.5 (from 0.005 ± 0.002 to 0.011 ± 0.005) and 4.5% (from
0.004 ± 0.002 to 0.009 ± 0.003) desflurane, respectively (p < 0.05,
T–K test) and at the highest concentration in V2 (p < 0.05, T–K
test). Light flashes presented after PnO enhanced dynamic corre-
lation in V2 at 4.5% desflurane from 0.005 ± 0.002 to 0.01 ± 0.004
(p < 0.05, T–K test).

DISCUSSION
In this work we examined the ability of PnO stimulation to
modulate spontaneous and visual stimulus-evoked information
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FIGURE 3 | Effect of PnO stimulation on integration and interaction

entropy of cortical spike populations on day 1 PnO electrical

stimulation produced robust increases in (A) integration and (B)

interaction entropy in both PtA and V2. These changes were generally

larger and more consistent across the anesthetic levels in PtA than in V2.
Integration was augmented significantly more in PtA than in V2 at 4.5%
desflurane. *p < 0.05 post-PnO vs. pre-PnO. #p < 0.05 PtA vs. V2. Error
bars are ±1 SD.

integration in local cortical neuronal networks at three levels of
anesthesia in vivo. The PnO was chosen as a target of stimulation
because of its central role in the ascending modulation of cortical
arousal (Lee and Dan, 2012). Emerging evidence suggests that the
PnO may be one of the key targets in the neuromodulatory AAS
as part of the mechanism for anesthesia induced unconsciousness
(Devor and Zalkind, 2001; Lydic and Baghdoyan, 2005; Reiner
et al., 2007; Sukhotinsky et al., 2007). To provide anesthesia, we
used desflurane, a clinically used general anesthetic, due to its short
equilibration time and ease of control at steady state. The desflu-
rane concentrations used were near to that necessary to extinguish
the righting reflex – a commonly used behavioral index of con-
sciousness in rodents (Franks, 2008). Neuroelectrical recordings
were performed in the parietal association and secondary visual
cortices because of the putative roles of these regions in cortical
information integration. We found that PnO stimulation pro-
duced electrocortical activation and simultaneously augmented
information integration in both PtA and V2. In addition, PnO
stimulation facilitated the light flash-evoked increases in informa-
tion integration, especially in V2. Taken together, the data suggest
that the PnO may play a role in the modulation of cortical state
and integration of sensory information under a moderate depth
of anesthesia.

PnO AND CORTICAL STATE MODULATION
The PnO has been known to play a central role in the ascending
modulation of cortical state, anesthesia and possibly even con-
sciousness. It may exert comprehensive control over many arousal
and sleep-wake promoting regions; the PnO is intimately linked to
an array of subcortical and neocortical structures: cingulate cor-
tices, hippocampus (HI), diagonal band of Broca, dentate gyrus,
locus coeruleus (LC), mamillothalamic tract, preoptic area, medial

septal nucleus, nucleus Basalis of Meynert, substantia nigra, sub-
thalamic nucleus, and the cerebral cortex (Reinoso-Suarez et al.,
2011). Its normal functioning depends heavily on glutamater-
gic and GABAergic cells that either facilitate or suppress cortical
arousal and activation (Jones, 2003; Watson et al., 2008).

Previous studies have demonstrated that pharmacological
activation of the PnO produces cortical activation in urethane-
anesthetized animals (Fenik et al., 2005), decreases the propensity
for sleep, and increases wakefulness (Tamminga et al., 1979;
Camacho-Arroyo et al., 1991; Heiss et al., 2005; Watson et al.,
2007). Furthermore, microinjection of muscimol, a GABAA

receptor agonist, into the pontine reticular formation of unanes-
thetized mice increases wakefulness and this effect can be blocked
by administration of bicuculline (Flint et al., 2010). Our results
reproduced the cortical arousal effect of pharmacological PnO
activation using electrical stimulation. It is important to point out
that neuronal activity was not recorded from the PnO or other
components of the AAS, and we could not determine whether
desflurane directly acted upon this region. In addition, the neuro-
chemical cascade of events that transpired after stimulation of the
PnO was not examined.

EFFECT OF PnO STIMULATION ON INFORMATION INTEGRATION
A novel finding of this study was that PnO electrical stimula-
tion had a significant modulatory effect on cortical information
integration under anesthesia. Traditionally, information measures
derived from spike trains are based on spike rates or interspike
intervals. Multichannel data provide the next level of complexity,
at which coincident spike firing patterns (temporally synchronized
firing) between neuronal networks can be evaluated (Grun et al.,
1999; Grun et al., 2002). Coordinated or coincident firing patterns
are thought to represent information flow (Mainen and Sejnowski,

Frontiers in Integrative Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 8 | 8

http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Integrative_Neuroscience/archive


Pillay et al. Brainstem modulation of information integration

FIGURE 4 | Effect of desflurane and PnO stimulation on visual evoked

responses. (A) Population vectors of all neurons from both regions in one
representative rat at 4.5% desflurane are displayed. Neurons in V2
responded in a stereotypic manner to light flashes, whereas PtA neurons
remained unresponsive. Neurons were considered responsive if they
crossed the 95% confidence intervals (black dashed lines). Also displayed,
red dashed lines, are the expected mean firing rates. (B) The number of
total recorded and responding neurons are displayed. In general, more V2

neurons responded to light flashes than those in PtA at all desflurane
concentrations. (C) Visual evoked responses are displayed from responding
V2 neurons in each rat to light flashes alone and paired with PnO
stimulation. (D) The time to peak response was not altered by PnO
stimulation. However, it took longer for V2 neurons to reach peak response
at 6.0% desflurane. *p < 0.05 responding neurons in V2 vs. responding
neurons in PtA. #p < 0.05 time to peak response at 6 vs. 4.5%. Error bars
are ±1 SD.
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FIGURE 5 | Integration and interaction entropy before and after

combined PnO and flash stimulation. Visual stimulation (light flashes)
alone did not affect (A) integration or (B) interaction entropy. PnO stimulation
led, as in Day 1, to an increase in integration and interaction entropy. Light

flashes presented after PnO stimulation elicited a large increase in integration
and interaction entropy at 3.5 and 4.5% desflurane in V2. *post-stimulation
vs. pre-stimulation. #post-Flash w/PnO vs. post-PnO. Significance: p < 0.05.
Error bars are ±1 SD.

FIGURE 6 | Multi-channel dynamic spike correlation before and after

combined PnO and flash stimulation. PnO stimulation elicited large
increases in dynamic spike correlation in PtA at the two lowest desflurane

concentrations, and only at 6% in V2. Light flashes presented after PnO
stimulation augmented dynamic spike correlation in V2 at the intermediate
desflurane concentration. *p < 0.05 post vs. pre. Error bars are ±1 SD.

1995; Diesmann et al., 1999) that enables sensory perception, lan-
guage generation, memory encoding and retrieval, and behavior.
Moreover, conscious awareness is presumably influenced by the
synchronization between neuronal elements and networks (Singer
and Gray, 1995; Engel et al., 1999a,b; Gray, 1999).

In order to strengthen our confidence in the findings, in this
work we used two measures of information integration, integra-
tion, and interaction entropy. Both of these measures were based
on the statistical properties of coincident spike patterns. Expressed

in units of bits, integration and interaction entropy quantify the
average information shared among the units – hence information
integration. The calculation of both quantities requires an esti-
mation of the system’s entropy in a condition when its units are
non-interacting. The latter is estimated by the sum of the entropies
(integration) or by randomizing the spike timings (interaction
entropy) of each unit, respectively. The first approach assumes
that unit entropies would be the same if the units were truly inde-
pendent and the second approach assumes that randomization
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completely removes the unit correlations. Obviously, with real
data, none of these conditions are exactly satisfied, and integration
and interaction entropy yield slightly different approximations.
However, the results obtained with the two methods in this study
were quite similar, reinforcing our confidence in the findings.
These changes in entropy measures were confirmed by the increase
in dynamic spike correlation after PnO stimulation. Finally, the
measured, correlated firing may be due to direct interaction of the
units or to common input, but this does not change the meaning
of the calculated quantities.

A framework for further interpretation of our results is pro-
vided by the Integrated Information Theory of Consciousness
(IITC; Tononi, 2010). Under this model, consciousness is an emer-
gent property of brain complexity that scales with the brain’s
ability to integrate information. Two necessary conditions for the
latter are the large repertoire of distinct brain states (informa-
tion) and the causal dynamics of these states or system elements
(integration). It has been suggested that an essential component
of anesthesia is a suppression of information integration (Alkire
et al., 2008) and there has been some experimental support to this
notion (Lee et al., 2009). It was therefore hypothesized that ascend-
ing cortical activation for example, by PnO stimulation, would
work toward reversing the anesthetic effect on the state repertoire
and information integration.

A possible measure of the local neuronal state repertoire is
the number of unique spike patterns that occur over time. As
predicted, the number of unique spike patterns increased after
PnO stimulation, suggesting a transient increase in the informa-
tion capacity. Quantified more directly, the observed increases in
integration and interaction entropy after PnO stimulation could
suggest, according to the IITC, a transient shift toward a conscious
or REM-like state. Although we do not have objective knowledge
of the state of mind of the rodent, we speculate that some form
of conscious experience may be present in REM-like states. We
consider REM sleep a form of conscious, although not wakeful,
state as it can be accompanied by subjective experience during
dreaming. A distinction between awareness and wakefulness is
common in neurology (Laureys, 2005), and it has been suggested
that consciousness may be akin to dreaming awake (Llinas and
Pare, 1991). Even in the absence of overt behavioral expression,
presumably blocked by the presence of the anesthetic in the spinal
cord, such covert EEG changes have in fact been observed during
nociceptive stimulation (Guignard et al., 2000; Avidan et al., 2008).

Of note is that increasing desflurane concentration from 3.5
to 6.0% did not diminish information processing. A limitation
of our experiment design was that we did not study the awake
condition, and therefore we were not able to tell if local informa-
tion integration was already reduced at the 3.5% level compared
to wakefulness. Perhaps it was, although it is also possible that
neuronal interactions and local information integration in the
anesthetized brain were relatively preserved (Ribeiro et al., 2010).
Also, we do not know if electrocortical activity in PtA/V2 was
altered by PnO stimulation to the same degree that it was in
other brain regions, particularly in the frontal lobes that display
substantial and characteristic changes in anesthesia (Cimenser
et al., 2011). Thus, the reason for the apparent dissociation
between frontal LFP and posterior information integration during

increasing depth of anesthesia will have to be explored in future
studies.

EFFECT OF PnO STIMULATION ON VISUAL EVOKED RESPONSE AND
INFORMATION INTEGRATION
In order to maximize the reproducibility of retinal stimulation,
each rat was outfitted with a LED (Szabo-Salfay et al., 2001),
emitting at a peak wavelength of 660 nm (allows for transillu-
mination of the retina through skull and tissues), behind the left
eye (contralateral to the recording microelectrode array and stim-
ulating bipolar electrode; Maarek et al., 1984). As used before, this
technique delivered consistent visual stimulation (discrete light
flashes) without confounding changes in illumination due to pos-
tural adjustments of the animal and changes in optical properties
of the eye. With this technique, visual evoked responses to the
light flashes were readily elicited at all desflurane concentrations.
Neurons in V2 were generally more responsive than those in PtA
to light flashes both before and after PnO stimulation. The time to
peak response was significantly increased at the highest desflurane
concentration.

Although PnO stimulation altered neither the latency nor the
magnitude of the visual evoked response, the information inte-
gration of the recorded units were greatly affected suggesting that
PnO may modulate neuronal integration at a similar overall level
of neuronal activity. PnO stimulation also augmented the dynamic
spike correlation of unit activity during flash stimulation at the
intermediate desflurane concentration. These findings provide
further evidence that spike correlations may be an essential feature
of neuronal encoding or decoding of stimulus-related informa-
tion (Montani et al., 2009; Ohiorhenuan et al., 2010; Oizumi et al.,
2010; Shimazaki et al., 2012).

Previous studies suggest that increased attention and arousal,
due to manipulations of the AAS, dramatically improves encoding
of a sensory stimulus (Zohary et al., 1994a,b; Bermudez Contreras
et al., 2013), increases the neuronal responses to selective attention
tasks (Reynolds and Chelazzi, 2004), and enhances the responses to
a natural movie stimulus in the rat (Goard and Dan, 2009). Given
the robust, flash-induced increases in unique spike patterns and
information integration after PnO stimulation, we speculate that
priming the activity of the PnO, together with other components
of the AAS (Lee and Dan, 2012), may increase the readiness of
the cortex to process and integrate incoming sensory information.
Even though the direct effect of PnO stimulation decayed dur-
ing flash presentation, its facilitating effect on the flash-induced
increases in integration and interaction entropy were sustained in
the post-stimulus period suggesting a relatively prolonged change
in cortical state after PnO stimulation.

Taken together, our results support a role for the PnO in mod-
ulating cortical state and information integration during both
spontaneous ongoing activity and visual stimulation. Future work
could focus on pairing other sensory modalities to cortical state
via manipulations of the AAS from multiple target sites, includ-
ing the hypothalamus (Kelz et al., 2008) or basal forebrain (Pillay
et al., 2011). These studies should contribute to a better under-
standing of the neuronal interaction of anesthetics and the AAS
in modulating cortical information integration and the state of
consciousness.
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