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Abstract

Despite its high relevance, developmental neurotoxicity (DNT) is one of the least studied

forms of toxicity. Current guidelines for DNT testing are based on in vivo testing and they

require extensive resources. Transcriptomic approaches using relevant in vitro models

have been suggested as a useful tool for identifying possible DNT-generating compounds.

In this study, we performed whole genome microarray analysis on the murine progenitor

cell line C17.2 following 5 and 10 days of differentiation. We identified 30 genes that are

strongly associated with neural differentiation. The C17.2 cell line can be differentiated into

a co-culture of both neurons and neuroglial cells, giving a more relevant picture of the brain

than using neuronal cells alone. Among the most highly upregulated genes were genes

involved in neurogenesis (CHRDL1), axonal guidance (BMP4), neuronal connectivity

(PLXDC2), axonogenesis (RTN4R) and astrocyte differentiation (S100B). The 30 biomark-

ers were further validated by exposure to non-cytotoxic concentrations of two DNT-inducing

compounds (valproic acid and methylmercury) and one neurotoxic chemical possessing a

possible DNT activity (acrylamide). Twenty-eight of the 30 biomarkers were altered by at

least one of the neurotoxic substances, proving the importance of these biomarkers during

differentiation. These results suggest that gene expression profiling using a predefined set

of biomarkers could be used as a sensitive tool for initial DNT screening of chemicals. Using

a predefined set of mRNA biomarkers, instead of the whole genome, makes this model

affordable and high-throughput. The use of such models could help speed up the initial

screening of substances, possibly indicating alerts that need to be further studied in more

sophisticated models.
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Introduction

During the last 3 decades, there has been an increase in the number of children diagnosed with

learning and neurodevelopmental disorders. This alarming trend has given rise to an emerging

need for good models and methods to evaluate possible developmental neurotoxicity (DNT)

induced by exposure to different chemicals [1]. The current approved guidelines for toxicity

testing rely solely on in vivo models using endpoints such as behavior, sexual maturation,

brain weight and neuropathology, which are broad and unspecific. In some cases tests of neu-

robehavioral function (e.g., social behavior), neurochemistry or neuropathology (histological

sections are examined microscopically to determine alterations) are also applied [2,3]. With

regards to the vast quantity of chemicals being introduced to the market each year, in vivo
DNT testing according to the existing guidelines is both time consuming, expensive, hard to

interpret and comes with ethical costs [4]. According to the Toxicity testing in the 21st century

paradigm, there is a call for reliable in vitro methods that can provide rapid, high-throughput

screening of chemicals [5]. However, due to the various uncertainties and problems mentioned

for the current guidelines for DNT testing, there is also a great need of DNT screening specific

alternative methods [6].

The central nervous system (CNS) is considered to be one of the most susceptible targets of

systemic toxicity, and the developing nervous system is often even more sensitive [7]. DNT

endpoints can be very challenging to study since the toxicity may not correlate with cell death

but rather by subtle alterations in a number of specific and sensitive events that take place in

an organized and controlled manner during development [8,9]. Since various parts and cell

types of the brain develop during different time points, they are sensitive to toxic insults at

different time windows [7]. All of these biological events during brain development, such as

proliferation, migration, differentiation, apoptosis and synaptogenesis, can be targeted by

xenobiotics and potentially lead to DNT [10]. Even subtle alterations of the ratio between dif-

ferent subpopulations of neural cells, the number of synapses, connectivity or the positioning

of cells can give rise to DNT [11,12]. The next generation of DNT testing is envisioned to com-

bine both in silico and in vitro testing methods in order to generate a more rapid and efficient

toxicity screening [13]. For example, human embryonic stem cells have been shown to be a

reliable tool for the identification of critical events during neural development [14]. Different

endpoints such as neurite outgrowth [15,16] and neural proliferation [17] were reported to be

important for detection of DNT. In addition, several studies identified biomarkers of neural

differentiation that could be used for toxicity screening [12,14,18–22]. Hogberg et al identified

the use of micro-electrode arrays in primary cultures of rat cortical neurons as an emerging

technology to study DNT [23,24]. However, single endpoints/biomarkers will simply not suf-

fice for in vitro DNT testing. Testing strategies for DNT should be comprehensive, i.e. include

a battery of relevant endpoints and should give mechanistic insight that would provide infor-

mation to discriminate between different neural subpopulations and different stages of neural

differentiation. International stakeholders have proposed a DNT testing strategy based on

compound testing across a battery of in vitro tests including the important factors of timing

and processes of brain development [6]. The use of mRNA biomarkers is a good example of

such an approach that has previously been reported for DNT test systems [21,25,26]. Expres-

sion monitoring by hybridization to high-density oligonucleotides is a sensitive, specific and

quantitative method to monitor very large number of mRNAs [27,28].

The objective of the present study was to use transcriptomic microarray gene expression

analysis in order to identify a panel of mRNA biomarkers that are critical for neural differenti-

ation in the murine neural progenitor cell line C17.2. The C17.2 cell line is a multipotent pro-

genitor cell line that upon differentiation with nerve growth factor (NGF) and brain derived

Whole genome microarray analysis of neural progenitor C17.2 cells during differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0190066 December 20, 2017 2 / 24

Swetox (UN, AF) was supported by Stockholm

County Council, Knut & Alice Wallenberg

Foundation, and Swedish Research Council

FORMAS and the Swedish Fund for Research

without Animal Experiments. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0190066


neurotrophic factor (BDNF), can differentiate into a co-culture of neurons and neuroglial cells

[29]. We identified 30 biomarkers that were validated using Reverse Transcription Real-Time

Quantitative Polymerase Chain Reaction (RT-qPCR). In addition, we also evaluated the gene

expression of the selected biomarkers following exposure to four xenobiotics. Two known

DNT-inducing compounds were used as positive controls, i.e. methylmercury chloride

(MeHg) [30] and valproic acid sodium salt (VPA) [31,32] and one neurotoxic and potentially

DNT-inducing compound, i.e. acrylamide (ACR) [15,33]. D-mannitol was used as a negative

control.

Materials and methods

Chemicals and reagents

Acrylamide (99.9% purity) (A9099), methylmercury chloride (442534), valproic acid sodium

salt (P4543), D-mannitol (M1902), putrescine dihydrochloride (P5780), progesterone

(P8783), sodium selenite (S5261), bovine insulin (I1882) were purchased from Sigma Aldrich

(Sweden). Recombinant mouse β-nerve growth factor (NGF) (1156-NG) and recombinant

human brain-derived neurotrophic factor (BDNF) (248-BD) were purchased from R&D sys-

tems (United Kingdom). Apo-transferrin from bovine plasma (02152334) was purchased

from MP Biomedicals. GIBCO1 phosphate-buffered saline (PBS), GIBCO1 Trypsin/ EDTA

(0.05/0.02%), GIBCO1 Dulbecco’s modified Eagles medium (DMEM), GIBCO1 Dulbecco’s

modified Eagles medium: Nutrient mixture F-12 (DMEM/F-12), horse serum, fetal calf

serum, GIBCO1 L-glutamine, GIBCO1 Pen-Strep (10,000 U/ml of penicillin and 10,000 μg/

ml of streptomycin) and AlamarBlue1 cell viability reagent were purchased from Thermo-

Fisher Scientific (Sweden). All plastics used for cell culturing were from Corning Inc., (Corn-

ing NY). RNA extraction kit RNeasy Plus Mini Kit was purchased from Qiagen. PrimePCR™
Positive Control SYBR1 Green Assay, PrimePCR™ DNA Contamination Control SYBR1

Green Assay, PrimePCR™ RNA Quality SYBR1 Green Assay, PrimePCR™ Reverse Transcrip-

tion Control SYBR1 Green Assay, PrimePCR™ precasted 96-well plates, iScript cDNA

synthesis kit and SsoAdvanced™ Universal SYBR1 Green Supermix for RT-qPCR were pur-

chased from Bio-Rad (Sweden).

Cell line and cell culturing

The neural progenitor cell line C17.2 was a generous gift from Professor Sandra Ceccatelli

(Karolinska Institutet, Stockholm, Sweden) with permission of Professor Evan Snyder

(Harvard Medical School, Boston, USA). The C17.2 cell line was originally cloned from mouse

cerebellar neural progenitor cells, which were immortalized through v-myc retroviral trans-

duction [34]. The cells were originally taken on postnatal day 4 from a male mouse. For rou-

tine cultures, the C17.2 cells were seeded at a density of 1.27 x 103 cells/cm2 in cell culture

Petri dishes. The cells were cultured in routine culture medium (DMEM supplemented with

5% horse serum, 10% fetal calf serum, 2 mM L-glutamine, 100 U penicillin/mL and 100 μg

streptomycin/mL). The confluent cells were detached every 3,5 days using 0.05/0.02% trypsin/

EDTA and seeded in a new cell culture Petri dish at the original density. For differentiation

studies, the C17.2 cells were seeded in routine culture medium (see individual experiment for

density). Twenty-four hours after seeding, the medium was changed to differentiation

medium (DMEM/F-12 medium supplemented with 1 mM L-glutamine, 100 U penicillin/mL,

100 μg streptomycin/mL, modified N2 supplements (to a final concentration of 5 μg/mL

bovine insulin, 20 nM progesterone, 30 nM sodium selenite, 100 μg/mL bovine apo-transfer-

rin, and 100 μM putrescine dihydrochloride), 10 ng/mL NGF and 10 ng/mL BDNF). The
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differentiation medium was changed every 3rd day for the duration of the differentiation. The

cells were kept in a humidified atmosphere of 5% CO2 in air at 37˚C.

Culturing of cells for microarray expression analysis and RT-qPCR of

selected biomarkers

For the experimental setup, the C17.2 cells were seeded in 10 cm diameter cell culture dishes

in routine culture medium. The undifferentiated control cells were seeded at a density of 1.9 x

103 cells/cm2 and the cells for differentiation were seeded at a density of 3.7 x 103 cells/cm2.

The control cells were seeded at a lower density than the cells seeded for differentiation due to

the fact that they are known to spontaneously differentiate if the culture get too dense.

mRNA extraction

After desired time of differentiation (5 or 10 days), the cells were harvested by trypsinization

and cell pellets were collected. Undifferentiated cells were harvested after 3 days. The cell sus-

pensions were centrifuged for 5 minutes at 500g and the pellet was stored at -80˚C until

mRNA extraction. On the day of the experiment, the cells were lysed and mRNA was extracted

using the Qiagen RNeasy Plus Mini Kit according to manufacturer’s instructions. mRNA con-

centration was determined by a NanoPhotometer™ P-class (IMPLEN GmbH).

Microarray expression analysis

The RNA quality was evaluated using the Agilent 2100 Bioanalyzer system (Agilent Technolo-

gies Inc, Palo Alto, CA). Two hundred and fifty ng of total RNA from each sample were used

to generate amplified and biotinylated sense-strand cDNA from the entire expressed genome

according to the GeneChip1 WT PLUS Reagent Kit User Manual (P/N 703174 Rev. 1, Affy-

metrix Inc., Santa Clara, CA). GeneChip1 ST Arrays (GeneChip1 Mouse Gene 2.1 ST

16-Array Plate) were hybridized for 16 hours in a 45˚C incubator, washed and stained and

finally scanned with the GeneTitan1 Multi-Channel (MC) Instrument, according to the

GeneTitan Instrument User Guide for Expression Arrays Plates (P/N 702933 Rev. 2, Affyme-

trix Inc., Santa Clara, CA).

Microarray data analysis

The raw data was normalized in the free software Expression Console provided by Affymetrix

(http://www.affymetrix.com) using the robust multi-array average (RMA) method first sug-

gested by Li and Wong in 2001 [35,36]. Subsequent analysis of the gene expression data was

carried out in the freely available statistical computing language R (http://www.r-project.org)

using packages available from the Bioconductor project (www.bioconductor.org). In order to

search for the differentially expressed genes (DEGs) between the groups, an empirical Bayes

moderated t-test was applied using the ‘limma’ package [37,38]. To address the problem with

multiple testing, the p-values were adjusted using the method of Benjamini and Hochberg

[39]. The microarray data have been deposited at Gene Expression Omnibus (GSE97337). Vol-

cano plots were generated using R and the ggplot2 Bioconductor package. Venn diagrams of

the DEGs for each treatment vs the untreated control at the same point were plotted with a

web tool developed by the Bioinformatics & Evolutionary Genomics Laboratory at VIB/

UGent, Belgium (http://bioinformatics.psb.ugent.be/webtools/Venn/). Genes with a false dis-

covery rate (FDA) adjusted p-value< 0.05 and absolute log2(fold change)> 1 were considered

as differentially expressed. The lists of genes for plotting the Venn diagrams were based on the

analysis-ready genes (see below).
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Principal component analysis

The outcome from the experiments was analyzed with principal component analysis (PCA)

using SIMCA v14.0 (MKS data analytics solutions). The differences between the 3 repeated

experiments for undifferentiated cells and 5 or 10 days of differentiation, respectively, as well

as the differences between 10 and 5 days of differentiation were used as input variables for the

PCA, i.e. each sample of undifferentiated cells were compared to all 3 samples of cells differen-

tiated for 5 or 10 days and so on. The data were mean-centered and auto-scaled to unit vari-

ance and 7-fold cross-validations were used to determine the number of significant PCA

components.

Downstream analysis

Downstream analysis of the DEGs was performed using Ingenuity Pathway Analysis software

(IPA, content version 26127183, Ingenuity Systems, Redwood City, CA). The contrast Day 5

vs Day 0 (undifferentiated cells) had 1190 differentially expressed (absolute log2(fold change)

> 1, p-value < 0.05) probe set IDs out of which 1108 were mapped to gene symbols (using

IPA). After removing duplicates there were a total of 1065 analysis-ready genes (665 upregu-

lated, 400 downregulated). The contrast Day 10 vs Day 0 had 2458 differentially expressed

(absolute log2(fold change)> 1, p-value < 0.05) probe set IDs out of which 2232 were mapped

to gene symbols (using IPA). After removing duplicates there were a total of 2166 analysis-

ready genes (1216 upregulated, 950 downregulated). The contrast Day 10 vs Day 5 had 307 dif-

ferentially expressed (absolute log2(fold change)> 1, p-value< 0.05) probe set IDs out of

which 285 were mapped to gene symbols (using IPA). After removing duplicates there were a

total of 283 genes ready for analysis (192 upregulated, 91 downregulated). The analysis-ready

genes were used for canonical pathway analysis as well as disease and function analysis. Output

data were used to generate heatmaps of the top 20 enriched pathways according to the p-value

as well as z-score (measure of pathway activation/inhibition). To select relevant biomarkers for

neural differentiation of the C17.2 cell line, gene set enrichment analysis (GSEA) was per-

formed on the genes selected as differentially expressed (absolute log2(fold change)> 1,

p-value < 0.05) and from the genes that were determined as differentially expressed, all genes

involved in gene sets connected to the brain and neural functions were further selected. From

this list of differentially expressed genes involved in neural differentiation, the 30 genes with

the highest log2(fold change) changes were chosen without bias. These 30 genes were further

validated by RT-qPCR (http://software.broadinstitute.org/gsea/index.jsp). For the selected 30

genes, we performed gene ontology (GO) enrichment analysis using the WebGestalt online

tool [40].

Reverse Transcription Real-Time Quantitative Polymerase Chain

Reaction

The selected mRNA biomarkers from the microarray were validated by RT-qPCR. Pre-casted

white PrimePCR™ plates were designed and purchased from Bio-Rad. Two μg of each RNA

sample (same samples as were used for the microarray analysis) were reverse transcribed into

cDNA using iScript cDNA Synthesis Kit from Bio-Rad. Real-time qPCR reactions were carried

out as described by Bio-Rad in the PrimePCR™ instruction manual, including experimental

control assays for reverse transcription (PrimePCR™ Reverse Transcription Control SYBR1

Green Assay), genomic DNA (PrimePCR™ DNA Contamination Control SYBR1 Green

Assay), RNA quality (PrimePCR™ RNA Quality SYBR1 Green Assay) and PCR performance

(PrimePCR™ Positive Control SYBR1 Green Assay). It was performed in a CFX96 Touch™
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Real-Time PCR Detection System (Bio-Rad) using SsoAdvanced™ Universal SYBR1 Green

Supermix. The data were analyzed using the Bio-Rad CFX manager 3.1 software system. The

samples were normalized against 3 reference genes; TATA box binding protein (Tbp), heat

shock protein 90ab (Hsp90ab1) and ribosomal protein, large P1 (Rplp1) which were carefully

selected so as to be equally expressed during all stages of differentiation relative to the total

amount of mRNA [41].

Chemical exposure

The substances were dissolved in differentiation medium and sterile-filtered through a 0.2 μm

filter and then diluted to different concentrations. The substances were added in different con-

centration ranges depending on the substance; ACR range 0.1 nM-1 mM, MeHg range 10 pM-

100 μM, VPA range 1 nM-10 mM and D-mannitol range 10 μM-100 mM. Cell cultures

exposed to differentiation medium without any of the 4 substances were used as control. For

all experiments, the exposure to the substances started 24 hours after seeding, at the same time

as the change to differentiation medium. The medium was then changed every 3rd day and the

substances were added at every change of medium throughout the duration of the experiment.

Fresh medium without any substance was added to control cells. A fresh stock solution and

dilution series for each of the substances was prepared right before addition to the cells at each

time of exposure and medium change.

Determination of IC10 for the different substances using the

AlamarBlue® assay

The amount of viable cells was determined using the AlamarBlue1 cell viability reagent. For

all experiments, the cells were seeded in clear 96-well plates. C17.2 cells were seeded at a

density of 3.75 x 103 cells/cm2. The cells were exposed to the substances diluted in differentia-

tion medium for 10 days with the substance-containing medium changed every 3rd day as

described above. After completed exposure, the AlamarBlue1 reagent was added according to

the manufacturer’s instructions, incubated for 1 hour and the absorbance was read at 570 nm

using 600 nm as a reference wavelength. The inhibitory concentration 10% (IC10) was deter-

mined from nonlinear regression to fit the data to the log(inhibitor) vs response(variable

slope) curve using the Hill slope (slope factor), equation Y = Bottom + (Top-Bottom)/(1+10^

((LogIC10-X)�HillSlope)) (GraphPad Prism 7.02).

Exposure of substances for validation of selected biomarkers

To further validate that the biomarkers selected from the microarray expression analysis that

were validated by RT-qPCR, the biomarkers were analyzed after addition to 3 different neuro-

toxic substances and one negative control substance. The cells were seeded in 6 cm diameter

cell culture dishes at a density of 3.7 x 103 cells/cm2 and exposed during differentiation to the

IC10 estimated from the the AlamarBlue1 assay described above; 70 μM of ACR, 90 nM of

MeHg and 100 μM of VPA. D-mannitol didn’t show any cytotoxicity for the concentrations

used, and 1 mM was chosen for cellular exposure. After 10 days of differentiation and exposure

to the substances, the cells were harvested by trypsinization and cell pellets were collected.

Cells were centrifuged for 5 minutes at 500g and the pellet was stored at -80˚C until mRNA

extraction. mRNA extraction, cDNA synthesis and RT-qPCR were performed in the exact

same manner as stated above during the previous sections.
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Morphological evaluation

The cells were photographed using a phase contrast microscope (Olympus). Microscopy

images were captured at 150x magnification using a CCD camera (Olympus DP50).

Statistical analyzes for PrimePCR

GraphPad Prism 7.02 was used for statistical analysis of the data. Results were analyzed

using one- or two-way ANOVA followed by Dunnett’s multiple comparisons test, � p<0.05,
�� p<0.01, ��� p<0.001 as compared to control.

Results

Microarray analysis of differentiating C17.2 reveals robust time-

dependent changes of gene expression

C17.2 neural progenitor cells were used as a model for the developing nervous system. In this

study, the cells were differentiated in serum-free N2 medium with NGF and BDNF for 5 or 10

days (S1A–S1C Fig). The C17.2 cells showed upregulated protein levels of both βIII-tubulin (a

neuronal marker) and glial fibrillary acidic protein (GFAP, an astrocytic marker) as well as a

downregulation of nestin (a marker for neural progenitor cells) during differentiation (S1 Fig).

The ratio of neurite-bearing cells was approximately 20% for cells differentiated for 5 days and

35% for cells differentiated for 10 days, determined by counting cells on the phase contrast

images (S1E Fig). Further characterization of the different neuronal phenotypes in the differ-

entiated C17.2 cultures showed an upregulation of both Glutamate decarboxylase 1 (GAD1, a

marker for gamma-amino butyric acid (GABA) neurons) and vesicular glutamate transporter

1 (vGluT1, a marker for glutamatergic neurons) (S1D Fig), whereas biomarkers for other neu-

ronal phenotypes where not expressed (i.e. ChAT, TH and TPH2) (data not shown). Results

from the microarray also showed that markers for neural stem cells were downregulated dur-

ing differentiation (e.g. SOX1/3, NES and MKI67), however the results were not validated with

RT-qPCR (Gene Expression Omnibus GSE97337). One approach for analysis of microarray

data is by using PCA. The PCA analysis will test if the data are robust, i.e. if the data clusters or

not. PCA is mathematically defined as an orthogonal linear transformation that transforms the

multivariable data to a new coordinate system. In the new coordinate system, the largest vari-

ance by the projection of the data is presented in the first coordinate, called the first principal

component (PC). The second largest variance is subsequently projected onto the second coor-

dinate and so on. This reduces the dimensionality of the data while retaining most of the varia-

tion in the data set. Hence, samples can be plotted to visually assess similarities and differences

between samples and determine whether or not samples can be grouped. The PCA plot of all

the independent experiments (Fig 1) illustrates that the data clustered according to the differ-

ent contrasts i.e. 10 days vs 5 days of differentiation, 10 days vs undifferentiated, 5 days vs

undifferentiated, showing robustness of the cell model as well as technical reproducibility. The

first two principal components explained 72.5% of the information (variation) of the dataset.

The variance for PC1 was 55.7% and 16.8% for PC2.

Volcano plots were used to visualize genome-wide gene expression. The differentiated cells

(5 or 10 days of differentiation) were compared to undifferentiated cells (Fig 2a and 2b, respec-

tively) or compared to each other (5 days vs 10 days of differentiation) (Fig 2c). Gene-wise fold

change values (log2 scale) are plotted on the x-axis against FDR-adjusted significance values

(negative log10 scale) on the y-axis. Genes that had an absolute log2(fold change) expression

>1 together with a FDR-adjusted p-value�0.05 were defined as differentially expressed and

selected for further analysis. The Venn diagram (Fig 2d) shows the number of DEGs that
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overlap between the different contrasts, i.e. undifferentiated cells, 5 days and 10 days of differ-

entiation. The comparison between cells differentiated for 10 days and undifferentiated cells

generated the largest number of DEGs, 2166 genes (1216 upregulated and 950 downregulated).

The contrast between cells differentiated for 5 days and undifferentiated cells consisted of

approximately half the number of DEGs, 1065 genes (665 upregulated and 400 downregu-

lated). The contrast between cells differentiated for 10 days and cells differentiated for 5 days

only resulted in 283 DEGs (192 upregulated and 91 downregulated), indicating that most

changes occur during the first 5 days of differentiation. 94 genes overlapped between the 3

contrasts.

Pathway analysis gives insight into the biological changes during neural

differentiation

Ingenuity Pathway Analysis (IPA) software was used to perform pathway analysis for the 3

contrasts (5 days of differentiation vs undifferentiated, 10 days of differentiation vs undifferen-

tiated and 10 days of differentiation vs 5 days of differentiation). The top 20 pathways accord-

ing to the level of significance and level of activation from each contrast are included in Fig 3.

The top enriched pathway was (Hepatic) fibrosis, which was defined by genes related to the

extracellular matrix and not by liver specific genes (as the name misleadingly suggests), sug-

gesting matrix remodeling during neural differentiation [42]. Axonal guidance signaling path-

way was highly significant, as indicated by enrichment in all 3 contrasts (Fig 3a and 3b).

Heatmaps of the genes defining the axonal guidance signaling pathway are included (S2 Fig).

Six of the genes curated in the axonal guidance signaling pathway were identified as important

biomarkers for neural differentiation of the C17.2 cell line (BMP4, PLXNB3, PLXNA3, SLIT2,

ROBO1 and NTN1) and hence, were included among the 30 biomarkers selected for valida-

tion. As indicated in Fig 3, the NRF2-oxidative stress response pathway together with the

cyclin and cell cycle regulation pathway were predicted to be inhibited whereas G2/M DNA

damage checkpoint regulation, acute phase response signaling and NF-kB pathways were pre-

dicted to be activated during neural differentiation.

Fig 1. PCA plot of independent experimental seed-outs. The data clusters according to the different

contrasts, i.e. 10 days vs 5 days of differentiation, 10 days vs undifferentiated, 5 days vs undifferentiated,

showing robustness of the cell model as well as technical reproducibility. The first two principal components

explained 72.5% of the information (variation) of the dataset (for PC1: 55.7%, for PC2: 16.8%).

https://doi.org/10.1371/journal.pone.0190066.g001
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Identification and selection of potential biomarker genes for neural

differentiation

To select relevant biomarkers for neural differentiation of the C17.2 cell line, gene set enrich-

ment analysis (GSEA) was performed on the genes selected as differentially expressed (http://

software.broadinstitute.org/gsea/index.jsp). Neural specific enrichments lists (S1 Table) were

carefully chosen, from which the 30 genes with the highest log2(fold change) values were

selected to be further validated by using RT-qPCR analysis. Fig 4a illustrates the fold change

values of the selected biomarkers, at different differentiation time points. The 30 selected bio-

markers are involved in different neural processes, including neural development, axonal

Fig 2. Volcano plot showing genes in and outside of cutoff values for differentially expressed genes (i.e. adjusted p-

value� 0.05 and absolute log2(fold change) >1). Red dots represent genes outside of the cutoff values and green dots represents

differentially expressed genes at a) 5 days of differentiation vs undifferentiated cells b) 10 days of differentiation vs undifferentiated cells

c) 10 days vs 5 days of differentiation d) Venn diagram showing overlap of differentially expressed genes between the different time

points.

https://doi.org/10.1371/journal.pone.0190066.g002
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Fig 3. Canonical pathway analysis of differentially expressed genes using IPA. a) Top 20 Canonical

pathways as per p-value b) Top 20 as per z-score (a measure of the predicted direction of the pathway

activity).

https://doi.org/10.1371/journal.pone.0190066.g003
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guidance, synaptic transmission as well as astrocyte and oligodendrocyte differentiation (S2

Table). In addition, we used this gene list and performed disease and function analyses with

IPA in order to identify additional functions that these genes are correlated with. We then

curated the functions from IPA and the functions from GSEA to generate a comprehensive

heat map of the biological processes the selected genes are involved in (Fig 4b).

The selected biomarker genes were successfully validated by RT-qPCR

The use of DNA microarrays has become a popular and helpful tool to perform discovery-

based genomic research. However, studies comparing different microarray platforms have

sometimes yielded conflicting results [43]. RT-qPCR is often denoted as the "golden standard"

for gene expression measurements, generally due to its large dynamic range, its advantages in

detection sensitivity, sequence specificity, high precision and reproducibility compared to

other techniques. Hence, RT-qPCR has become the preferred method for quantifying gene

expression as well as for independent validation of microarray results [44]. Hence, the 30

selected biomarkers were further validated with RT-qPCR (Fig 5). All 30 genes were signifi-

cantly upregulated during differentiation as compared to undifferentiated cells, which was

consistent with the microarray data.

Fig 4. Mapping of the 30 genes selected as important for neural differentiation of the C17.2 cell line. a)

Heatmap of the 30 selected genes for the contrasts 10 days of differentiation (Day 10) vs undifferentiated cells

(Day 0), 5 days of differentiation (Day 5) vs undifferentiated and 10 days of differentiation vs 5 days of

differentiation are illustrated. Genes are ordered according to average log2(fold change) in the contrast Day

10 vs Day 0. b) Map displaying the biological pathways/networks that the selected genes are involved in

according to the IPA database as well as after manual review of published literature.

https://doi.org/10.1371/journal.pone.0190066.g004
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Alterations in expression levels were normalized against the 3 reference genes; TBP,

Hsp90ab and Rplp1, which fulfilled the set criteria (mentioned in the materials and methods

section). They were further statistically validated using RT-qPCR with the help of the”target

stability” function in the Bio-Rad CFX manager 3.1 software system. This function uses an iter-

ative test of pairwise validation described by [45] (S3 Table).

The expression of the selected biomarkers was altered by well-

established neurotoxic compounds

To further validate the selected biomarkers for neural differentiation of C17.2 cells, we evalu-

ated their expression following treatment with four different xenobiotics. As a common rule,

organ type test systems should assess specific adverse events independent of general cytotoxic-

ity [46]. For example, studying the inhibition of neurite outgrowth should not be performed at

cytotoxic concentrations [15]. Commonly, concentrations�IC10 are considered as non-

Fig 5. RT-qPCR validation of the 30 selected genes important for differentiation of the C17.2 cell line.

The data are presented as the mean of 3 independent experiments. Results were analyzed using two-way

ANOVA followed by Dunnett’s multiple comparisons test. The bars represent the mean ± SEM. *p� 0.05,

**p� 0.01, ***p� 0.001 compared to undifferentiated cells (unfilled bar).

https://doi.org/10.1371/journal.pone.0190066.g005
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cytotoxic and used to study specific adverse events [14,47]. The AlamarBlue cell viability assay

was used to estimate the IC10 for the C17.2 cells during 10 days of differentiation and exposure

(Fig 6). A wide range of concentrations was studied in terms of general test quality control.

The D-mannitol-exposed cell cultures displayed no cytotoxicity. Concentrations close to the

mathematically calculated IC10 were selected. After exposure for 10 days during differentia-

tion, the C17.2 cells were harvested and the selected biomarkers were analyzed with RT-qPCR.

Phase contrast images captured immediately before harvesting showed that the morphology of

the cells had changed, even at non-cytotoxic concentrations of the substances (S3 Fig). On a

functional level, all 3 neurotoxic substances significantly reduced the number of neurons (Fig

7c). The number of neurites per neuron was also reduced for all 3 substances (Fig 7d). Out of

the 3 substances, VPA reduced the number of neuronal cells and number of neurites per neu-

ron the most. Twenty-eight of the 30 neuro-specific biomarkers were significantly altered by

one or more of the 3 neurotoxic substances (Fig 7a and 7b).

Discussion

Despite its high relevance, DNT is one of the least studied forms of toxicity [11]. Keeping up

hazard assessment with the rapid production of new compounds is extremely time consuming

and costly. Using in vivo models can be challenging due to many factors, e.g. species differ-

ences, extrapolation difficulties and complex mechanisms of toxicity. The use of in vitro and in
silico models for toxicity screening is both cheaper, faster and more ethically attractive. Using a

battery of different assays, looking at both general toxicity and more target-dependent toxicity,

could also give a broader insight to the mechanism of toxicity for specific compounds. DNT

Fig 6. Cell viability of the C17.2 cells during exposure of a wide range of concentrations for four

different compounds. The IC10 concentration was calculated and was further used to validate proof of

concept of the 30 selected genes. Cells exposed to a) D-mannitol (negative control) b) acrylamide c)

methylmercury chloride d) valproic acid sodium salt. The data are presented as the mean of 3 independent

experiments preformed in hexaplicates. Results were analyzed using two-way ANOVA followed by Dunnett’s

multiple comparisons test. The bars represent the mean ± SEM. *p� 0.05, **p� 0.01, ***p� 0.001

compared to control (cells exposed to only cell medium). The inhibitory concentration 10% (IC10) was

determined from nonlinear regression to fit the data to the log(inhibitor) vs response(variable slope) curve

using the Hill slope (slope factor), equation Y = Bottom + (Top-Bottom)/(1+10^((LogIC10-X)*HillSlope))

(GraphPad Prism 7.02).

https://doi.org/10.1371/journal.pone.0190066.g006
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can be particularly difficult to study due to the fact that the cellular effects do not generally

result in cell death, but can be displayed as subtle changes in neuronal positioning, connectiv-

ity or morphology. In addition, the effects of DNT might not be measurable for a long time

after the exposure of the chemical has ceased. For example, if the DNT-producing chemical is

Fig 7. The effect of D-mannitol (negative control), acrylamide (ACR), methylmercury chloride (MeHg) and valproic acid sodium

salt (VPA) on gene expression, the number of neurons and neurites per cell in differentiating C17.2 cells. a) RT-qPCR of all 30

genes after 10 days of differentiation and exposure to the IC10 of said compounds (70 μM of ACR, 90 nM of MeHg and 100 μM of VPA. D-

mannitol did not show any cytotoxicity for the concentrations used, and 1 mM was chosen for cellular exposure) b) Heatmap of the 30 genes

expression during exposure to the 4 compounds. The log2(fold change) for the contrasts as compared to the control (unexposed) are

illustrated c) the number of neurons and the number of neurites per cell decreased after exposure to all 3 neurotoxic compounds. The data

are presented as the mean of 3 independent experiments performed in duplicates. Results were analyzed using two-way ANOVA followed

by Dunnett’s multiple comparisons test. The bars represent the mean ± SEM. *p� 0.05, **p� 0.01, ***p� 0.001 compared to control

(cells exposed to only cell medium) or between the 3 different compounds (ACR, MeHg and VPA).

https://doi.org/10.1371/journal.pone.0190066.g007
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introducing epigenetic changes, the effects of the chemical can linger much longer than the

actual exposure itself and could give rise to DNT over time [18]. One should also keep in mind

that DNT is occurs in a tissue that is under constant remodeling, making the need for reliable

controls extremely important [48].

The C17.2 progenitor cell line is a promising model to study DNT since it can be concur-

rently differentiated into a co-culture of both neurons and astrocytes [29]. In 2D cultures, the

neurons differentiate and extend neurites on top of the proliferating neuroglial cells. The neu-

roglial cells provide neurotrophic support for the differentiating neurons and mimic the in
vivo situation better than monocultures of differentiating neurons. Additionally, astrocytes

have been shown to be able to modify the neural response to different toxic substances [49],

therefore a co-culture of both neurons and astrocytes might give a more complete model of

the toxicological response in vivo. The C17.2 cell line has also been used for DNT studies in the

past to study DNT-introducing chemicals such as methylmercury, manganese and arsenic

[50–52]. We have previously shown that the C17.2 cell model could be used to study ACR

induced DNT by studying both mRNA and protein levels of BIII-tubulin and GFAP, viability,

as well as the ratio of the different neural cell populations during differentiation [15].

The use of transcriptomics for toxicological studies has become a useful tool over the last

decades [27]. Toxicogenomic approaches consist in evaluating gene expression changes in

response to xenobiotic exposure and can be valuable for generating hypothesis regarding spe-

cific mechanisms of toxicity. For DNT, transcriptomics make it possible to identify chemicals

that affect genes that are highly regulated during differentiation [20,53]. The correlation of

gene expression patterns with toxicological endpoints is essential for prediction of toxicity by

expression profiling. However, the use of whole genome array analysis to study DNT results in

a huge amount of data and might be considered too expensive to ultimately be used for high

throughput screening. Predefined gene sets, containing a minimal number of genes that are

able to detect and classify DNT is preferable and has previously been shown to be able to iden-

tify DNT-inducing reference chemicals [23]. Hogberg et al. showed that altered mRNA levels

for the neuronal markers NF-68 and NF-200 (covering the initial neurite outgrowth and the

later stages of morphological maturation), N-methyl D-aspartate glutamate receptor and

GABA receptor (main neuronal excitatory and inhibitory receptors) as wells as astrocytic

markers GFAP and S100 calcium binding protein B (S100B), could be used for the initial iden-

tification of DNT effects and the underlying mechanisms of toxicity in rat cerebellar granule

cells [23]. It is not possible to identify every DNT-inducing chemical by using a small set of

predefined biomarkers. The use of in silico predictions of possible targets for new chemicals

could help in the selection of relevant biomarkers to screen. Of course, one should keep in

mind that choosing too few biomarkers could pose a risk to miss certain chemicals (identify

false-negative chemicals).

The C17.2 cell model is suitable to use for high throughput screening since it generates

robust and technical reproducible data. Robustness is a measure of a methods’ capacity to

remain unaffected by small variations in method parameters and environmental conditions.

Analyzing the robustness of a model provides an indication of its reliability during normal

usage and should not be disregarded as it is of significant importance, especially for more com-

plex systems such as DNT [46]. We have, with the help of whole genome array analysis, statis-

tics and gene enrichment lists, selected and characterized 30 genes that are of high importance

for differentiation of the C17.2 neural progenitor cells under the described conditions. The

IPA library canonical pathways analysis identified the pathways which were the most signifi-

cantly upregulated after 5 and 10 days of differentiation. Genes involved in various pathways

were differentially expressed, even if some of them were not directly linked to neural differenti-

ation. The top canonical pathway (hepatic fibrosis/hepatic stellate cell activation) consists of a
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multitude of genes involved in the remodeling of the extracellular matrix that occurs during

differentiation [42] and can be seen in detail in supplementary data (S2 Fig). The alteration of

the NRF2-mediated oxidative stress response indicates changes in reactive oxygen species

(ROS) which govern the acquisition of the neural fate, from neural induction to the elabora-

tion of axons during neural differentiation [54]. In addition, ROS can regulate redox sensitive

transcription factors such as NFκB, AP-1 and can influence neurogenesis through modulation

of the redox state of tyrosine phosphorylated proteins [55]. The Wnt/Ca2+ pathway was upre-

gulated during differentiation and has previously been reported to play a role in the regulation

of dendritic spines and synaptic strength through a mechanism involving signaling by Wnt-5a

and Wnt -7a and further activation of CamKII [56].

The 30 selected genes are all involved in a wide range of diverse pathways. A wide spread of

differential pathways increase the chances of different substances to be identified by the panel

of biomarkers, since they will be able to identify substances with varied modes of action

(MOA). We also tested if the biomarkers could detect DNT by exposing the cells to two

known DNT-producing substances and one neurotoxic and possible DNT-producing sub-

stance. The two known positive controls have slightly different MOAs but were still identified

by most of the biomarkers, showing the significance of these biomarkers for neural differentia-

tion of the C17.2 cell line. ACR and MeHg, bind to thiol groups, predominantly the cysteine

thiol group in the antioxidant glutathione, suggesting similar MOA for the two compounds

[57]. Maintaining the right balance of reactive oxygen species has been shown to be crucial for

regulation of self-renewal and differentiation in pluripotent cells [53]. It has been suggested

that the ACR-induced neurotoxicity is mediated through axonopathy caused by initial distal

nerve terminal damage and subsequent retrograde axon degeneration [33]. The DNT-induc-

ing properties of ACR are still under investigation but studies have shown that prenatal and

perinatal exposure to ACR decreases the average horizontal motor activity and auditory startle

response in exposed rats [58]. We have previously shown that ACR downregulated the mRNA

levels of markers for semi-mature neurons and astrocytes in differentiating C17.2 cells as well

as attenuating differentiation of neurons in vitro in both SH-SY5Y and C17.2 cells at very low

concentrations [15]. However, only few studies evaluated changes in mRNA expression during

differentiation and ACR exposure. Nevertheless, in this study we observed that ACR signifi-

cantly downregulated most of the selected biomarkers after exposure to a non-cytotoxic con-

centration. In coherence with our previous study, the results indicate that ACR might cause

DNT.

Exposure to MeHg during development results in mental retardation including learning

and behavioral deficits in both humans and mice [59]. Prenatal exposure has shown to cause

disruption in the postnatal development of the glutathione antioxidant system [60]. There are

also correlations between learning disabilities and increased DNA methylation and repressive

histone modifications at the BDNF promoter in mice exposed to MeHg in utero [61]. In vitro,

MeHg inhibited axonal outgrowth in PC12 cells through interfering with TrkA signaling after

NGF stimulation [62,63]. Hence, it is not surprising that MeHg had an inhibitory effect on

many of the selected biomarkers in a model where differentiation is partly driven by NGF. In

coherence with earlier studies, the neurons in our model system were more sensitive to MeHg

exposure than neuroglial cells and neural progenitor cells since the neurons accumulate more

MeHg [64,65]. All 3 astrocytic biomarkers (FAM20A, S100B and S1PR1) were left unaffected

by MeHg.

VPA exposure during pregnancy has been associated with a number of developmental

abnormalities including neural tube defects, spina bifida, autism and bipolar disorder [66]. In
vitro transcriptomics studies have shown that VPA downregulated several genes involved in

neural differentiation at the same time as upregulating genes involved in neural precursor
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proliferation [23]. These attributes are thought to be due to the fact that VPA inhibits histone

deacetylase enzyme activity and may therefore disturb normal gene transcription [67]. In

coherence with earlier studies, the C17.2 cells were also affected by VPA (Fig 7a). Most genes

were downregulated but there was one gene that was upregulated (LYNX1), displaying the

wide array of disturbance in gene expression following VPA exposure.

Additionally to downregulating most of the selected biomarkers for neural differentiation,

all 3 of the substances significantly reduced the ratio of neurons in the cultures as well as the

number of neurites per cell. The fact that the downregulation of the biomarkers also results in

structural consequences further strengthens the importance of these biomarkers for neural dif-

ferentiation of the C17.2 cells and that disruption of the expression levels results in functional

implications for the cells during differentiation. VPA was the substance with the greatest effect

on the ratio of the neural populations as well as the number of neurites per cell followed by

MeHg and ACR. There was a statistically significant difference between the numbers of neu-

rons in cultures exposed to ACR or MeHg compared to cultures exposed to VPA. The number

of neurites per cell was significantly different between cultures exposed to ACR in comparison

to cultures exposed to MeHg or VPA. It seems like MeHg did not affect the number of neurons

as much as it affected the number of neurites per cell. VPA was also the substance that affected

the selected biomarkers the most in terms of log2(fold change) values, showing that there is a

correlation between the biomarkers and the structural readouts. In parallel with the differenti-

ating cell cultures prepared for the microarray analysis, differentiating cells were exposed to

1 μM of ACR and analyzed in the whole genome microarray. Cells exposed to 1 μM of ACR

during differentiation for 5 or 10 days showed no change in gene expression for the selected

biomarkers (data not shown). At this concentration of ACR, there was no significant reduction

in the number of neurites per cell. This indicates that there is a correlation between a signifi-

cant downregulation of the mRNA biomarkers and functionality of the differentiating cells,

which further validates the model. None of the 3 substances changed the mRNA levels of three

generally expressed genes (HSP90ab1, Rplp1 and TBP) during the differentiation, which indi-

cates that the downregulation seen in the neural biomarkers are not due to a general downre-

gulation of all genes in the cells.

Out of the 30 selected biomarkers, there were 11 biomarkers that were downregulated by all

3 substances. These 11 biomarkers are involved in wide spread of categories for neural differ-

entiation. As a preliminary prediction model it would be interesting to see if a significant

downregulation of these 11 biomarkers would be a good alert for DNT. However, to be able to

draw any such conclusions, a large set of test compounds need to be tested to validate the

system.

There were two biomarkers that were not affected by any of the 3 substances, PARD3B and

SPARCL1. During the first few weeks of postnatal development, SPARCL1 (SPARC-Like pro-

tein 1/Hevin) is highly expressed in astrocytes [68], but is also present to some extent in neu-

rons [69]. Secretion of Hevin from astrocytes has been shown to play an important role during

synapse development [70]. One reason why the levels of SPARCL1 was unaffected might be

that Hevin is generated and secreted mostly by astrocytes. In general, astrocytes have a higher

ability to metabolize xenobiotics, for example upregulating anti-oxidant systems that can pro-

tect against ACR and MeHg [71], leaving them less affected by the toxic insult than the neu-

rons. PARD3B (Par-3 Family Cell Polarity Regulator Beta/PARD3) is a member of the PARD

adaptor proteins and has shown to be involved in axon-dendrite polarization as well as neuro-

nal migration [72]. However, there is no genetic loss-of function evidence establishing that

PARD3B is required for axon specification [73]. There is so far no evidence that any of the

selected xenobiotics are interfering directly with PARD3, which might explain why it is not

affected.
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The basic helix-loop-helix transcription factor OLIG2 was also downregulated by all 3 sub-

stances. The expression of OLIG2 does not necessarily indicate the presence of oligodendro-

cytes in the cultures. OLIG2 has been shown to be a multifunctional regulator of self-renewal

in neural stem cells and seems to have a role in maintaining proliferation as well as repress qui-

escence genes [74].

The fact that the selected biomarkers are part of a wide array of different pathways, further

strengthens the possibility to detect toxic insult from xenobiotics with unknown MOAs. Mov-

ing forward, it would be possible to further develop the model to investigate the exact mecha-

nism of action of a chemical of interest. For example, platforms of biomarkers could be

selected that are involved in specific functions in the cell that are predicted to be affected by

the chemical of interest. This possibility has been utilized in the Genomic Allergen Rapid

Detection (GARD) assay, which presently undergoes validation for acceptance in the OECD

test guideline as an indicator of skin sensitization [75]. It is also possible to study the gene

expression during development with this model by performing washout experiments, or

shorter exposure times to see during which time periods the cells are most susceptive to a

chemical.

The relevance of toxicogenomic approaches in safety testing is widely recognized. Accord-

ing to a revision of non-clinical safety studies, it was concluded that significantly regulated

transcripts can serve as robust biomarkers of toxicity [76]. The study showed that there was

poor correlation with histopathological findings, however, transcriptomics showed to be a

very sensitive marker and often preceded more traditional endpoints.

In conclusion, from a whole genome set of mRNA transcripts we identified 30 biomarkers,

which were significantly affected during neural differentiation of the C17.2 neural progenitor

cell line. The biomarkers correlated to genes that are involved in neural networks according

to the IPA database as well as manual review of published literature. They were selected for

further validation due to their strong upregulation during neural differentiation and without

further bias. The biomarkers cover most of the important categories of neural differentiation

such as neurogenesis, axonogenesis, axonal guidance, astrocyte- and oligodendrocyte differ-

entiation and neuronal connectivity, further increasing the chance of identifying substances

with a wide range of MOAs. Using a set of mRNA biomarkers, instead of the whole genome,

makes this model affordable and applicable for high-throughput screening. The method can

be screened with optimized primers using RT-qPCR, a method that most laboratories have

access to. The C17.2 cell line can be differentiated in a 2D-system without additional plate

coating and with the addition of only two neurotrophic factors, making it a simple, fast and

cheap model to use. The use of such models could help speed up the initial screening of sub-

stances, possibly indicating alerts that needs to be further studied in more sophisticated

models.

Supporting information

S1 Fig. Neural progenitor cells C17.2 during differentiation. A) Undifferentiated neural pro-

genitor cells after 3 days in culture B) 5 days of differentiation C) 10 days of differentiation. The

scale bars represent 50 μm in all images. D) mRNA expression of GAD1 and vGluT1 during dif-

ferentiation of the C17.2 cells, illustrating presence of GABAergic and glutamatergic neurons in

the culture. In short, the cells were harvested and centrifuged at 500g for 5 min and stored in

-80˚C until mRNA extraction. The extraction was performed using GeneJET1 RNA Purifica-

tion kit according to manufacturer’s instructions. Concentration of total RNA was determined

by a NanoPhotometer™ P-class (IMPLEN GmbH) followed by reverse transcription of total
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RNA using RevertAid1 Minus First Strand cDNA Synthesis Kit. For quantitative real-time

RT-PCR, 140 ng cDNA was used as a template together with Maxima1 SYBR Green/Fluores-

cein qPCR Master Mix (2x). Gene expression levels were measured by using the MyiQ12 Two-

color Real-Time PCR Detection System (Bio-Rad laboratories) and genes were normalized

against TATA box binding protein (TBP). All kits and DNase1 were purchased from Fermen-

tas, (Fischer Scientific) and performed according to instructions from the manufacturer. Primer

sequences used were as follows: GAD1 forward; ACAAACTCTCAGCGGCATAGAAAGGG,
reverse; AGCACGCCCATCATCTTGTGAG, vGluT1 forward; GTCCATGGTCAACA
ACAGCACAAC reverse; AGTTGAACTGGGCTTTCTGCAC, TBP forward; GAATTG
TACCGCAGCTTCAAAA reverse; AGTGCAATGGTCTTTAGGTCAAGTT. E) Number of

neurite-bearing cells compared to the total number of cells in the cultures after 5 and 10 days of

differentiation F) Western blot of nestin (a marker for neural progenitor cells), βIII-tubulin (a

neuronal marker) and glial fibrillary acidic protein (GFAP, an astrocytic marker). The cells

were lysed in a hypotonic buffer containing NP-40. Twenty μg of total protein (determined

with the DC Protein Assay, BioRad) were separated in 10% SDS- poly-acrylamide gels. The pro-

teins were subsequently transferred to nitrocellulose membranes and hybridized with primary

antibodies diluted accordingly: βIII-tubulin (ab18207) 1:5000, nestin (ab6142) 1:200 and GFAP

(ab7260) 1:1000 (all from Abcam) and β-actin (sc-1616) 1:5000 (Santa Cruz). Horse radish per-

oxidase-conjugated anti-rabbit IgG (NA934 V) 1:3000 and anti-mouse IgG (NA931 V) 1:3000

(Amersham) and anti-goat IgG (sc-2020) 1:3000 (Santa Cruz) were used as secondary antibod-

ies. Densitometric analysis of visual blots was performed using Image Gauge 3.46 program

(Fujifilm Co. Ltd.). Results were analyzed using one-way ANOVA followed by Dunnett’s multi-

ple comparisons test. The bars represent the mean ± SEM. �p� 0.05, ��p� 0.01, ���p� 0.001

for each biomarker compared to undifferentiated cells (unfilled/white bar).

(TIF)

S2 Fig. Heatmap of the genes included in the axonal guidance signaling pathway. The log2

(fold change) for the contrasts Day 10 (10 days of differentiation) vs Day 0 (undifferentiated

cells cultured for 3 days), Day 5 (5 days of differentiation) vs Day 0 and Day 10 vs Day 5 are

illustrated. Genes are ordered according to average log2(fold change) in the contrast Day 10 vs

Day 0.

(TIF)

S3 Fig. Phase contrast images taken same day as harvesting after 10 days of differentia-

tion and exposure to the IC10 of the 4 different substances. A) Control B) D-Mannitol 1

mM C) Acrylamide 70 μM D) Methylmercury chloride 0.09 μM E) Valproic acid sodium salt

100 μM. The scale bars represent 50 μm in all images. F) Number of neurites per cell after 10

days of differentiation with different concentrations of ACR. Results were analyzed using

one-way ANOVA followed by Dunnett’s multiple comparisons test. The bars represent the

mean ± SEM. �p� 0.05 compared to undifferentiated cells (unfilled/white bar).

(TIF)

S4 Fig. GO enrichment analysis of the 30 most prominent/significant genes for neural dif-

ferentiation of the C17.2 cell line.

(TIF)

S1 Table. Gene lists used for gene enrichment analysis for selection of genes important for

differentiation of the C17.2 cell line.

(PDF)
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S2 Table. The 30 selected genes including their description, protein function, the gene set

enrichment list they were curated from and references.

(PDF)

S3 Table. Target stability function analysis of the three reference genes using the Bio-Rad

CFX manager 3.1 software system. This function uses an iterative test of pairwise validation

described by Vandesompele et al., 2002 [45]. Recommended coefficient variance should be

<0.25 and M value should be<0.5 for homogenous samples.

(PDF)
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12. Kügler P, Zimmer B, Waldmann T, Baudis B, Ilmjärv S, Hescheler J, et al. Markers of murine embryonic

and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing.

ALTEX. 2010; 27(1):17–42 PMID: 20390237

13. Crofton KM, Mundy WR, Shafer TJ. Developmental neurotoxicity testing: a path forward. Congenital

anomalies 2012; 52(3):140–146. https://doi.org/10.1111/j.1741-4520.2012.00377.x PMID: 22925214

14. Krug AK, Kolde R, Gaspar JA, Rempel E, Balmer NV, Meganathan K, et al. Human embryonic stem

cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol

2013 Jan; 87(1):123–143. https://doi.org/10.1007/s00204-012-0967-3 PMID: 23179753

15. Attoff K, Kertika D, Lundqvist J, Oredsson S, Forsby A. Acrylamide affects proliferation and differentia-

tion of the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y. Toxicol In Vitro

2016 Sep; 35:100–111. https://doi.org/10.1016/j.tiv.2016.05.014 PMID: 27241584

16. Harrill JA, Freudenrich TM, Machacek DW, Stice SL, Mundy WR. Quantitative assessment of neurite

outgrowth in human embryonic stem cell-derived hN2™ cells using automated high-content image anal-

ysis. Neurotoxicology 2010; 31(3):277–290. https://doi.org/10.1016/j.neuro.2010.02.003 PMID:

20188755

17. Mundy WR, Radio NM, Freudenrich TM. Neuronal models for evaluation of proliferation in vitro using

high content screening. Toxicology 2010; 270(2):121–130.

18. Balmer NV, Weng MK, Zimmer B, Ivanova VN, Chambers SM, Nikolaeva E, et al. Epigenetic changes

and disturbed neural development in a human embryonic stem cell-based model relating to the fetal

valproate syndrome. Hum Mol Genet 2012 Sep 15; 21(18):4104–4114. https://doi.org/10.1093/hmg/

dds239 PMID: 22723015

19. Colleoni S, Galli C, Gaspar JA, Meganathan K, Jagtap S, Hescheler J, et al. Development of a neural

teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol

Sci 2011 Dec; 124(2):370–377. https://doi.org/10.1093/toxsci/kfr245 PMID: 21934132

20. Jagtap S, Meganathan K, Gaspar J, Wagh V, Winkler J, Hescheler J, et al. Cytosine arabinoside

induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multiline-

age differentiation. Br J Pharmacol 2011; 162(8):1743–1756. https://doi.org/10.1111/j.1476-5381.2010.

01197.x PMID: 21198554

21. Stummann TC, Hareng L, Bremer S. Hazard assessment of methylmercury toxicity to neuronal induc-

tion in embryogenesis using human embryonic stem cells. Toxicology 2009; 257(3):117–126. https://

doi.org/10.1016/j.tox.2008.12.018 PMID: 19150642

22. Theunissen PT, Pennings JL, Robinson JF, Claessen SM, Kleinjans JC, Piersma AH. Time-response

evaluation by transcriptomics of methylmercury effects on neural differentiation of murine embryonic

stem cells. Toxicol Sci 2011 Aug; 122(2):437–447. https://doi.org/10.1093/toxsci/kfr134 PMID:

21613230

23. Hogberg HT, Kinsner-Ovaskainen A, Coecke S, Hartung T, Bal-Price AK. mRNA expression is a rele-

vant tool to identify developmental neurotoxicants using an in vitro approach. Toxicol Sci 2010 Jan; 113

(1):95–115. https://doi.org/10.1093/toxsci/kfp175 PMID: 19651682

24. Hogberg HT, Sobanski T, Novellino A, Whelan M, Weiss DG, Bal-Price AK. Application of micro-elec-

trode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic

Whole genome microarray analysis of neural progenitor C17.2 cells during differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0190066 December 20, 2017 21 / 24

https://doi.org/10.14573/altex.1701171
http://www.ncbi.nlm.nih.gov/pubmed/28407175
https://doi.org/10.1016/j.neuro.2011.10.002
http://www.ncbi.nlm.nih.gov/pubmed/22008243
https://doi.org/10.1007/s00204-015-1464-2
http://www.ncbi.nlm.nih.gov/pubmed/25618548
https://doi.org/10.14573/altex.1403271
http://www.ncbi.nlm.nih.gov/pubmed/24687333
https://doi.org/10.1016/j.metabol.2008.07.009
http://www.ncbi.nlm.nih.gov/pubmed/18803960
http://www.ncbi.nlm.nih.gov/pubmed/20390237
https://doi.org/10.1111/j.1741-4520.2012.00377.x
http://www.ncbi.nlm.nih.gov/pubmed/22925214
https://doi.org/10.1007/s00204-012-0967-3
http://www.ncbi.nlm.nih.gov/pubmed/23179753
https://doi.org/10.1016/j.tiv.2016.05.014
http://www.ncbi.nlm.nih.gov/pubmed/27241584
https://doi.org/10.1016/j.neuro.2010.02.003
http://www.ncbi.nlm.nih.gov/pubmed/20188755
https://doi.org/10.1093/hmg/dds239
https://doi.org/10.1093/hmg/dds239
http://www.ncbi.nlm.nih.gov/pubmed/22723015
https://doi.org/10.1093/toxsci/kfr245
http://www.ncbi.nlm.nih.gov/pubmed/21934132
https://doi.org/10.1111/j.1476-5381.2010.01197.x
https://doi.org/10.1111/j.1476-5381.2010.01197.x
http://www.ncbi.nlm.nih.gov/pubmed/21198554
https://doi.org/10.1016/j.tox.2008.12.018
https://doi.org/10.1016/j.tox.2008.12.018
http://www.ncbi.nlm.nih.gov/pubmed/19150642
https://doi.org/10.1093/toxsci/kfr134
http://www.ncbi.nlm.nih.gov/pubmed/21613230
https://doi.org/10.1093/toxsci/kfp175
http://www.ncbi.nlm.nih.gov/pubmed/19651682
https://doi.org/10.1371/journal.pone.0190066


acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology 2011 Jan; 32(1):158–

168. https://doi.org/10.1016/j.neuro.2010.10.007 PMID: 21056592

25. Hogberg HT, Kinsner-Ovaskainen A, Hartung T, Coecke S, Bal-Price AK. Gene expression as a sensi-

tive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in

primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides. Toxicol Appl Pharmacol

2009; 235(3):268–286. https://doi.org/10.1016/j.taap.2008.12.014 PMID: 19146868

26. Bal-Price AK, Hogberg HT, Buzanska L, Lenas P, van Vliet E, Hartung T. In vitro developmental neuro-

toxicity (DNT) testing: relevant models and endpoints. Neurotoxicology 2010; 31(5):545–554. https://

doi.org/10.1016/j.neuro.2009.11.006 PMID: 19969020

27. Chen M, Zhang M, Borlak J, Tong W. A decade of toxicogenomic research and its contribution to toxico-

logical science. Toxicol Sci 2012 Dec; 130(2):217–228. https://doi.org/10.1093/toxsci/kfs223 PMID:

22790972

28. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, et al. Expression monitoring by

hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996 Dec; 14(13):1675–1680.

https://doi.org/10.1038/nbt1296-1675 PMID: 9634850

29. Lundqvist J, El Andaloussi-Lilja J, Svensson C, Gustafsson Dorfh H, Forsby A. Optimisation of culture

conditions for differentiation of C17.2 neural stem cells to be used for in vitro toxicity tests. Toxicol In

Vitro 2013 Aug; 27(5):1565–1569. https://doi.org/10.1016/j.tiv.2012.04.020 PMID: 22542584

30. Laurenza I, Pallocca G, Mennecozzi M, Scelfo B, Pamies D, Bal-Price A. A human pluripotent carci-

noma stem cell-based model for in vitro developmental neurotoxicity testing: effects of methylmercury,

lead and aluminum evaluated by gene expression studies. Int J Dev Neurosci 2013; 31(7):679–691.

https://doi.org/10.1016/j.ijdevneu.2013.03.002 PMID: 23501475

31. Schulpen SH, Pennings JL, Piersma AH. Gene Expression Regulation and Pathway Analysis After Val-

proic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmen-

tal Toxicity Assay. Toxicol Sci 2015 Aug; 146(2):311–320. https://doi.org/10.1093/toxsci/kfv094 PMID:

25979313

32. Waldmann T, Rempel E, Balmer NV, Konig A, Kolde R, Gaspar JA, et al. Design principles of concen-

tration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxi-

col 2014 Mar 17; 27(3):408–420. https://doi.org/10.1021/tx400402j PMID: 24383497

33. LoPachin RM. The role of fast axonal transport in acrylamide pathophysiology: mechanism or epiphe-

nomenon? Neurotoxicology 2002; 23(2):253–257. PMID: 12224765

34. Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL. Multipotent neural cell

lines can engraft and participate in development of mouse cerebellum. Cell 1992; 68(1):33–51. PMID:

1732063

35. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normali-

zation, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003 Apr; 4

(2):249–264. https://doi.org/10.1093/biostatistics/4.2.249 PMID: 12925520

36. Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and

outlier detection. Proc Natl Acad Sci U S A 2001 Jan 2; 98(1):31–36. https://doi.org/10.1073/pnas.98.1.

31 PMID: 11134512

37. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microar-

ray experiments. Stat Appl Genet Mol Biol 2004; 3: Article3.

38. Smyth GK. limma: Linear Models for Microarray Data. In: Gentleman R, Carey VJ, Huber W, Irizarry

RA, Dudoit S, editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor.

New York, NY: Springer New York; 2005. p. 397–420.

39. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing. Journal of the Royal Statistical Society.Series B (Methodological) 1995; 57(1):289–

300.

40. Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update

2013. Nucleic Acids Res 2013 Jul; 41(Web Server issue):W77–83. https://doi.org/10.1093/nar/gkt439

PMID: 23703215

41. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: mini-

mum information for publication of quantitative real-time PCR experiments. Clin Chem 2009 Apr; 55

(4):611–622. https://doi.org/10.1373/clinchem.2008.112797 PMID: 19246619

42. Luo J, Liang Y, Kong F, Qiu J, Liu X, Chen A, et al. Vascular endothelial growth factor promotes the acti-

vation of hepatic stellate cells in chronic schistosomiasis. Immunol Cell Biol 2017 Jan 3.

43. Shi L, Tong W, Fang H, Scherf U, Han J, Puri RK, et al. Cross-platform comparability of microarray tech-

nology: intra-platform consistency and appropriate data analysis procedures are essential. BMC Bioin-

formatics 2005 Jul 15; 6 Suppl 2:S12.

Whole genome microarray analysis of neural progenitor C17.2 cells during differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0190066 December 20, 2017 22 / 24

https://doi.org/10.1016/j.neuro.2010.10.007
http://www.ncbi.nlm.nih.gov/pubmed/21056592
https://doi.org/10.1016/j.taap.2008.12.014
http://www.ncbi.nlm.nih.gov/pubmed/19146868
https://doi.org/10.1016/j.neuro.2009.11.006
https://doi.org/10.1016/j.neuro.2009.11.006
http://www.ncbi.nlm.nih.gov/pubmed/19969020
https://doi.org/10.1093/toxsci/kfs223
http://www.ncbi.nlm.nih.gov/pubmed/22790972
https://doi.org/10.1038/nbt1296-1675
http://www.ncbi.nlm.nih.gov/pubmed/9634850
https://doi.org/10.1016/j.tiv.2012.04.020
http://www.ncbi.nlm.nih.gov/pubmed/22542584
https://doi.org/10.1016/j.ijdevneu.2013.03.002
http://www.ncbi.nlm.nih.gov/pubmed/23501475
https://doi.org/10.1093/toxsci/kfv094
http://www.ncbi.nlm.nih.gov/pubmed/25979313
https://doi.org/10.1021/tx400402j
http://www.ncbi.nlm.nih.gov/pubmed/24383497
http://www.ncbi.nlm.nih.gov/pubmed/12224765
http://www.ncbi.nlm.nih.gov/pubmed/1732063
https://doi.org/10.1093/biostatistics/4.2.249
http://www.ncbi.nlm.nih.gov/pubmed/12925520
https://doi.org/10.1073/pnas.98.1.31
https://doi.org/10.1073/pnas.98.1.31
http://www.ncbi.nlm.nih.gov/pubmed/11134512
https://doi.org/10.1093/nar/gkt439
http://www.ncbi.nlm.nih.gov/pubmed/23703215
https://doi.org/10.1373/clinchem.2008.112797
http://www.ncbi.nlm.nih.gov/pubmed/19246619
https://doi.org/10.1371/journal.pone.0190066


44. Chuaqui RF, Bonner RF, Best CJ, Gillespie JW, Flaig MJ, Hewitt SM, et al. Post-analysis follow-up and

validation of microarray experiments. Nat Genet 2002 Dec; 32 Suppl:509–514.

45. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normaliza-

tion of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.

Genome Biol 2002 Jun 18; 3(7):RESEARCH0034. PMID: 12184808

46. Leist M, Efremova L, Karreman C. Food for thought . . . considerations and guidelines for basic test

method descriptions in toxicology. ALTEX 2010; 27(4):309–317. PMID: 21240472

47. Rempel E, Hoelting L, Waldmann T, Balmer NV, Schildknecht S, Grinberg M, et al. A transcriptome-

based classifier to identify developmental toxicants by stem cell testing: design, validation and optimiza-

tion for histone deacetylase inhibitors. Arch Toxicol 2015 Sep; 89(9):1599–1618. https://doi.org/10.

1007/s00204-015-1573-y PMID: 26272509

48. Balmer NV, Leist M. Epigenetics and transcriptomics to detect adverse drug effects in model systems of

human development. Basic Clin Pharmacol Toxicol 2014 Jul; 115(1):59–68. https://doi.org/10.1111/

bcpt.12203 PMID: 24476462

49. Zurich M, Honegger P, Schilter B, Costa L, Monnet-Tschudi F. Involvement of glial cells in the neurotox-

icity of parathion and chlorpyrifos. Toxicol Appl Pharmacol 2004; 201(2):97–104. https://doi.org/10.

1016/j.taap.2004.05.003 PMID: 15541749

50. Rocha R, Gimeno-Alcaniz J, Martin-Ibanez R, Canals J, Velez D, Devesa V. Arsenic and fluoride induce

neural progenitor cell apoptosis. Toxicol Lett 2011; 203(3):237–244. https://doi.org/10.1016/j.toxlet.

2011.03.023 PMID: 21439358

51. Tamm C, Duckworth J, Hermanson O, Ceccatelli S. High susceptibility of neural stem cells to methyl-

mercury toxicity: effects on cell survival and neuronal differentiation. J Neurochem 2006; 97(1):69–78.

https://doi.org/10.1111/j.1471-4159.2006.03718.x PMID: 16524380

52. Tamm C, Sabri F, Ceccatelli S. Mitochondrial-mediated apoptosis in neural stem cells exposed to man-

ganese. Toxicol Sci 2008 Feb; 101(2):310–320. https://doi.org/10.1093/toxsci/kfm267 PMID: 17977900

53. Desbordes SC, Placantonakis DG, Ciro A, Socci ND, Lee G, Djaballah H, et al. High-throughput screen-

ing assay for the identification of compounds regulating self-renewal and differentiation in human

embryonic stem cells. Cell Stem Cell 2008 Jun 5; 2(6):602–612. https://doi.org/10.1016/j.stem.2008.05.

010 PMID: 18522853

54. Vieira HL, Alves PM, Vercelli A. Modulation of neuronal stem cell differentiation by hypoxia and reactive

oxygen species. Prog Neurobiol 2011 Mar; 93(3):444–455. https://doi.org/10.1016/j.pneurobio.2011.

01.007 PMID: 21251953

55. Kennedy KA, Sandiford SD, Skerjanc IS, Li SS. Reactive oxygen species and the neuronal fate. Cell

Mol Life Sci 2012 Jan; 69(2):215–221. https://doi.org/10.1007/s00018-011-0807-2 PMID: 21947442

56. Ciani L, Boyle KA, Dickins E, Sahores M, Anane D, Lopes DM, et al. Wnt7a signaling promotes dendritic

spine growth and synaptic strength through Ca(2)(+)/Calmodulin-dependent protein kinase II. Proc Natl

Acad Sci U S A 2011 Jun 28; 108(26):10732–10737. https://doi.org/10.1073/pnas.1018132108 PMID:

21670302

57. Kaur P, Aschner M, Syversen T. Glutathione modulation influences methyl mercury induced neurotoxic-

ity in primary cell cultures of neurons and astrocytes. Neurotoxicology 2006 Jul; 27(4):492–500. https://

doi.org/10.1016/j.neuro.2006.01.010 PMID: 16513172

58. Wise LD, Gordon LR, Soper KA, Duchai DM, Morrissey RE. Developmental neurotoxicity evaluation of

acrylamide in Sprague-Dawley rats. Neurotoxicol Teratol 1995 Mar-Apr; 17(2):189–198. PMID:

7760778

59. Cagiano R, De Salvia MA, Renna G, Tortella E, Braghiroli D, Parenti C, et al. Evidence that exposure to

methyl mercury during gestation induces behavioral and neurochemical changes in offspring of rats.

Neurotoxicol Teratol 1990 Jan-Feb; 12(1):23–28. PMID: 2156144

60. Stringari J, Nunes AK, Franco JL, Bohrer D, Garcia SC, Dafre AL, et al. Prenatal methylmercury expo-

sure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in

the mouse brain. Toxicol Appl Pharmacol 2008 Feb 15; 227(1):147–154. https://doi.org/10.1016/j.taap.

2007.10.010 PMID: 18023834

61. Onishchenko N, Karpova N, Sabri F, Castren E, Ceccatelli S. Long-lasting depression-like behavior and

epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neu-

rochem 2008 Aug; 106(3):1378–1387. https://doi.org/10.1111/j.1471-4159.2008.05484.x PMID:

18485098

62. Parran DK, Mundy WR, Barone S Jr. Effects of methylmercury and mercuric chloride on differentiation

and cell viability in PC12 cells. Toxicol Sci 2001 Feb; 59(2):278–290. PMID: 11158721

Whole genome microarray analysis of neural progenitor C17.2 cells during differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0190066 December 20, 2017 23 / 24

http://www.ncbi.nlm.nih.gov/pubmed/12184808
http://www.ncbi.nlm.nih.gov/pubmed/21240472
https://doi.org/10.1007/s00204-015-1573-y
https://doi.org/10.1007/s00204-015-1573-y
http://www.ncbi.nlm.nih.gov/pubmed/26272509
https://doi.org/10.1111/bcpt.12203
https://doi.org/10.1111/bcpt.12203
http://www.ncbi.nlm.nih.gov/pubmed/24476462
https://doi.org/10.1016/j.taap.2004.05.003
https://doi.org/10.1016/j.taap.2004.05.003
http://www.ncbi.nlm.nih.gov/pubmed/15541749
https://doi.org/10.1016/j.toxlet.2011.03.023
https://doi.org/10.1016/j.toxlet.2011.03.023
http://www.ncbi.nlm.nih.gov/pubmed/21439358
https://doi.org/10.1111/j.1471-4159.2006.03718.x
http://www.ncbi.nlm.nih.gov/pubmed/16524380
https://doi.org/10.1093/toxsci/kfm267
http://www.ncbi.nlm.nih.gov/pubmed/17977900
https://doi.org/10.1016/j.stem.2008.05.010
https://doi.org/10.1016/j.stem.2008.05.010
http://www.ncbi.nlm.nih.gov/pubmed/18522853
https://doi.org/10.1016/j.pneurobio.2011.01.007
https://doi.org/10.1016/j.pneurobio.2011.01.007
http://www.ncbi.nlm.nih.gov/pubmed/21251953
https://doi.org/10.1007/s00018-011-0807-2
http://www.ncbi.nlm.nih.gov/pubmed/21947442
https://doi.org/10.1073/pnas.1018132108
http://www.ncbi.nlm.nih.gov/pubmed/21670302
https://doi.org/10.1016/j.neuro.2006.01.010
https://doi.org/10.1016/j.neuro.2006.01.010
http://www.ncbi.nlm.nih.gov/pubmed/16513172
http://www.ncbi.nlm.nih.gov/pubmed/7760778
http://www.ncbi.nlm.nih.gov/pubmed/2156144
https://doi.org/10.1016/j.taap.2007.10.010
https://doi.org/10.1016/j.taap.2007.10.010
http://www.ncbi.nlm.nih.gov/pubmed/18023834
https://doi.org/10.1111/j.1471-4159.2008.05484.x
http://www.ncbi.nlm.nih.gov/pubmed/18485098
http://www.ncbi.nlm.nih.gov/pubmed/11158721
https://doi.org/10.1371/journal.pone.0190066


63. Parran DK, Barone S Jr, Mundy WR. Methylmercury inhibits TrkA signaling through the ERK1/2 cas-

cade after NGF stimulation of PC12 cells. Brain Res Dev Brain Res 2004 Mar 22; 149(1):53–61. https://

doi.org/10.1016/j.devbrainres.2003.10.017 PMID: 15013629

64. Kaur P, Aschner M, Syversen T. Glutathione modulation influences methyl mercury induced neurotoxic-

ity in primary cell cultures of neurons and astrocytes. Neurotoxicology 2006 Jul; 27(4):492–500. https://

doi.org/10.1016/j.neuro.2006.01.010 PMID: 16513172

65. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, et al. Proliferative neural stem

cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-

dependant manner. Cell Stem Cell 2011 Jan 7; 8(1):59–71. https://doi.org/10.1016/j.stem.2010.11.028

PMID: 21211782

66. Verrotti A, Scaparrotta A, Cofini M, Chiarelli F, Tiboni GM. Developmental neurotoxicity and anticonvul-

sant drugs: a possible link. Reprod Toxicol 2014 Sep; 48:72–80. https://doi.org/10.1016/j.reprotox.

2014.04.005 PMID: 24803404

67. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuro-

nal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004 Nov 23;

101(47):16659–16664. https://doi.org/10.1073/pnas.0407643101 PMID: 15537713

68. Jones EV, Bernardinelli Y, Tse YC, Chierzi S, Wong TP, Murai KK. Astrocytes control glutamate recep-

tor levels at developing synapses through SPARC-beta-integrin interactions. J Neurosci 2011 Mar 16;

31(11):4154–4165. https://doi.org/10.1523/JNEUROSCI.4757-10.2011 PMID: 21411656

69. Lively S, Brown IR. Localization of the extracellular matrix protein SC1 coincides with synaptogenesis

during rat postnatal development. Neurochem Res 2008 Sep; 33(9):1692–1700. https://doi.org/10.

1007/s11064-008-9606-z PMID: 18335312

70. Clarke LE, Barres BA. Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci

2013 May; 14(5):311–321. https://doi.org/10.1038/nrn3484 PMID: 23595014

71. Wang L, Jiang H, Yin Z, Aschner M, Cai J. Methylmercury toxicity and Nrf2-dependent detoxification in

astrocytes. Toxicol Sci 2009 Jan; 107(1):135–143. https://doi.org/10.1093/toxsci/kfn201 PMID:

18815141

72. Shi SH, Jan LY, Jan YN. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6

and PI 3-kinase activity. Cell 2003 Jan 10; 112(1):63–75. PMID: 12526794

73. Barnes AP, Solecki D, Polleux F. New insights into the molecular mechanisms specifying neuronal

polarity in vivo. Curr Opin Neurobiol 2008 Feb; 18(1):44–52. https://doi.org/10.1016/j.conb.2008.05.003

PMID: 18514505

74. Mateo JL, van den Berg DL, Haeussler M, Drechsel D, Gaber ZB, Castro DS, et al. Characterization of

the neural stem cell gene regulatory network identifies OLIG2 as a multifunctional regulator of self-

renewal. Genome Res 2015 Jan; 25(1):41–56. https://doi.org/10.1101/gr.173435.114 PMID: 25294244

75. Zeller KS, Forreryd A, Lindberg T, Gradin R, Chawade A, Lindstedt M. The GARD platform for potency

assessment of skin sensitizing chemicals. ALTEX 2017 Apr 12.

76. Foster WR, Chen SJ, He A, Truong A, Bhaskaran V, Nelson DM, et al. A retrospective analysis of toxi-

cogenomics in the safety assessment of drug candidates. Toxicol Pathol 2007 Aug; 35(5):621–635.

https://doi.org/10.1080/01926230701419063 PMID: 17654404

Whole genome microarray analysis of neural progenitor C17.2 cells during differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0190066 December 20, 2017 24 / 24

https://doi.org/10.1016/j.devbrainres.2003.10.017
https://doi.org/10.1016/j.devbrainres.2003.10.017
http://www.ncbi.nlm.nih.gov/pubmed/15013629
https://doi.org/10.1016/j.neuro.2006.01.010
https://doi.org/10.1016/j.neuro.2006.01.010
http://www.ncbi.nlm.nih.gov/pubmed/16513172
https://doi.org/10.1016/j.stem.2010.11.028
http://www.ncbi.nlm.nih.gov/pubmed/21211782
https://doi.org/10.1016/j.reprotox.2014.04.005
https://doi.org/10.1016/j.reprotox.2014.04.005
http://www.ncbi.nlm.nih.gov/pubmed/24803404
https://doi.org/10.1073/pnas.0407643101
http://www.ncbi.nlm.nih.gov/pubmed/15537713
https://doi.org/10.1523/JNEUROSCI.4757-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21411656
https://doi.org/10.1007/s11064-008-9606-z
https://doi.org/10.1007/s11064-008-9606-z
http://www.ncbi.nlm.nih.gov/pubmed/18335312
https://doi.org/10.1038/nrn3484
http://www.ncbi.nlm.nih.gov/pubmed/23595014
https://doi.org/10.1093/toxsci/kfn201
http://www.ncbi.nlm.nih.gov/pubmed/18815141
http://www.ncbi.nlm.nih.gov/pubmed/12526794
https://doi.org/10.1016/j.conb.2008.05.003
http://www.ncbi.nlm.nih.gov/pubmed/18514505
https://doi.org/10.1101/gr.173435.114
http://www.ncbi.nlm.nih.gov/pubmed/25294244
https://doi.org/10.1080/01926230701419063
http://www.ncbi.nlm.nih.gov/pubmed/17654404
https://doi.org/10.1371/journal.pone.0190066

