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Abstract

Incubation starts during egg laying for many bird species and causes developmental asyn-
chrony within clutches. Faster development of late-laid eggs can help reduce developmental
differences and synchronize hatching, which is important for precocial species whose young
must leave the nest soon after hatching. In this study, we examined the effect of egg laying
sequence on length of the incubation period in Wood Ducks (Aix sponsa). Because incuba-
tion temperature strongly influences embryonic development rates, we tested the interactive
effects of laying sequence and incubation temperature on the ability of late-laid eggs to
accelerate development and synchronize hatching. We also examined the potential cost of
faster development on duckling body condition. Fresh eggs were collected and incubated at
three biologically relevant temperatures (Low: 34.9°C, Medium: 35.8°C, and High: 37.6°C),
and egg laying sequences from 1 to 12 were used. Length of the incubation period declined
linearly as laying sequence advanced, but the relationship was strongest at medium temper-
atures followed by low temperatures and high temperatures. There was little support for
including fresh egg mass in models of incubation period. Estimated differences in length of
the incubation period between eggs 1 and 12 were 2.7 d, 1.2 d, and 0.7 d at medium, low
and high temperatures, respectively. Only at intermediate incubation temperatures did
development rates of late-laid eggs increase sulfficiently to completely compensate for natu-
ral levels of developmental asynchrony that have been reported in Wood Duck clutches at
the start of full incubation. Body condition of ducklings was strongly affected by fresh egg
mass and incubation temperature but declined only slightly as laying sequence progressed.
Our findings show that laying sequence and incubation temperature play important roles in
helping to shape embryo development and hatching synchrony in a precocial bird.
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Introduction

Incubation is an important stage of reproduction in birds during which parents seek to balance
their needs with those of developing embryos. Evidence from a variety of species suggests that
maintaining eggs at an optimal temperature between 35.5°C and 38.5°C during incubation is
critically important for proper embryo development [1]. Eggs incubated at low temperatures,
for example, develop more slowly and produce neonates of reduced quality and fitness [2-4].
Alternatively, high incubation temperature shortens the incubation period, but accelerated
embryonic development can also be costly to young birds by increasing oxidative damage [5-
71.

Incubation starts during egg laying for many bird species and is called partial incubation
[8,9]. In precocial species, like prairie-nesting ducks (Anas spp.), females increase nest atten-
dance as egg-laying progresses, and egg temperatures can reach levels for effective incubation
with laying of the second egg [10]. The potential adaptive value of partial incubation may vary
among species [9]. For example, viability of early-laid eggs begins to decline in as little as 3
days, and partial incubation may play an important role in maintaining egg viability [11-13].
Partial incubation may also shorten the incubation period, thereby reducing predation risk
and resulting in an earlier hatch date [10,14]. In altricial species, partial incubation produces a
size hierarchy within broods that may aid brood reduction during food shortages and improve
reproductive success [15], but see [16].

In precocial species, partial incubation can cause developmental asynchrony within
clutches of 2 to 3 days at the end of egg-laying [17-18]. However, asynchronous hatching is
not desirable because precocial young often must leave the nest within 24 hr of hatching. Eggs
of some precocial birds laid later in the sequence have been found to develop faster than early-
laid eggs which helps reduce developmental differences and synchronize hatching [19-21].
However, there may be an upper limit to how fast embryos can grow to synchronize hatching
[17,22]. Accelerated development of eggs laid later in the sequence may be facilitated by several
intrinsic factors including: 1) higher levels of yolk androgens [23,24], 2) differences in egg size
and composition [25,26], and 3) increased embryonic metabolic rates [20,21]. Potential costs
to neonates of faster development, like the harmful effects of high androgen levels on immune
function, may be offset by advantages accruing from partial incubation [27].

Wood Ducks (Aix sponsa) nest in cavities, lay 1 egg day™', clutch sizes of nonparasitized
nests average 10-12 eggs, and females alone incubate eggs [28]. Partial incubation begins at
night 3-4 d before the clutch is complete and full incubation begins resulting in > 2 days of
intraclutch developmental asynchrony [14,17,29].

In this study, we examined the effect of egg laying sequence and incubation temperature on
length of the incubation period in Wood Ducks. We predicted that eggs laid later in the
sequence would have shorter incubation periods than eggs laid earlier thereby helping to
reduce developmental asynchrony and synchronize hatching of ducklings. However, we know
that rate of embryo development in Wood Ducks varies with incubation temperature [30,31].
Therefore, we tested the interactive effects of laying sequence and incubation temperature on
the ability of late-laid eggs to accelerate development and potentially synchronize hatching
with early-laid eggs. If there is an upper limit to the development rate of Wood Duck embryos,
then we predicted eggs laid later in the sequence and incubated at high temperatures would
have less capacity to accelerate development and synchronize hatching with early-laid eggs.
We also examined the potential cost of accelerated development on body condition of neo-
nates. If late-laid eggs experience faster development, then intrinsic factors like differences in
metabolic rate or allocation of egg nutrients may cause these embryos to hatch in poorer con-
dition than neonates from early-laid eggs.
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Methods

Study area, field methods and artificial incubation

We conducted the study at the Department of Energy’s Savannah River Site (800 km?; SRS) in
the upper coastal plain of west-central South Carolina (33.2878°N, 81.723°W). Nest boxes
were distributed along the perimeters of Par Pond (n = 80; 1120 ha) and L Lake (n = 30; 450
ha) and checked every four days during the breeding season (Jan-July) to locate new nests
(i.e., eggs were first discovered in the nest). After location of a new nest, the nest was checked
daily until egg-laying stopped and full incubation began. We collected eggs from new nests on
the day they were discovered and every day subsequent to that until the clutch was completed.
Fresh eggs were removed, individually marked with date of collection and nest box identifica-
tion, and replaced with wooden eggs to prevent females from abandoning nests. If multiple
eggs occurred in newly discovered nests, they were randomly assigned a laying sequence num-
ber beginning with the first egg. Thereafter, active nests were visited daily to collect eggs and
when nests contained >1 egg on daily visits, these eggs were assigned the same laying sequence
number. Females normally lay 1 egg day ', so date of nest initiation was estimated by subtract-
ing the number of eggs in the nest when it was first discovered from the day the nest was
checked and adding one. Conspecific brood parasitism is common in Wood Ducks, so if the
number of eggs was greater than the number of days between box checks, the day after the pre-
vious box check was assumed the nest initiation date. Clutch size was determined at the end of
laying.

Fresh eggs were brought back to the lab, weighed (0.01 g), and stored at 20°C which is
below physiological zero (24-27°C) when avian embryos begin to develop [1]. Eggs were
placed in incubators (Grumbach model BSS 420, Lyon Technologies Inc.) every 4 days, which
corresponded with the frequency of new nest box checks. Eggs were incubated at three temper-
atures (34.9°C, 35.8°C, and 37.6°C; relative humidity = 55-60%) that were within the range of
natural incubation temperatures of Wood Ducks [30,32]. Eggs were turned hourly, and incu-
bators were programmed with two 1-hr cool down periods each day to simulate the natural
incubation behavior of Wood Ducks [30]. Temperatures declined about 3°C during cool
down periods. Data loggers (HOBO®) Pro V2, Onset Computer Corp.) were placed in incuba-
tors and recorded temperature every 6 minutes. Mean incubation temperatures were calcu-
lated each day, and the grand mean temperature over the entire incubation period was
calculated for each egg used in our analyses.

We checked and candled eggs regularly to monitor embryo development during incuba-
tion. As eggs neared hatching, we checked them twice daily, and all pipped eggs were moved
to a single incubator for hatching (37.5°C and 80% humidity). Pipped eggs were placed in indi-
vidual PVC cylinders (10.6 x 10.6 cm) with mesh tops that enabled us to match eggs with duck-
lings after hatching. Incubation period was the number of days between when an egg was
placed into the incubator until it hatched. Within 24 hr of hatching, ducklings were weighed
after allowing them to dry (0.01 g), and tarsus was measured (0.01 mm) with digital calipers.
Our protocols for nest box checks and the collection, storage, and incubation of eggs at 4-day
intervals also allowed us in another study to examine effects of incubation temperature on sub-
sequent survival and recruitment of ducklings after their placement with foster mothers [31].

Data analysis

We tested the effect of egg laying sequence on length of incubation period at three incubation
temperatures (34.9°C, 35.8°C, and 37.6°C) using mixed linear models [33]. Eggs from individ-
ual clutches were incubated at a single temperature. We used models with random intercepts

PLOS ONE | https://doi.org/10.1371/journal.pone.0191832 January 26, 2018 3/14


https://doi.org/10.1371/journal.pone.0191832

'qng,L‘JE;|ONE

Laying sequence, temperature, and embryonic development

and random slopes to help produce unbiased SEs [34]. We grouped individual nests within
temperature treatments and included fresh egg mass as a covariate. Temperature treatment
and nests were treated as categorical variables while laying sequence and egg mass were contin-
uous. Laying sequence and egg mass were centered on their grand means. We compared mod-
els using Akaike’s Information Criterion corrected for small sample size (AIC,) [35]. We
ranked models based on their relative differences to the top model (AAIC,.). Akaike weights
(w,) are the relative likelihood of the models given the data and model sets. The parameter like-
lihood is the sum of Akaike weights across all models that include the variable, and it is a useful
metric for quantifying the importance of explanatory variables [36]. We present 85% confi-
dence intervals of parameter coefficients, which are fully compatible with information theo-
retic methods, rather than 95% confidence intervals [37].

Allocation of yolk androgens in Wood Ducks may differ between parasitic and host eggs
and potentially influence embryonic developmental rates [38]. Therefore, any differences
between temperature treatments in the distribution of parasitic eggs across the laying sequence
could influence our results. During daily nest checks, we recorded the laying sequence of eggs
and whether 1 egg or > 1 egg had been laid. Nests with > 1 egg indicated they had been para-
sitized and provided a minimum estimate of brood parasitism (DNA analysis is needed for
clear assessment of conspecific brood parasitism). We used a general linear model with binom-
inal response distribution and logit link function (Proc GLIMMIX) to test whether daily para-
sitism of nests (> 1 egg) across the laying sequence differed between temperature treatments.

We used mixed linear models to examine the relationship between laying sequence and
fresh egg mass. We used models with random intercepts and random slopes and grouped eggs
within nests. We tested both linear and nonlinear effects of laying sequence on fresh egg mass.
Next, we tested the effect of egg laying sequence on body condition of ducklings using mixed
linear models. Body mass adjusted for structural size explains more of the variation in total
body lipids of day-old Wood Duck ducklings than does body mass alone, so we used residuals
from a regression of tarsus (mm) on duckling body mass (g) to estimate body condition of
ducklings. Fresh egg mass was used as a covariate in the analysis because of its strong positive
effect on duckling mass [30,31]. We wanted to examine whether there was a relationship
between body condition of ducklings and laying sequence independent of any differences in
egg mass. We included temperature treatment in the models because of its influence on duck-
ling phenotype [30,31]. We used models with random intercepts and random slopes and
grouped nests within treatments. Again, we compared models using AIC,, ranked models
based on their relative differences to the top model (AAIC,), and present parameter estimates
with 85% confidence intervals. We completed data summaries and analyses using SAS 9.3
[33].

Ethics statement

The Institutional Animal Care and Use Committee (IACUC) of Auburn University approved
our research (PRN 2006-1049). Eggs were collected under permits issued by the U.S. Fish and
Wildlife Service (MB 748024-0) and South Carolina (G-10-02).

Results

We collected, incubated, and successfully hatched 565 eggs from 60 nests (Table 1). Nest initia-
tion date averaged 2 April + 3 d (SE), and nests contained a median of 2 eggs when first discov-
ered, with 60% of nests containing 1 or 2 eggs. Eggs were incubated at three biologically
relevant temperatures, and average incubation temperature differed by 2.7°C between high
and low treatments (Table 1). Incubation period was about 8 days longer at low incubation
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Table 1. Sample sizes of Wood Duck nests and eggs and mean (+ SE) incubation temperature and incubation period by temperature treatment.

Treatment Number of nests Number of eggs Incubation temperature, °C Incubation period, days
Low 21 183 34.9 £ 0.004 37.0 £0.09
Medium 23 222 35.8 £ 0.005 33.1+0.09
High 16 160 37.6 £ 0.006 28.7 £ 0.07

https://doi.org/10.1371/journal.pone.0191832.t001

temperatures than at high temperatures (Table 1). We used egg-laying sequences of 1 to 12 in
our analyses (Fig 1), and only used nests containing eggs with >6 laying sequences. Nests were
recognized as being parasitized when > 1 egg was laid on at least one day during the laying
sequence. Using this criterion, 90% of nests (54 of 60) were parasitized. We visited active nests
daily through the laying sequence and recorded days when either 1 or > 1 eggs were found.
Number of nests that were parasitized (> 1 egg) on each day of the laying sequence (days 2 to
12) generally occurred less frequently early in the sequence (Fig 2), and the distribution of par-
asitized and non-parasitized nests across laying sequences did not differ between temperature
treatments (F = 2.24, df = 2,27, P=0.13).

Interactive effect of laying sequence and incubation temperature on
incubation period

The top ranked model of incubation period (w; = 0.76) included additive effects of incubation
temperature, laying sequence, and the interaction between incubation temperature and laying
sequence (Table 2). This model had about 5 times more support than the next best model (w; =
0.15) which only included incubation temperature and laying sequence, and not their interac-
tion (Table 2). The parameter likelihood values of incubation temperature (1.0), laying
sequence (1.0), and fresh egg mass (0.05) showed strong support for including temperature
and laying sequence in models of incubation period but little support for including fresh egg
mass. Incubation period declined as the laying sequence advanced, but strength of the

35 -
7 I Low
30 __ 1 Medium
25 —1 High

20
15

10

Number of eggs

1. 2 3 4 5 6 7 8 9 10 11 12

Egg laying sequence

Fig 1. Wood Duck eggs collected and successfully hatched. Frequencies are displayed according to laying sequence
(1-12) and incubation temperature (low, medium and high).

https://doi.org/10.1371/journal.pone.0191832.g001
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Fig 2. Wood Duck nests containing either 1 or > 1 egg during daily nest checks. Frequencies are displayed by egg
laying sequence and incubation temperature (low, medium and high). Only data from active nests that were being
checked daily are included.

https://doi.org/10.1371/journal.pone.0191832.g002

relationship varied with incubation temperature. Incubation period declined faster as laying
sequence progressed for eggs incubated at medium temperatures (8 = -0.25 + 0.04; 85%

CI =-0.30, -0.19) compared to eggs incubated at either low temperatures (8 = -0.10 + 0.04;
85% CI = -0.16, -0.05) or high temperatures (3 = -0.06 + 0.04; 85% CI = -0.13, -0.001; Fig 3).
The decline in incubation period with laying sequence was slightly greater for eggs incu-
bated at low temperatures than at high temperatures, but 85% CIs of the parameter esti-
mates overlapped. Estimated differences in incubation period between eggs sequenced as

1 and 12 were 2.7 d, 1.2 d, and 0.7 d for eggs incubated at medium, low and high tempera-
tures, respectively.

Influence of laying sequence on egg mass and duckling body condition

The nonlinear model of the relationship between egg mass and laying sequence performed
slightly better than the linear model (AIC. = 2871 vs. 2872) and showed that fresh egg mass
declined in a nonlinear fashion as the laying sequence advanced (S1 Fig). The best-supported
model of duckling condition (w; = 0.83) included additive effects of incubation temperature
and egg mass and had over 6 times more support than the next best model (w; = 0.13) which
included additive effects of incubation temperature, egg mass, and egg sequence (Table 3).
Other models of duckling condition had weak support (AAIC, > 7.8; Table 3). Parameter like-
lihood values indicated that incubation temperature (1.0) and fresh egg mass (1.0) had greater
relative importance to duckling condition than laying sequence (0.15). The top model showed
a strong positive effect of egg mass on duckling condition (8 = 0.50 £ 0.02; 85% CI = 0.47-
0.53), and body condition was greatest for ducklings incubated at high temperatures (Least-
squares mean: 1.05 + 0.17) followed by those incubated at medium (-0.15 + 0.15) and low
(-0.79 £ 0.15) temperatures (Table 3, S2 Fig). Model 2 showed a relatively weak decline in
duckling body condition as the laying sequence progressed (8 = -0.05 + 0.02; 85% CI = -0.09,
-0.02; Table 3).

Table 2. Mixed models used to evaluate effect of egg laying sequence on length of the incubation period in Wood Ducks. Incubation temperature and fresh egg mass
also were included as potential explanatory variables. We compared models using Akaike’s Information Criterion corrected for small sample size (AIC.) and ranked mod-
els based on relative differences to the top model (AAIC,). w; = Akaike model weight and K = number of parameters.

Rank Model® AAIC, w; K
1 Temperature + Egg sequence + Temperature*Egg sequence oP 0.758 4
2 Temperature + Egg sequence 3.2 0.153 3
3 Temperature + Egg sequence + Egg mass + Temperature*Egg sequence 5.9 0.040 5
4 Temperature + Egg sequence + Egg sequence2 + Temperature*Egg sequence 6.2 0.034 5
5 Temperature + Egg sequence + Egg mass 9.0 0.008 4
6 Temperature + Egg sequence + Egg sequence” 9.3 0.007 4
7 Temperature 26.0 0.0 2
8 Temperature + Egg mass 31.3 0.0 3
9 Temperature + Egg mass + Temperature*Egg mass 36.8 0.0 4
10 Intercept only 317.8 0.0 1

* Temperature = incubation temperature (low, medium and high); Egg sequence = egg laying sequence (1-12); Egg mass = fresh egg mass (grams).
P AIC, value = 1734.8 for the highest ranking model.

https://doi.org/10.1371/journal.pone.0191832.t1002
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Fig 3. Predicted relationships between egg laying sequence and incubation period. Parameter estimates are from
the top ranked model (w; = 0.76; Table 2) and show interactive effects of egg laying sequence and incubation
temperature (low, medium and high) on length of the incubation period in Wood Ducks.

https://doi.org/10.1371/journal.pone.0191832.9003

Discussion

Incubation period of Wood Ducks declined with increasing incubation temperature and was
shortest for eggs incubated at high temperatures, which is similar to naturally-incubated

Table 3. Mixed models used to evaluate effect of egg laying sequence on body condition of newly hatched Wood Ducks. Incubation temperature and fresh egg mass
also were included as potential explanatory variables. We compared models using Akaike’s Information Criterion corrected for small sample size (AIC.) and ranked mod-
els based on relative differences to the top model (AAIC,). w; = Akaike model weight and K = number of parameters.

Rank Model® AAIC, w; K
1 Temperature + Egg mass o° 0.833 3
2 Temperature + Egg mass + Egg sequence 3.7 0.131 4
3 Temperature + Egg mass + Temperature*Egg mass 7.8 0.017 4
4 Temperature + Egg mass + Egg sequence + Egg sequence’ 9.7 0.007 5
5 Temperature + Egg mass + Egg mass” 10.0 0.006 4
6 Temperature + Egg mass + Egg sequence + Temp*Egg sequence 10.7 0.004 5
7 Temperature + Egg mass + Egg sequence + Temp*Egg mass 11.5 0.003 5
8 Temperature + Egg mass + Egg sequence + Egg mass” 13.6 0.001 5
9 Egg mass 41.7 0.0 2
10 Temperature + Egg sequence 393.9 0.0 3
11 Temperature + Egg sequence + Temperature*Egg sequence 399.4 0.0 4
12 Temperature 400.5 0.0 2
13 Temperature + Egg sequence + Egg sequence2 401.0 0.0 4
14 Egg sequence 419.3 0.0 2
15 Intercept only 430 0.0 1

* Temperature = incubation temperature (low, medium and high); Egg mass = fresh egg mass (grams); Egg sequence = egg laying sequence (1-12)
P AIC, value = 2087.3 for the highest ranking model.

https://doi.org/10.1371/journal.pone.0191832.t003
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clutches and is consistent with our previous studies [30,31]. Incubation period also declined as
the egg laying sequence progressed, but strength of the relationship was affected by incubation
temperature. Accelerated development of eggs as the laying sequence progressed was stronger
for eggs incubated at intermediate temperatures (35.8°C) than for eggs incubated at high
(37.6°C) and low (34.9°C) temperatures. At intermediate incubation temperatures, estimated
differences in development time between the first and last egg in a 12-egg laying sequence
closely matched the amount of developmental asynchrony that occurs in naturally incubated
Wood Duck clutches as full incubation begins [17,29]. We suggest differences in rate of
embryo development between early- and late-laid eggs were sufficient to eliminate develop-
mental asynchrony within clutches only for eggs incubated at intermediate temperatures and
not for those incubated at high or low temperatures. Body condition of ducklings declined
slightly with laying sequence and may represent a potential cost of faster development; how-
ever, both incubation temperature and fresh egg mass had much stronger effects on duckling
condition than did laying sequence.

Importance of incubation temperature on avian development

The temperature that avian parents incubate eggs can impact reproductive success by influenc-
ing neonate phenotypes and predation risk [3]. In Wood Ducks, for example, low incubation
temperature negatively influences a suite of neonate characteristics like immune function,
body condition, locomotor ability, and thermoregulation that can affect survival and repro-
ductive success [3,4,31]. Harmful effects of low incubation temperature on neonate pheno-
types are not unique to Wood Ducks, but have also been reported in a variety of avian species
including Australian Brush-turkeys (Alectura lathami) [39], Zebra Finches (Taeniopygia gut-
tata) [2,40], Tree Swallows (Tachycineta bicolor) [41], and Blue Tits (Cyanistes caeruleus) [42].

High incubation temperatures also negatively affect young birds, but consequences may
not occur immediately [7]. Adverse effects of high incubation temperature are related to high
embryonic growth rates that result in increased oxidative damage and produce low quality
adults with reduced survival [5,6]. Accelerated growth of nestlings, for example, resulted in
increased oxidative damage in Zebra Finches [43] and Coal Tits (Periparus ater) [44], and
increased oxidative damage in nestling European Shags (Phalacrocorax aristotelis) was linked
to reduced post-fledging survival [45]. In Wood Ducks, embryos incubated at higher tempera-
tures developed faster and had greater daily metabolic rates than embryos incubated at low
temperatures [46]. However, young Wood Ducks from eggs incubated at higher temperatures
had greater survival and reproductive success than those incubated at low temperatures [31].
Therefore, it is clear the relationships between incubation temperature, offspring quality, and
fitness in birds are complex and deserve further study [4].

Embryo development, laying sequence and temperature

We found incubation period of Wood Ducks declined linearly as laying sequence progressed
which is also true in Black Brant (Branta bernicla nigricans) [20]. Mechanisms responsible for
faster development of late-laid eggs are not entirely clear but may include intrinsic factors like
increased levels of yolk androgens (e.g., testosterone (T), androstenedione (A,) and 5o.-dihy-
drotestosterone (5a-DHT); [23,24,47,48]), changes in egg size and composition [26,49], and
increased embryonic metabolic rates [21]. However, we found differences in egg mass had lit-
tle effect on development rate in Wood Ducks. New integrative studies (e.g., [50]) are needed
to clarify the role that these or possibly other mechanisms have in accelerating development of
late-laid eggs in precocial species.
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We could not clearly differentiate parasitic eggs from those of host females, so we used eggs
of both parasites and hosts in our analyses. Doing so may have influenced our results in two
important ways. First, it produced greater uncertainty in assigning laying order to eggs within
nests, which potentially weakened the relationship between laying sequence and incubation
period. Second, intrinsic quality of eggs is known to influence rate of embryo development
and can vary with laying sequence and between host and parasitic females [23-26]. In Wood
Ducks, for example, Odell [38] found that androstenedione (A,) increased as the laying
sequence advanced in eggs of hosts but not of parasites and speculated that increased levels of
A, facilitated hatching synchrony. Potential differences in egg quality, therefore, make it is
especially important that laying sequence of brood parasites match those of hosts to facilitate
synchronous embryo development and hatching in precocial birds. In our study, if egg
sequences of hosts and parasites were mismatched, this too would have weakened our ability
to detect laying sequence effects on incubation period. Ultimately, molecular genetic data will
be needed to separate eggs of parasites from those of hosts to confirm our results. Nevertheless,
we believe the pattern of declining incubation period as the laying sequence progressed in
Wood Ducks was real. Indeed, these results suggest that parasitic females were able to closely
match egg quality and laying sequences of their hosts. In one of the few waterfowl studies,
Lemons and Sedinger [51] also reported that Black Brant brood parasites were able to recog-
nize and closely match egg size of their hosts. Matching of the host’s laying sequence by para-
sites has been reported in several non-waterfowl species, but more investigations of this
phenomenon are especially needed in precocial birds [52].

In our study, incubation temperature interacted with laying order which was not surprising
given the strong effect incubation temperature has on embryo development [3,4]. Only inter-
mediate incubation temperatures provided the necessary thermal environment that allowed
late-laid eggs to adequately accelerate development, reduce developmental asynchrony, and
potentially synchronize hatching with early-laid eggs. At both high and low incubation tem-
peratures, differences in developmental rates between the first and last laid egg would not
completely compensate for natural levels of developmental asynchrony in Wood Duck
clutches, which averages 2.2 d [17].

Why should temperature matter? Incubating parents attempt to keep eggs at optimal tem-
peratures, but trade-offs between the needs of parents and offspring are important in helping
to shape this relationship. We know that incubation temperature has a strong effect on rate of
embryo development in a variety of birds including Wood Ducks [30,53]. In this study, incu-
bation periods at high temperatures (29 d) were four days shorter than at intermediate temper-
atures (33 d). In naturally incubated Wood Duck nests, however, incubation periods as short
as 28-29 d are typically rare [30,32,54,55]. As we have noted, faster embryonic development
can be costly by increasing oxidative stress and reducing offspring quality [5]. Additional
increases in developmental rates of late-laid eggs at high incubation temperatures may impose
costs to neonates that cannot be balanced by potential fitness gains associated with reductions
in asynchrony. There also may be intrinsic constraints to further increasing development rates
of late-laid eggs at high incubation temperatures. For example, metabolic rates of embryos
increase as developmental rates increase and can be greater both for eggs laid later in the
sequence (Canada Goose; [21]) and for eggs incubated at higher temperatures (Wood Duck;
[46]). Because rates of embryonic growth and metabolism of late-laid eggs are already high,
the potential for further increases at high incubation temperatures may be limited. In song-
birds that naturally incubate eggs at high temperatures, for example, rates of embryonic devel-
opment increased only slightly when nests were experimentally warmed [56]. It is likely that
intrinsic constraints and costs to neonates of faster growth have been important in establishing
an upper limit to rate of embryonic development.
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As for low incubation temperature, we know low temperatures negatively affect embryonic
development and a variety of phenotypic traits of Wood Duck neonates that carry over and
reduce post-hatch survival and future reproduction [3,4]. Therefore, it was not surprising that
accelerated development of late-laid eggs incubated at low temperatures did not completely
compensate for normal levels of within-clutch developmental asynchrony. This outcome is
another example of how low incubation temperature represents a suboptimal environment for
embryo development.

Maintaining optimal incubation temperatures

Optimum incubation temperatures occur within a narrow range for most birds [1]. Small vari-
ations above and below the optimum temperature can affect reproductive success of birds by
influencing rates of embryo development and neonate phenotypes [3,4,7]. Parents influence
the thermal environment of eggs through changes in the size, structure and composition of
nests [57-59], nest site location and orientation [60,61], timing of nesting [62-64], and incuba-
tion behavior [32]. There also is a positive relationship between ambient temperature and
incubation temperature [32,64]. As ambient temperatures increase, incubating parents fre-
quently spend less time on the nest and experience reduced incubation costs while maintaining
optimum incubation temperatures [32]. However, high ambient temperatures may be costly if
incubation temperatures increase too much. In our study, late-laid eggs incubated at the high-
est temperature (37.6°C) did not develop fast enough to fully mitigate natural levels of within-
clutch developmental asynchrony. Furthermore, developmental asynchrony within clutches
may actually increase with increasing ambient temperatures. In Zebra Finches, for example,
high ambient temperatures caused increased levels of ‘ambient incubation’ of early-laid eggs
that produced greater levels of hatching asynchrony [65]. In King Rails (Rallus elegans), as the
breeding season advanced and ambient temperatures increased, parents began incubation ear-
lier during egg laying which resulted in increased hatching asynchrony [64]. Future research
should explore the potential importance of predicted changes to climate on developmental
asynchrony and reproductive success in precocial birds.

Supporting information
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than body mass alone.
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