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A B S T R A C T

Chinese hamster ovary cells have been in the spotlight for process optimization in recent years, due to
being the major, long established cell factory for the production of recombinant proteins. A deep, quanti-
tative understanding of CHO metabolism and mechanisms involved in protein glycosylation has proven to
be attainable through the development of high throughput technologies. Here we review the most notable
accomplishments in the field of modelling CHO metabolism and protein glycosylation.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Mammalian cells, more specifically immortalized Chinese ham-
ster ovary (CHO) cells, are the dominant biological platform for the
production of many therapeutic recombinant proteins [1]. CHO cells
are not only able to correctly fold these proteins, but they are also
capable of performing human-compatible post-translational modi-
fications (e.g. glycosylation) [2,3]. This is important for the correct
functioning of the proteins and to prevent immunogenic responses
in humans. In addition, CHO cells show high and stable expres-
sion of heterologous proteins and they easily adapt to growth in
suspension. Both features are essential for industrial-scale produc-
tion [4]. Furthermore, CHO cells are considered to be “safe”, since
most human pathogenic viruses do not replicate in CHO [5]. All

Abbreviations: CHO, Chinese hamster ovary; FBA, Flux Balance Analysis; GSMR,
genome-scale metabolic reconstruction; mAb, monoclonal antibody; MFA, metabolic
flux analysis; PPP, pentose phosphate pathway; TCA, tricarboxylic acid.
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of these characteristics have contributed to a steep increase in the
number of approvals for products expressed in this system compared
to those produced in non-mammalian cells [6].

Due to their major role in the biopharmaceutical industry, several
efforts have been focused on optimizing the culture process [7,8].
In the past two decades, these efforts were mainly based on
experimental observations of the metabolic profiles during cell
culture [9,10]. However, the advent of -omics technologies and asso-
ciated modelling approaches facilitated a better and more detailed
understanding of cell behaviour and intercellular processes. In
particular, the development of constraint-based modelling tech-
niques contributed tremendously to our understanding of metabolic
processes, pathways and networks, so that these techniques have
become one of the most (if not the most) successful modelling
approaches in systems biology. Key to this success is the analysis
of genome-scale metabolic reconstructions (GSMR). Combined with
constraint-based modelling approaches, these models provide a
mechanistic basis to investigate and elucidate genotype-phenotype
relationships [11,12].

Here we will review recent progress in the computational
modelling of CHO cells. Specifically, we will focus on and analyze
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two main issues associated with recombinant protein production:
(i) metabolic burdens affecting growth and thus protein yield and
(ii) understanding of the correct glycosylation process of the protein
of interest, which is one of the major criteria for product quality.

2. CHO metabolism

The cultivation of CHO cells in bio-reactors is characterized by
fast consumption of the main carbon and energy sources, glucose and
glutamine, with the concomitant production of ammonia and lactate.
The production of lactate not only indicates inefficient metabolisa-
tion of the carbon sources [two molecules of ATP compared to 36
if glucose was completely oxidized in the tricarboxylic acid (TCA)
cycle], but also has a negative effect on pH and osmolarity [13], which
reduces the specific growth rate [14,15] and protein yield [16]. High
ammonia concentration in the medium has similar adverse effects on
cell growth, productivity and glycosylation [17–20]. Several strate-
gies have been devised to overcome the accumulation of these
by-products: rational supplementation of glucose and glutamine
in fed-batch cultures [21,22], use of alternative carbon sources [7]
or cell engineering [23,24], among others. These approaches were,
however, based on trial and error and lack deterministic, quantitative
justification.

2.1. Modelling CHO metabolism

To gain mechanistic understanding of these processes, appro-
priate metabolic models are required that allow one to estimate
cellular flux distributions. This can be done in two ways: (i) in a
time-dependent or dynamic manner (kinetic analysis) or (ii) in a
constraint-based, steady-state analysis. The former approach aims
to assess the evolution of the concentrations of metabolites over
time and requires a large number of kinetic parameters. Due to the
lack of accurate, quantitative data, this approach is currently not
feasible on a genome-scale level, but restricted to small-scale mod-
els that consider several tens of selected reactions and interactions.
The latter approach, on the other hand, avoids the need for detailed
kinetic information by focusing on the steady-state behaviour inside
the cell. Disregarding dynamic processes makes this approach, called
metabolic flux analysis (MFA), scalable and suitable for genome-
wide analysis. For better understanding the modelling approaches
are briefly reviewed in Box 1.

In the following section we review current advances in metabolic
modelling of CHO cells (listed chronologically in Fig. 1), focusing on
those that investigate the accumulation of the two main metabolic
by-products that are detrimental to cell growth, i.e. lactate and
ammonia.

2.1.1. The metabolic fate of lactate
Altamirano et al. [31] investigated the metabolic fate of lac-

tate on a metabolic network of CHO core metabolism. They argued
that, when re-metabolized, lactate is not used as an energy source,
as their experimentally measured low oxygen uptake rate was
inconsistent with a full oxidation of lactate via the TCA cycle.
Consequently, they proposed alternative pathways for the non-
oxidative decarboxylation of pyruvate, which are known to exist in
cancer cells [32], to be present in CHO cells too. Nevertheless, the
accumulation of the end product of these pathways, i.e. acetoin, was
not experimentally proven. In a more recent work, Martinez et al.
[33] were able to refute this hypothesis. In their study, they analyzed
the metabolic switch from lactate production to lactate uptake by
means of FBA in a reduced mouse-derived metabolic model. Contrary
to Altamirano et al., Martinez et al. showed that their oxygen uptake
rate measurements were consistent with lactate oxidation in the

Box 1
Common modelling approaches.

MFA (Metabolic Flux Analysis): pathway analysis method
based on the stoichiometry of metabolic reactions and mass
balances under pseudo-steady-state assumption [25]. It can
be implemented in several ways. Among them:

• FBA (Flux Balance Analysis): an implementation of MFA
based on the optimization of a cellular function (such as
growth) under specific constraints (experimental
metabolic uptake and secretion rates, thermodynamic
data, etc.) [26,27].

• 13C MFA: isotope-labelled substrates are added to the
culture media and, once the isotopic steady-state is
reached, the distribution of the isotopes is measured via
nuclear magnetic resonance or gas
chromatography—mass spectrometry [28].

Markov chain Monte Carlo sampling: the glycosylation
process is described as a series of states with transition
probabilities from one state to the other. In the references
reviewed herein, it is used to overcome the lack of kinetic
parameters (metabolic and glycosylation enzymes) [29].
Artificial Neural Network models: aim to predict the
behaviour of complex, non-linear systems by detecting and
“learning” patterns and relationships within a training set
which can be applied then to the input data [30].

TCA cycle. This suggests that the metabolic network of Altamirano et
al. might have been too simplistic to capture the metabolic changes
between the phases. Compared to Martinez, Altamirano’s model
lacked fatty acid, steroid and glycogen metabolism. In addition, the
prediction of the ATP yield per mol carbon identified lactate con-
sumption to be energetically more efficient than glucose consump-
tion. Furthermore, they showed that the estimation of ranges for the
metabolic fluxes (due to the insufficient amount of experimentally
measured data in an underdetermined network) provides a valu-
able, semi-quantitative description of the changes between the two
metabolic states. This concept was also supported by Zamorano et al.
[34], who performed MFA in an under-determined network con-
taining 100 reactions of the core metabolism and obtained narrow
intervals for the fluxes with a relatively low amount of extracellular
measurements.

FBA can be combined with isotopomer analysis to improve the
accuracy of the predicted fluxes. Sengupta et al. [35] studied the
main metabolic fluxes in a simplified network during the stationary
phase of cell culture by 13C MFA. This phase is typically charac-
terized by reduced production of lactate and high protein yields.
Likewise, Templeton et al. [36] performed 13C MFA to understand
the metabolic changes between growth and stationary phases in a
producer CHO cell line. They found that, during the antibody pro-
duction peak (stationary phase), fluxes through the TCA cycle were
maximal while lactate was not produced. Moreover, this increased
activity of the TCA cycle correlated with increased fluxes through
the oxidative pentose phosphate pathway (PPP) when compared to
the exponential phase, where high glycolytic fluxes predominate.
They provide several explanations for the activation of the oxidative
PPP: to regenerate NADPH/NADP+, to compensate reduction during
exponential growth, to suppress oxidative stress or to cover NADPH
requirements during protein folding and secretion. Irrespective of
the ultimate reason, these findings point towards metabolic engi-
neering to increase oxidative TCA cycle (CO2-producing reactions)
and PPP fluxes which would help achieve higher protein yields.
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Fig. 1. Metabolic modelling efforts in CHO listed in chronological order. Abbreviations: QRT, quasi-real-time; dhfr, dihydrofolate reductase.

2.1.2. Lactate as a beneficial medium component?
More recently, Chen et al. [37] even suggested that adding small

amounts of lactate at the beginning of the culture process increases
the metabolic efficiency. They used a kinetic model of the central
carbon metabolism (i.e. glycolysis, PPP and TCA cycle) coupled
with a model of the population dynamics and computed the time-
dependent yield of lactate with respect to glucose. They found this
yield decreased with increasing (yet not toxic) initial extracellu-
lar concentrations of lactate, meaning more efficient use of glucose.
These findings were supported by Li et al. [38], who found that lac-
tate can be fed as a major carbon source when glucose concentrations
are kept low in culture.

Lactate uptake in the presence of galactose was also studied by
flux balance analysis (FBA) in tissue plasminogen activator producing
CHO cells in batch cultures [39]. Main changes were observed to

occur in the pyruvate metabolism; the slow utilization of galactose as
compared to glucose does not provide enough pyruvate to fulfill the
energy requirements. This causes lactate dehydrogenase to reverse
its mode of operation, transforming lactate into pyruvate, which then
enters the TCA cycle. Consequently, intracellular pyruvate and lactate
concentrations are reduced, which activates the monocarboxylate
transporter towards lactate uptake.

The importance of taking compartments into consideration when
modelling metabolism has been demonstrated by analyzing enzyme
localized activity together with non-stationary 13C techniques. These
allow a more accurate assessment of metabolic fluxes [40], mostly
for those pathways that cannot be resolved using steady state
approaches, such as cyclic or parallel pathways (e.g. glycolysis and
PPP). In this study, Nicolae et al. also discussed the sources of lactate
production in both cytosol and mitochondria. Taking into account
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not only the time-evolution of the metabolites, but also their spatial
localization, proved that there is an additional control factor of
precursor availability for both glycolysis and TCA cycle [41].

Likewise, Ahn et al. [42,43] performed high precision 13C MFA
on a network containing 79 reactions and resolved metabolic fluxes
accurately. During the exponential phase, characterized predomi-
nantly by high fluxes through glycolysis, 70% of the glucose was
converted to lactate. They also observed a decrease in glycolytic
fluxes and an increase in the oxidative PPP in the stationary phase, as
reported previously [36].

2.1.3. What makes a “good” growth medium?
As already mentioned, the addition of alternative energy feed-

stocks can reduce the accumulation of undesired by-products. The
effects of these alternative carbon sources on metabolism and
protein production were studied with MFA on a reduced metabolic
network by Altamirano et al. [44]. They showed that replacing
glutamine by glutamate indeed resulted in reduced accumulation of
ammonia, although at the price of a lower glucose uptake rate. This
lowered metabolism has a negative impact on the specific protein
production rate, as carbon is predominantly captured to sustain
growth, leaving little for protein production.

In a follow-up work, Altamirano et al. [31] considered co-
feeding strategies with galactose added to the medium, as galactose-
glutamate media are known to significantly reduce by-product for-
mation, but unfortunately, also cell growth. However, they showed
that after glucose depletion, cells were able to maintain growth on
galactose by simultaneously utilizing previously produced lactate.
Interestingly, CHO cells do not metabolize lactate when it is offered
as the sole carbon source.

MFA has also been applied for media optimization. Xing et al. per-
formed MFA in continuous culture to assess the metabolic demands
(in terms of amino acids) of antibody producing CHO cells [45],
which resulted in a modified medium where final concentrations of
ammonia and lactate were reduced and higher viable cell densities
and higher productivities were achieved.

The steady state assumption might be problematic when mod-
elling the inherently time-dependent fed-batch processes [46].
Hence, several efforts have been made to perform kinetic metabolic
analysis while keeping a reduced, tractable set of reactions to
avoid dealing with too many kinetic parameters. One of the first
attempts in this direction was made by Nolan et al. [47], who
included kinetic expressions in a reduced, lumped model containing
34 reactions. They studied the metabolic lactate switch by linking
glucose concentration in the medium to cytosolic levels of NADH
and lactate metabolic rate (lower levels of cytosolic NADH leading to
net lactate consumption). This study also analyzed the intracellular
concentrations of 24 metabolites in different cell lines and found that
20 of them either remained constant during the process or that their
concentration changes were negligible compared to the fluxes, sup-
porting the validity of the pseudo-steady state assumption [25] also
for fed-batch processes.

Goudar et al. [48] made remarkable progress towards quasi real-
time estimation of the metabolic rates in perfusion culture of CHO
cells for optimal process control based on metabolite balancing. They
observed that reducing the initial concentrations of glucose and
glutamine resulted in an increased flux towards the TCA cycle and
decreased production of waste metabolites, mainly lactate.

Xing et al. [49] applied a Markov chain Monte Carlo method to
develop a kinetic model of fed-batch cultures and predicted optimal
initial concentrations of glucose and glutamine that minimized the
production of ammonia and lactate.

The effects of decreasing concentrations of glutamine in the
media, namely the increased uptake of other carbon sources and the
reduction of secreted ammonia and other products, was studied by
dynamic MFA on fed-batch CHO cultures with different glutamine

concentrations [50]. They show how controlled feeding prevents
glutamine metabolism to be coupled to waste producing pathways
and, moreover, stabilizes the flux through the TCA cycle.

Similarly, Sheikholeslami et al. [51] used 13C MFA to compare
two semicontinuous cultures grown on chemically defined media
with 1 mM and 5 mM glutamine, respectively, and found that low
glutamine uptake (in the 1 mM culture) was more metabolically effi-
cient in terms of the proportion of pyruvate that enters the TCA
cycle (and therefore is not converted to lactate). Furthermore, the
CHO cell line used in this study was found to be particularly effi-
cient, mostly under hypothermic conditions, as confirmed on their
previous work [52]. In this case, the use of 13C MFA was simplified
by analyzing only extracellular 13C -labelled metabolites and then
performing MFA to predict the intracellular fluxes.

Another interesting feeding strategy was suggested by Naderi et
al. [53]. In their work, they used MFA to reduce the metabolic net-
work to a set of significant reactions and coupled them to a dynamic
cell growth model to asses the differences between growing and
apoptotic cells. They highlighted the differences on the metabolic
rates for the different cell subpopulations (growing, resting and
apoptotic cells) and suggested a feeding strategy based on the
“aging” of the cell culture: when glutamine is in excess in late phases
of the process (where the non-growing cells become predominant),
there is a switch from glycolytic reactions towards deamination of
glutamine (and concomitant ammonia accumulation), which could
be prevented by gradually lowering the concentrations of glutamine
in the feed as the culture ages.

Some other compounds, such as sodium butyrate, have shown
to improve productivity in CHO cells [54]; Ghorbaniaghdam et al.
[55] used a kinetic model to assess the effects of this compound on
metabolism in a non-compartmentalized model assuming Michaelis-
Menten kinetics. They found cells to become more energetically
efficient (in terms of the lactate to glucose ratio) when sodium
butyrate was added at the mid-exponential phase. Moreover, they
made noteworthy improvements in describing energy metabolism
(in terms of ATP) and redox potential (in terms of NADH, NAD+,
NADPH and NADP+). Adding sodium butyrate to the media gener-
ates an increased flux through the TCA cycle and a high cell redox
potential, while not significantly changing the ATP production rates.

MFA has also been combined with statistical analysis methods
(such as principal component analysis) to determine key metabolites
linked to the accumulation of ammonia and lactate. In their study,
Selvarasu et al. [56] analyzed profiles of extracellular and intracellu-
lar species and integrated this information in a mouse-derived GSMR
with the goal of finding pathways related to growth limitation. In
addition to glucose and glutamine, they identified asparagine to be
correlated with the accumulation of ammonia in the medium, most
probably via its conversion to aspartate, then glutamate and finally
a-ketoglutarate.

2.1.4. The future starts now: iCHO1766, a comprehensive,
genome-scale metabolic reconstruction of CHO

As outlined above, the results derived from a model-based analy-
sis have significantly improved our understanding of the underlying
metabolic processes. This is all the more remarkable as, so far, a truly
CHO-specific GSMR was missing. All the applications summarized
above used either small-scale metabolic models or adapted recon-
structions developed for related organisms like mouse or humans.
However, after the complete genomic sequence of CHO-K1 was
published in 2011 [57], several research groups around the world
joined forces in creating the first community-curated GSMR of CHO,
which just now became available [58]. This model consists of 4455
metabolites participating in 6663 reactions and contains 1766 anno-
tated genes. In a first demonstration of possible applications of this
CHO GSMR, typical process engineering strategies were analyzed for
their effects on the predicted maximum product yield. In all tested
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cases, the model suggested that these processes are not even close to
tapping the full potential of CHO cells.

Furthermore, the transcriptome [59] and proteome [60] of CHO
cells can be now used to obtain strain-specific models that pro-
vide a more precise characterization of metabolic capabilities [61].
Metabolomics data can further refine these models to make better
predictions under the given culture conditions. Thus, given the
advances in high-throughput technology, we expect that the model
based-analysis of systems-level data like the transcriptome and
proteome will help to further unravel the complexity of CHO
metabolism.

Regardless of these promising results, model performance has
to be further evaluated. Ever since the first modelling approaches
appeared, the accuracy of experimental measurements has been
shown to be an important factor to obtain meaningful results [62].
Moreover, it has been shown that biomass composition varies among
different cell lines [56]. It is also known that the biomass composi-
tion has a great effect on model predictions [63]. Therefore, factors
influencing the robustness of CHO metabolic models is a question
that still remains to be addressed.

3. Glycosylation

Modelling metabolism aims at reducing the metabolic burden on
the cells induced by the recombinant production of the protein of
interest. It aims to increase the protein yield. However, the biophar-
maceutical industry is not only faced with the problem of producing
therapeutic proteins efficiently, but also to produce them at high
quality. A major quality attribute of many biopharmaceuticals is
correct glycosylation, as the correct function of most therapeutic pro-
teins depends on it [64]. Glycosylation consists of the addition of
an oligosaccharide chain to an amino acid residue, predominantly
asparagine (N-linked) or serine/threonine (O-linked glycosylation)
and takes place in the endoplasmic reticulum and Golgi appara-
tus along the protein secretory pathway. These sugar modifications
play a fundamental role in protein conformation, stability, solu-
bility, receptor recognition and antigenicity as well as cytotoxicity
[65–68]. Thus glycosylation essentially modifies the pharmacological
properties of a protein.

Glycosylation patterns are naturally and in general heteroge-
neous. There are two main sources of variability in glycosylation:
macroheterogeneity, which refers to the fact that a particular site in
the protein might or might not be glycosylated; and microhetero-
geneity, when different glycan structures can be found on the same
site. However, this natural variability presents a particular challenge
for the production of biosimilars, were the glycosylation patterns
of the primary drugs have to be reproduced within tight tolerance
regions defined by regulatory authorities [117].

3.1. Modelling glycosylation in CHO

Many factors are known to influence glycosylation in cell culture:
concentration of metabolites in the medium (both substrate and
waste products), pH, temperature and cell viability [69,70]. The
mechanisms by which these factors affect micro- and macrohetero-
geneity remain, however, unclear. Thus a systematic analysis is
called for. Computational modelling provides a powerful frame-
work for such an analysis. In fact, there have been remarkable
advances in the development of mathematical models of glycosyla-
tion, supported by the detailed knowledge of the glycosylation path-
ways [71]. Generally, these models aim to reduce the combinatorial
explosion in the number of possible glycan distributions. To
this end, models make some general assumptions, while keeping
compartmentalization (each compartment is modelled differently
since they contain different sets of enzymes) and finally linking
glycosylation to metabolism. The complexity of the process, together

with the many intervening factors, makes modelling glycosylation
quite a challenging task.

One of the first attempts to deterministically describe protein
glycosylation focused on macroheterogeneity. In 1996, Shelikoff et al.
[72] proposed a mathematical model to predict how site-occupancy
is affected by different factors such as the expression levels of
glycotransferases, the protein production rate, the concentrations
of nucleotide sugars and the mRNA elongation rate. They used a
plug-flow reactor-based model and included protein folding as a
competing event that occurs concurrently with glycosylation.

Shortly after, Monica et al. [73] modeled sialylation of N-linked
oligosaccharides in a single, isotropic compartment (trans-Golgi).
The predictions were in agreement with experimental data of CD4
glycoprotein produced in CHO cells.

Umaña and Bailey (1997) [74] presented the first attempt to
model glycoform microheterogeneity based on expression and spa-
tial localization of the enzymes involved in N-linked glycosylation.
Parameters such as the half-life of the protein in the Golgi, the
protein productivity and the volume of the Golgi compartments were
also included in this model. Furthermore, they modified the model
to take the competition for the glycosylation machinery between
endogenous and recombinant proteins into account. Kontoravdi et al.
used this model of glycosylation and included it in a simple dynamic
mathematical model of cell growth, death and metabolism. With this
reduced model they predicted the evolution of oligosaccharide molar
fractions over time. However, these results could not be validated
due to the lack of experimental data [75].

Several years later, in 2005, Krambeck and Betenbaugh [76]
extended Umaña’s model (which contained 33 glycan structures and
33 reactions), by adding around 7500 oligosaccharide structures and
more than 22,000 reactions. Among these, reactions for fucosylation
and sialylation were included in the model, which are of special rel-
evance for recombinant proteins [77,78]. In contrast to the model of
Umaña and Bailey, this model adjusts enzyme concentrations to fit
an experimentally observed glycopattern, thereby calibrating it to a
specific protein. They argue that the reason for having a case-specific,
adjusted model is the inherent variability of glycosylation: the glycan
structures do not only depend on the specific protein, but also on the
glycosylation site. Their results were validated with N-glycan struc-
tures observed in recombinant human thrombopoietin expressed in
CHO cells [79]. This model was then used as a prototype for further
development by other research groups.

In 2009, Krambeck et al. applied the previously developed model
to predict enzyme expression that resulted in an observed mass spec-
trometry spectrum. Reciprocally, the model was used to automati-
cally annotate spectra to the corresponding glycan structures [80].

Both models (Umaña and Bailey, Krambeck and Betenbaugh)
were combined in two different studies to predict the sensitivity of
N-Glycan branching with respect to the hexosamine flux [81] and
key enzymes involved in glycan branching [82].

Senger and Karim [83] used a plug-flow reactor model to describe
the differences in glycosylation of recombinant tissue plasminogen
activator in CHO under shear stress conditions. They found decreased
site occupancy to be related to low residence times of the protein
in the endoplasmic reticulum due to high protein production rates,
caused by increasing levels of shear stress.

In a follow-up study, Senger and Karim used artificial neural
network models to predict glycosylation from primary sequence
information around the glycosylation site (glycosylation window).
The model was used to classify macroheterogeneity as either robust
(invariant with culture conditions) or variable, according to this
sequence information [84]. They improved this approach further by
using information about the secondary structure and solvent acces-
sibility, resulting in the prediction of two main types of glycan
branching: high mannose type and complex-type [85]. Artificial
neural networks had already been applied to predict glycosylation
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sites [86,87]. The complexity of the impact of protein conformation
in the surroundings of the glycosylation site on glycotransferase
activity hinders the creation of a mathematical model that could
describe the process deterministically. Therefore, they presented the
Neural-Network approach as a valuable workaround to construct
prediction tools. The main advantage of this approach with respect
to the previous models is that it does not require a large number
of parameters, but only the protein sequence (from which they pre-
dict the secondary structure). In addition, it highlights the influence
of protein secondary and tertiary structure on the accessibility of
the enzymes. In another instance, Gerken et al. [88] considered the
inhibitory effect of the presence of glycan structures on neighboring
sites of glycosylation.

Built on the premise that glycan biosynthesis is controlled by the
expression of glycotransferases, Kawano et al. [89] predicted a set
of glycan structures from DNA microarray data. This set was further
expanded by Suga et al. [90] with the prediction of new structures
(Kawano’s set of predicted glycans was limited to those included in
the database of known structures). This approach was refined several
years later with high-throughput RNA microarray data [91].

Hossler et al. [92] compared the prediction performance of two
main models for protein maturation in the Golgi: four continuous
mixing-tanks for vesicular transport and four plug-flow reactors
in series for the maturation model. They claimed that the latter
describes the process more accurately and they emphasised the
importance of the residence time in the Golgi and enzyme localiza-
tion as key parameters to be considered when modelling glycosyla-
tion.

The plug-flow reactor model was then used to describe mon-
oclonal antibody (mAb) glycosylation [93]. The major improve-
ment over the previous model was to include the transport of
nucleotide sugar donors. This was the first step towards coupling
cellular metabolism (and therefore measurable variables like glu-
cose uptake) to glycosylation. Kaveh et al. [94] pursued this goal
and performed a dynamic analysis of extracellular metabolite con-
centrations via MFA and linked those of glutamine and glucose to
nucleotide sugar biosynthesis and glycolysis using the previous mod-
els (del Val 2011 [93] and Hossler 2007 [92]). The model successfully
predicted dynamic trends of the glycopatterns of mAb produced in
CHO batch culture. In another study [95], they combined dynamic
MFA with the GLYCOVIS software developed by Hossler et al. [96]
to predict, based on experimentally observed glycopatterns, how
different concentrations of glutamine, glucose, ammonia and differ-
ent pH values affect the glycosylation process. Yet more progress
was made by Jedrzejewski et al. [97], who used a dynamic model
for cell death and growth together with the dynamic model from
del Val [93] to predict glycosylation patterns. In this case, experi-
mental data from mAb producing mouse hybridoma cells was used
for the calculations. A similar study was applied to mAb producing
CHO fed-batch cultures [98]. As a result, recent models have suc-
ceeded in linking cell growth, metabolism, protein production rate
and glycosylation [99].

The majority of these models describe N-glycosylation. Liu
et al. [100] presented a reaction network for the formation of the
O-glycosylation of the sialyl Lewis-X epitope. In their work, they
introduce the concept of “subset-modelling”, where the whole set of
reactions in the network is divided into “sub-networks” and then a
search is performed for the one that fits the experimental data best.
Furthermore, they use genetic algorithm-based optimization, hier-
archical clustering and principal component analysis to fit subsets
of reaction networks to the observed glycan structure distribution,
thereby reducing the parameterisation of the model. Recently, the
same group developed a software for the automated creation, analy-
sis and visualization of glycosylation reaction networks, called GNAT
(Glycosylation Network Analysis Toolbox) [101,102]. GNAT was fur-
ther expanded to include a higher number of enzymes [103].

Kim et al. [104] also exploited the modularity of the glycosylation
pathways to propose new engineering strategies based on targeting
modules instead of specific enzymes.

In a simpler approach, FBA was applied to assess the effect of
low temperature conditions on metabolism and nucleotide sugar
availability for glycosylation in mAb producing CHO cells [105]. A
similar MFA-based method was applied to analyze the effects of dif-
ferent concentrations of glutamine in the media on nucleotide sugar
intracellular concentrations and N-glycan content of recombinant
human chorionic gonadotrophin in CHO cells [106].

In the past year, a simple stoichiometric model was also used to
compute the nucleotide sugar demands for glycosylation of recom-
binant proteins in CHO for rational feeding strategies [107].

In order to avoid the requirement of a high number of kinetic
parameters, Spahn et al. [108] used a Markov chain model to describe
glycosylation as a stochastic process in which each glycan state
has a transition probability to reach the next glycan state. These
probabilities are linked to the steady state solution given by FBA
for a reduced network of the reactions contributing to the observed
glycoprofile. By using this protein-specific model, they successfully
predicted the effect of an enzyme knock-down on an antibody
producer CHO cell line [109].

3.2. Parameters and general assumptions

The parameters involved in glycosylation include reaction kinetic
parameters, compartment residence times, enzyme distributions
between compartments, compartment volumes, total glycan con-
centration and donor cosubstrate concentrations. These parameters
are either obtained via optimization or taken from literature [110].
Imaging techniques for green fluorescent protein-labelled proteins
can be used to measure residence time and protein flux through
the secretory machinery [111]. Kinetic parameters are commonly
derived from independent enzymology experiments [112], which
are arduous and should be carried out for each enzyme. However,
there have been remarkable advances on high-throughput technolo-
gies that allow more accurate assessment of kinetic parameters of
glycosyltransferases [113].

Due to the sequential nature of glycosylation, models have to
incorporate time-dependent equations. The majority of the kinetic
models reviewed herein assume Michaelis-Menten Kinetics. Over
time, more terms were included in these models’ equations, with
increasing complexity, e.g. competitive inhibition terms in their
enzyme-kinetic expressions.

The main limitation of glycosylation models is the high grade
of parameterisation required to describe the process. Moreover,
most of the parameters are derived from in vitro experiments, even
though they might be different in an intracellular environment. As
previously mentioned, various factors influence glycosylation at dif-
ferent points of the process [70] and the effects are cell line [114],
glycoprotein [115] and even glycosylation site specific [74], which
reduces the general applicability of the models. Thus, despite the
tremendous advances achieved over the last years in this field, the
ultimate goal of predicting the effect of cell line specific behaviour
of different protein sequences or structures, or of process related
changes on glycosylation still requires further work and ptimisation
to be fully achieved.

4. Conclusions and future perspectives

Metabolic modelling of mammalian cells has been hampered by
the inherent complexity of the cell structure (compartmentalization)
and the large variability of media compositions and process pertur-
bations under which the culture processes are carried out. Never-
theless, with the rampant progress in scope and reliability of -omics
technologies, it is for the first time that we can access cell metabolism
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in a systems-level manner. The main applications are the rational
improvement of both the culture process (media optimization) and
the cells themselves (via targeted genetic engineering).

The natural evolution towards more complex metabolic mod-
els including compartmentalization and dynamic analysis has
put emphasis on the necessity to have accurate measurements
(intra- and extracellular) as well as accurate values for the biomass
and media composition [56,116]. As for glycosylation, it has been
recently shown that only a limited amount of CHO proteins account
for the majority of glycosylation, which could ease the approaches

dealing with the dynamic evolution of glycosylation by focusing
solely on these highly contributing proteins [107].

To date, the vast majority of modelling approaches in CHO have
been applied in a reduced set of reactions. These usually include
glycolysis, TCA cycle, PPP and amino acid metabolism. However,
in the past year, a full genome-scale metabolic model of CHO
has become available, unleashing the capabilities of genome-scale
metabolic modelling.

We have also addressed the second main challenge concerning
the production of recombinant proteins in CHO. Glycosylation is

Fig. 2. Models for protein glycosylation in CHO listed in chronological order. Abbreviations: MS, Mass-spectrometry.
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a highly complex, variable process, in which many factors are
involved. Glycan patterns vary from batch to batch and from strain
to strain, making it difficult to model the process deterministi-
cally. Even though the mechanisms by which the culture conditions
and enzyme expression affect glycosylation are still unknown, the
modelling efforts discussed here (see Fig. 2) have taken a signifi-
cant step forward in media optimization by linking glycosylation to
metabolism. A future step in this direction would be including gly-
can compounds in the biomass stoichiometric equation, since it has
been shown that the metabolic demands towards glycosylation of
both recombinant and host proteins are significant [107].

Therefore, given the combinatorial nature of the process, there
are still major achievements to be reached in controlling the glyco-
form, since it plays a key role in product quality.
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