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Epidermal growth factor receptor (EGFR) plays a critical role in the
promotion of epithelial cell proliferation and migration. Previous studies
have suggested a cooperative role between EGFR and integrin signalling
pathways that enable efficient adhesion and migration but the mechanisms
controlling this remain poorly defined. Here, we show that EGFR forms a
complex with focal adhesion kinase in epithelial cells. Surprisingly, this
complex enhances local Src activity at focal adhesions to promote phos-
phorylation of the cytoskeletal adaptor protein ezrin at Y478, leading to
actomyosin contractility, suppression of focal adhesion dynamics and
slower migration. We further demonstrate this regulation of Src is due to
the suppression of PTP1B activity. Our data provide new insight into
EGF-independent cooperation between EGFR and integrins and suggest
transient interactions between these kinases at the leading edge of cells act
to spatially control signalling to permit efficient motility.
1. Introduction
Epidermal growth factor receptor (EGFR) is expressed throughout the epider-
mis [1–3] and is required for key keratinocyte functions, such as proliferation
and differentiation. The over-expression of EGFR ligands or upregulation of
EGFR is associated with hyperproliferative skin and epithelial squamous cell
carcinoma epidermis [4–8]. Conversely, the inhibition of EGFR activity has
been shown to impair keratinocyte proliferation, promoting premature terminal
differentiation [9]. EGFR also plays a fundamental role during wound healing,
through the upregulation of keratinocyte proliferation and migration and
EGFR expression is increased following injury [10]. This in turn promotes the
re-epithelization of the wound, which is disrupted when EGFR expression
is lost [11].

Previous evidence has demonstrated that cooperative signalling between
integrins and EGFR can act to enhance cell proliferation, migration and
adhesion [12–17]. EGFR has been proposed to form a complex with β1, β3
and β4 integrins during early cell–matrix adhesion, as well as at cell–cell junc-
tions [14,18–21]. Of the potential pathways proposed to act at the nexus of the
EGFR-integrin cooperative pathway, focal adhesion kinase (FAK) has been the
most widely studied. FAK is a key integrin-dependent kinase and adaptor
protein and has been proposed as an important signalling bridge between
EGFR and integrins. FAK has previously been shown to form a complex
with activated EGFR, potentially via the FAK FERM domain, and this complex
is suggested to enhance EGF-stimulated cell migration in fibroblasts [22–25].
Depletion of FAK in mouse epidermis results in epidermal thinning and
increased apoptosis [26]. FAK is also implicated in the regulation of cell
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adhesion and migration, as FAK-deficient cells exhibit
increased focal adhesions and decreased directional migration
[22,27]. However, the mechanisms that regulate EGFR/FAK-
dependent adhesion and migration remain poorly defined.

Our recent discovery of a novel loss-of-function mutation
in the EGFR gene (c1428G >A, G428D) that leads to the loss
of adhesion in keratinocytes prompted us to study the cross-
talk between EGFR and adhesion proteins [28]. Our data
reveal that EGFR regulates adhesion dynamics and collective
cell migration through the assembly of a complex with FAK,
which in turn controls the phosphorylation of ezrin. This
results in local suppression of actomyosin contractility at
the leading edge of migrating keratinocyte monolayers,
enabling the formation of lamellipodia to stimulate forward
migration. This work provides insight into how EGFR regu-
lates adhesion signalling and shed light on how disruptions
in EGFR signalling lead to the development of skin fragility.
1:210166
2. Material and methods
2.1. Plasmids, siRNA, inhibitors and antibodies
eGFP-FAK was kindly provided by Dr Margaret Frame.
Ezrin-eGFP was kindly provided by Dr Aleksandar Ivetic
([29], King’s College London, London, UK). Talin-eGFP
was kindly provided by Dr Gareth Jones. LifeAct-GFP lenti-
virus was previously published [30]. siR-EGFR-GFP and
Y478E and Y478F in ezrin-eGFP were generated by PCR
site-directed mutagenesis using the Q5® Site-Directed Muta-
genesis kit (New England Biolabs, Ipswich, MA, USA).
siEGFR (J-003114–11, Dharmacon, Lafayette, CO, USA) and
a non-targeting control siRNA pool were from Dharmacon.
AG1478, PP2 and PF228 were all from Tocris (Biotechne,
Minneapolis, MN, USA). Primary antibodies for western
blotting were mouse monoclonal anti-GAPDH (Chemicom,
Mississauga, ON, Canada), anti-GFP (MBL), anti-HSC70
(Sigma Aldrich, St Louis, MO, USA), anti-Src (Millipore,
Burlington, MA, USA) and rabbit polyclonal anti-β1 integrin
(Millipore, Burlington, MA, USA), anti-EGFR (Cell Signaling,
Danvers, MA, USA), anti-Erk1/2 (Cell Signaling, Danvers,
MA, USA), anti-ezrin (Biotechne, Minneapolis, MN, USA),
anti-FAK (Santa Cruz Biotechnology, Dallas, TX, USA), anti-
phospho-EGFR (Y1068, Cell Signaling, Danvers, MA, USA),
anti-phospho-EGFR (Y1137, Cell Signaling, Danvers, MA,
USA), anti-phospho-Erk1/2 (T202, Y204, Cell Signaling,
Danvers, MA, USA), anti-phospho-ezrin (Y478, Abcam,
Cambridge, UK; noting the authors performed validation
experiments to demonstrate the specificity of this antibody to
ezrin; not shown), anti-phospho-FAK (Y397, Cell Signaling,
Danvers, MA, USA) and anti-phospho-Src (Y418, Millipore,
Burlington, MA, USA). Horseradish peroxidase (HRP)-
conjugated secondary antibodies were from Dako (Santa
Clara, CA, USA). Primary antibodies for immunostaining:
mouse monoclonal anti-EGFR (Santa Cruz Biotechnology,
Dallas, TX, USA), anti-E-cadherin (Abcam, Cambridge, UK),
anti-vinculin (Sigma Aldrich, St Louis, MO, USA), rabbit
polyclonal anti-FAK (Santa Cruz Biotechnology, Dallas, TX,
US), anti-phospho-EGFR (Y1068, Abcam, Cambridge, UK),
anti-phospho-MLC (S19, Abcam, Cambridge, UK), anti-ezrin
(Biotechne, Minneapolis, MN, USA), and anti-β-catenin
(Santa Cruz Biotechnology, Dallas, TX, USA).
2.2. Cell culture
Normal human keratinocytes (NHK) were maintained in
high-glucose DMEM (Sigma Aldrich, St Louis, MO, USA)
supplemented with Ham’s F12 Nutrient Mixture (Sigma
Aldrich, St Louis, MO, US), 10% (v/v) fetal bovine serum
(FBS), 2 mM L-glutamine, 1% (v/v) of penicillin–streptomycin
(Sigma Aldrich, St Louis, MO, US) 1 x RM+ containing
40 μg ml−1 hydrocortisone (Sigma Aldrich, St Louis, MO,
USA), 500 μg ml−1 insulin (Sigma Aldrich, St Louis, MO,
USA), 1 μg ml−1 EGF (PeproTech, Rocky Hill, NJ, USA), 0.84
μg ml−1 cholera toxin (Sigma Aldrich, St Louis, MO, USA),
500 μg ml−1 transferrin (Sigma Aldrich, St Louis, MO, US)
and 1.3 μg ml−1 lyothyronine (Sigma Aldrich, St Louis, MO,
USA). Human embryonic kidney 293T (HEK-293T) cells were
maintained in high-glucose DMEM supplemented with
10% (v/v) FBS, 2 mM L-glutamine, 1% (v/v) penicillin-
streptomycin. All cell lines were maintained at 37°C in a 5%
CO2 humidified atmosphere.

2.3. Generation of stable cell lines and siRNA
HEK-293T cells were plated to 40–50% confluency the night
before transfection. A transfection mixture containing 2.1 μg
pCMV8.91, 0.7 μg pMD.G and 3.75 μg of various lentivirus
constructs was mixed in 500 μl of OPTIMEM. This was
followed by the addition of 22.5 μl of polyethylenimine trans-
fection reagent before incubating for 15 min at room
temperature. The mixture was then added to the cells with
media containing no antibiotics for 4 h before replacing
with OPTIMEM for 48 h. Viruses were then harvested and
filtered before adding to NHKs cells containing 8 µg ml−1

polybrene. EGFR or control siRNA was mixed with Dharma-
FECT before adding to cells for 8 h. Media was replaced for
24–48 h before further experiments were performed.

2.4. Immunoprecipitation
NHKs stably expressing EGFR-GFP were washed with cold
PBS before cold GFP-TRAP lysis buffer (50 mM Tris-HCL
pH 7.4, 200 mM NaCl, 2 mM MgCl2, 1% (v/v) NP40, 10%
(v/v) glycerol, protease inhibitor cocktail set 1, NaF, phos-
phatase inhibitor) was added to the cells. Cells were
scraped and centrifuged to remove cell debris. 1 : 1 of GFP-
TRAP_A beads (Chromotek, Munich, Germany) and control
agarose resin (Thermo Fisher Scientific, Waltham, MA,
USA) were washed thrice with GFP lysis buffer were
washed with GFP lysis buffer before cell supernatants were
added to the beads and incubated at 4°C for 2 h. Some of
the supernatants were also set aside as input. Afterwards,
the beads were washed with lysis buffer without detergent
before sample buffer-containing dithiothreitol was added to
the beads, boiled and analysed by western blotting.

2.5. Western blotting
To evaluate protein expression based on their molecular
weights, SDS-PAGE was performed using gel with 8–12%
(v/v) polyacrylamide resolving layer and a 4% (v/v) stacking
layers. The proteins were then transferred to nitrocellulose for
1.5 h at 20 V using a transfer kit (Invitrogen) in Transfer
Buffer. The membranes were blocked using blocking buffer
(5% (w/v) bovine serum albumin (BSA) in TBS, 0.1% (v/v)
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Tween) for 1 h at room temperature. This was followed by
incubation with appropriate primary antibodies in blocking
buffer overnight at 4◦C. After membranes were washed
with TBST, they were incubated with HRP-conjugated
secondary antibodies (Dako, Santa Clara, CA, USA) for 1 h
at room temperature. After washing with TBST, proteins
were detected ECL chemiluminescence kit (Bio-Rad Labora-
tories, Hercules, CA, USA) and directly imaged using the
BioRad imager digital imaging system. Blots were analysed
and processed using BioRad Image Lab.

2.6. Phospho-protein profiling
NHKs were subjected to cytoskeleton phospho-antibody
array (Full Moon BioSystems, Sunnyvale, CA, USA). Briefly,
whole-cell lysates were collected, followed by the labelling
of proteins by biotin. The biotinylated proteins were allowed
to bind to the pre-blocked microarray slides. The detection
of total and phospho-proteins were carried out by the incu-
bation of Cy3-steptavidin. Slides were then transported
to Full Moon BioSystems Inc. for scanning and analysis.
Background signals were subtracted for each spot before
the average median signals were calculated for further analy-
sis. The fold change in phosphorylation was calculated by
dividing the intensity of the phospho-protein by the intensity
of the total protein. This was then normalized against the
control cell line, where 1.5-fold change in phosphorylation
was identified as significant.

2.7. Cell–matrix adhesion assays
Coverslips were coated with 10 µg ml−1 laminin for 1 h at
37°C, and NHKs were plated onto the coverslips for 20,
40 or 60 min before fixation and immunostaining.

2.8. Immunofluorescence
Cells were fixed in 4% (v/v) PFA in PBS, pH 7.4 for 15 min on
ice for single-cell staining, and in 4% (v/v) PFA in PBS, pH
7.4 with 0.01% (v/v) Triton X-100 for 15 min for monolayer
staining. Cells were then permeabilized with 0.1% (v/v)
Triton X-100 in PBS before blocking with 5% (w/v) BSA in
PBS or TBST for 1 h at room temperature. This was followed
by incubation in primary antibodies in blocking buffer at
room temperature or at 4°C, before rinsing with PBS or
TBST. After incubation with appropriate primary antibodies,
secondary fluorescent conjugated antibodies, DAPI and
phalloidin (if required) were added for 1 h at room tempera-
ture, coverslips were washed and mounted onto slides for
subsequent imaging.

2.9. Confocal microscopy
Images of fixed cells were taken on a Nikon A1R inverted
confocal microscope (Nikon instruments, Melville, NY,
USA) with an environmental chamber maintained at 37°C.
Images were taken using a 60 × Plan Fluor oil immersion
objective (numerical aperture of 1.4). Excitation wavelengths
of 488 nm, 561 nm or 640 nm were used. Images were
acquired using NIS-Elements imaging software and were
processed in Image J. For focal adhesion turnover analysis,
cells stably expressing Talin-GFP were taken on a Nikon
A1R inverted confocal microscope (Nikon instruments,
Melville, NY, USA) with an environmental chamber main-
tained at 37°C. Images were taken using a 60× Plan Fluor
oil immersion objective (numerical aperture of 1.4).

2.10. Focal adhesion analysis
To analyse the number and area of focal adhesions at the lead-
ing wound edge, cells were fixed and stained with antibody
against vinculin to label focal adhesions. A line marking the
wound edge was drawn and the length of the wound edge
was measured. A region-of-interest extending 20 µm from the
wound edge was then selected for focal adhesion analysis.
Image was threshold and the number and area of focal adhe-
sions were analysed using ImageJ. For focal adhesion
turnover analysis, time-lapse images of 30 s interval were
taken and uploaded onto Focal Adhesion Analysis Server
(FAAS; https://faas.bme.unc.edu/) to generate adhesion
threshold values for subsequent analysis with the detection
threshold set as 3.5. The assembly and disassembly rates were
obtained through tracking changes in fluorescence intensity
from a single adhesion through a different time frame.

2.11. Contractility analysis
To determine changes in leading-edge protrusion and con-
tractility, cells were stained with antibody against phospho-
MLC and phalloidin. Cells were then scored to determine
whether cells contain lamellipodia and/or phospho-MLC
band. Phalloidin staining was used as a readout for lamelli-
podia, where cells with thick actin bundles at the leading
edge were not considered to be having lamellipodia. Cells
containing a thick phospho-MLC band at the leading cell
edge were quantified as a readout for cell contractility.

2.12. Widefield time-lapse fluorescence microscopy and
protrusion analysis

Cells expressing LifeAct-GFP were imaged using fluorescence
time-lapse microscopy on an EVOS FL Auto2 (Thermo Fisher
Scientific,Waltham,MA,USA)with an environmental chamber
maintainedat 37◦C. Imageswere takenusing 20 ×objectivewith
3.2 MPCMOS camera. Excitation using GFP LED light cubes
were used. Imageswere acquiredusingEVOS software andpro-
cessed using ImageJ where fluorescence images at 0 and 1 h
were used for leading-edge protrusion analysis. Images from
different time points were first threshold to generate binary
image of the leading wound edge. Overlays of images at differ-
ent time point were then generated where the difference in area
can be measured.

2.13. Fluorescence recovery after photobleaching
To analyse GFP-FAK turnover, NHKs expressing GFP-FAK
was analysed using the NIS-elements advanced research soft-
ware (Nikon instruments, Melville, NY, USA). ROIs around
the focal adhesions were photobleached by a bleach pulse
(1 s) at 100% laser intensity at 488 nm. Recovery of fluorescence
within the ROI was monitored over 1 min. Background and
reference ROIs were selected for background and reference
correction. Approximately 20 focal adhesions were averaged
to generate one fluorescence recovery after photobleaching
(FRAP) curve for a single experiment. The experimental data
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were fitted using the one-phase decay in GraphPad. Half-life
and mobile fraction were then calculated.

2.14. Wound healing assays
NHKs were plated in confluency and incubated for 4–24 h
in the presence of 2 mM of calcium to promote junction
formations. After monolayers were wounded and washed,
cell migration into the wound was filmed on an EVOS FL
Auto2 (Thermo Fisher Scientific, Waltham, MA, USA) with
an environmental chamber maintained at 37°C. Images
were taken every hour over 6 h and wound closure was
analysed using Image J.

2.15. Statistical analysis
Data are represented as mean ± standard error of the mean
(s.e.m.). Al statistical tests were carried out using GraphPad
Prism (V. 8). The Student’s t-test was performed for compar-
ing two groups for statistical analysis. Analysis of variance
with Tukey’s post hoc test was used for multiple comparisons.
p < 0.05 was considered as statistically significant.
3. Results
3.1. Epidermal growth factor receptor and focal

adhesion kinase cooperate to control keratinocyte
adhesion

To examine the involvement of EGFRduring early keratinocyte
adhesion, endogenous EGFR was knocked down in keratino-
cytes using siRNA (electronic supplementary material, figure
S1a). EGFR-depleted cells were significantly smaller and had
fewer focal adhesion than control transfected cells, and these
phenotypes were rescued following re-expression of siRNA-
resistant EGFR (siR-EGFR-GFP) (figure 1a). To define roles
for EGFR kinase activity in this process, cells were treated
with the EGFR kinase inhibitor AG1478, resulting in a signifi-
cant reduction in spread cell area and in FAK-containing focal
adhesions at the cell periphery (figure 1b). To explore whether
EGFR activitywas triggered by adhesion in the absence of EGF,
cells were plated on laminin for up to 60 min in serum-free
media, and the activity of both EGFR and FAK was assessed
by western blotting. Data revealed that active EGFR was
detectable at 20 min post-plating and that this was coincident
with activation of FAK (figure 1c) suggesting that both
molecules are activated on similar timescales by integrin-
dependent adhesion. Notably, however, EGFR and FAK did
not colocalize at the periphery of spreading control cells
(figure 1b), suggesting these kinases are spatially segregated
during early adhesion.

Growth of cells in monolayers did not affect basal EGFR
or FAK activity, and notably FAK activity was not enhanced
in cells treated with EGF for short time periods (electronic
supplementary material, figure S1c), indicating canonical
EGFR activation does not enhance FAK activity. To deter-
mine whether localization between EGFR and FAK could
be initiated by migratory cues, cells were grown as
monolayers, subjected to scratch wounding before co-
immunoprecipitation analysis. The result demonstrated an
interaction between EGFR and FAK, but only when EGFR
or FAK activity was inhibited (figure 1d,e). No association
between EGFR and β1 integrins was detected under the
same conditions (figure 1f ). These data collectively demon-
strate that FAK and EGFR form a complex when both
kinases are inactive, and that this complex is not bridged
by integrin-FAK binding.
3.2. Epidermal growth factor receptor and focal
adhesion kinase co-operate to restrict actomyosin
and promote focal adhesion dynamics and
leading-edge protrusion

To determine whether the spreading defects observed upon
EGFR and FAK inhibition translated to a functional outcome,
wound healing assays were performed in the presence of
FAK inhibitor (PF228) and/or EGFR inhibitor (AG1478).
Resulting data demonstrated that treatmentwith each inhibitor
alone resulted in a significant reduction inwound closure com-
pared to DMSO-treated cells, with no additional reduction
when both kinases were inhibited (figure 2a), suggesting that
FAK and EGFRmayoperate through the same pathway to con-
trol collective keratinocyte migration. To determine whether
inhibition of EGFR affected the activation of FAK or vice
versa, the activity of each kinasewas analysed bywestern blot-
ting in wounded and unwounded cells. Data revealed that
each inhibitor was highly effective in reducing the activity of
the specific target but had no impact on activity of the other
kinase (figure 2b), indicating that FAK and EGFR do not
regulate phosphorylation of one another.

To determine the nature of the migration defect upon
EGFR and FAK inhibition in more detail, monolayers of Life-
Act-GFP expressing cells were imaged for 1 h post-wounding
to visualize leading-edge protrusion over time. Analysis of
movies demonstrated a significant reduction in protrusion at
the leading edge following either EGFR or FAK inhibition,
with no further reduction in cells treated with both com-
pounds, again suggesting that EGFR and FAK may operate
via a shared same pathway to regulate F-actin-based protru-
sion at the leading edge (figure 2c). Further analysis of fixed
cells revealed that both inhibitors also promoted assembly of
large actomyosin cables at the leading cell edges that were
not present in control cells (figure 2d ), indicating FAK and
EGFR act to suppress contractility at the leading wound
edge. We confirmed that these pMLC-positive actin cables
were dependent upon RhoA-ROCK signalling, as the
ROCK inhibitor Y27632 effectively blocked assembly of the
leading-edge actin cables in AG1478/PF228-treated cells
(data not shown). To determine whether FAK and EGFR
also regulated focal adhesion assembly and dynamics,
adhesion markers were analysed in both live and fixed cells.
Images of fixed cells stained for vinculin demonstrated a sig-
nificant increase in the number of focal adhesions in cells
along the edge of wounds following EGFR and FAK inhibition
(figure 3a). This was also seen in mouse keratinocytes treated
with EGFR and FAK inhibitors (electronic supplementary
material, figure S1b). In live cells, assembly and disassembly
rates of expressed talin-GFP were also reduced by inhibit-
ing each kinase (figure 3b) in agreement with previous
studies [31–33]. Combining both inhibitors resulted in a
similar increase in focal adhesion number and a comparable
reduction in dynamics to similar levels seen in single
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inhibitor-treated cells (figure 3a,b). Analysis of GFP-FAK
dynamics by fluorescence recovery after photobleaching
(FRAP) also revealed that EGFR inhibition significantly
slowed FAK recovery within adhesions (figure 3c). This
suggests that the inhibition of EGFR activity promotes the for-
mation of an FAK/EGFR complex that acts to restrict FAK
movement and slow adhesion dynamics.
3.3. pY478 ezrin is negatively regulated by focal
adhesion kinase/epidermal growth factor receptor

The lack of additive effect of EGFR and FAK co-inhibition on
migration, adhesion and actin dynamics suggested that these
kinases may act through a common downstream regulator to
control these phenotypes. To determine if this was the case,
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the phosphorylation status of 64 cytoskeletal-associated
signalling proteins were quantified in cells treated with
siEGFR or FAK/EGFR inhibitors. Resulting data revealed
that the depletion and inhibition of EGFR, but not the inhi-
bition of FAK, resulted in a significant reduction in the
phosphorylation of Erk1/2, a well-characterized downstream
target of EGFR activation, as well as the expected reduction
of FAK pY397 levels upon FAK inhibition (electronic sup-
plementary material, figure S2). However, phosphorylation
levels of c-Raf, ezrin and Rho/Rac guanine nucleotide
exchange factor 2 (RhoGEF2) were significantly increased
following EGFR depletion, inhibition or blockade of FAK
activity (electronic supplementary material, figure S2) sug-
gesting these common targets may be negatively regulated
by FAK and EGFR activity.

Ezrin is a member of the ERM family of proteins that
cross-links plasma membrane proteins and the actin cytoske-
leton [34]. As such we hypothesized that increased ezrin
activation could explain the observed increase in contractility
and the decrease in actin dynamics in FAK/EGFR-inhibited
cells. Western blotting validated the increased pY478 ezrin
levels in FAK- and EGFR-inhibited cells subjected to wound-
ing (figure 4a). To further explore the effect of EGFR and FAK
on ezrin during collective migration, ezrin localization was
analysed in leading-edge migrating cells post-wounding.
Images demonstrated that endogenous ezrin localized at
the leading cell edge, as well as cell–cell adhesions in control
cells with no clear changes following EGFR or FAK inhibition
(figure 4b). However, pY478 ezrin localized predominantly to
vinculin-positive focal adhesions, and a significant increase in
pY478 ezrin-containing focal adhesions was seen following
EGFR and FAK inhibition (figure 4c). These data demonstrate
that EGFR and FAK inhibition increase levels of pY478 ezrin
within focal adhesions at the leading edge of collectively
migrating cells.

3.4. Active Src in adhesions is negatively regulated by
focal adhesion kinase/epidermal growth factor
receptor activity

To determine whether enhanced leading-edge localization of
pY478 ezrin was coincident with ezrin forming a complex
with the previously identified inactive EGFR/FAK complex,
EGFR was immunoprecipitated and probed for ezrin. Result-
ing blots demonstrated that ezrin was indeed part of the
EGFR/FAK complex but only when these kinases were inhib-
ited (figure 5a) and therefore forming a complex with one
another (figure 1d–f ). Src has previously been identified as
a kinase responsible for phosphorylating the Y478 site on
ezrin [35], and we confirmed this in keratinocytes using the
Src inhibitor PP2, that blocked pY478 ezrin (figure 5b). Both
EGFR and FAK have previously been shown to activate Src
[23], and we also demonstrated that added exogenous EGF
could stimulate Src activity in keratinocytes (electronic
supplementary material, figure S3a); however, our western
blots and phospho-array analysis showed no significant
global change in Src activity upon EGFR/FAK inhibition
suggesting basal activity of these kinases does not signifi-
cantly contribute to Src activity (figure 2b; electronic
supplementary material, figure S2). We therefore hypoth-
esized that spatial changes to active Src upon EGFR/FAK
inhibition may contribute to enhanced pY478 ezrin within
adhesions. Indeed, immunostaining revealed that pY418 Src
levels were significantly increased at focal adhesions of cells
treated with AG1478 or PF228 (figure 5c), whereas total
levels of pY418 Src remained unchanged in monolayers or
single cells (electronic supplementary material, figure S3a),
consistent with data from our kinase array (electronic sup-
plementary material, figure S2). Moreover, treatment with
a Src inhibitor further suppressed collective migration
following EGFR/FAK inhibition (electronic supplementary
material, figure S3b) suggesting Src acts downstream of
these kinases via additional pathways. These data indicate
that FAK and EGFR restrict active Src localization to
adhesions to promote collective cell migration.

EGFR and integrin-based adhesion are known to regulate
activity levels of specific phosphatases, in particular
SHP2 and PTP1B [36,37]. SHP2 and PTP1B were further
investigated to determine whether EGFR/FAK-dependent
phosphorylation of both Src and ezrin was dependent on
control of these enzymes. EGF stimulation promoted SHP2
activity as previously shown [38]; however, this was not the
case in FAK-inhibited cells. Moreover, SHP2 inhibition did
not alter ezrin phosphorylation (data not shown), suggesting
this phosphatase is not a key player in this pathway. How-
ever, acute PTP1B inhibition by treatment with the selective
TCS401 compound resulted in significantly enhanced localiz-
ation of both pSrc and pEzrin to focal adhesions at the
leading edge of migrating cells (figure 5d,e), very similar to
that seen in EGFR- and FAK-inhibited cells (figure 5c). This
suggests PTP1B is potentially playing a key role in the spatial
regulation of these substrates and that the suppression of this
phosphatase upon EGFR/FAK inhibition leads to enhanced
pSrc and pEzrin specifically to focal adhesions, resulting in
defective actin assembly and cell migration.

3.5. pY478 ezrin enhances focal adhesion size and
leading-edge contractility

To determine whether the phenotypes induced by EGFR/
FAK inhibition were due to enhanced pY478 ezrin, keratino-
cytes expressing phospho-mimic (Y478E) and phospho-dead
(Y478F) ezrin were generated and analysed by microscopy.
Images revealed that over-expression of Y478E ezrin resul-
ted in increased focal adhesion number and enhanced
leading-edge pMLC, and these phenotypes were not further
enhanced by EGFR/FAK inhibition (figure 6a,b). Y478E
ezrin was also strongly localized to the leading edge,
coincident with vinculin containing adhesions (figure 6a).
Conversely, the expression of Y478F ezrin did not enhance
focal adhesion formation or pMLC bundle assembly, and
these cells also showed no response in either phenotype
to FAK/EGFR inhibition (figure 6a). Collectively, these data-
demonstrate that enhanced pY478 ezrin phenocopies EGFR/
FAK inhibition, supporting the model whereby EGFR
and FAK cooperatively suppress pY478 ezrin levels at
leading-edge focal adhesions to enable efficient actin-based
protrusion and cell migration.
4. Discussion
Here, we have demonstrated that cooperative integrin and
EGFR signalling in keratinocytes occurs through the dynamic
assembly of an EGFR/FAK complex, which in turn inhibits
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ezrin phosphorylation through the activation of PTP1B
and inactivation of Src (figure 7). This allows actin filaments
to re-organize to form lamellipodia, promoting forward
migration. EGFR and FAK form a complex with each other,
but not with β1 integrins, consistent with previous reports
[22,39]. However, our data show the inactivation of FAK
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results in inactive EGFR recruitment to focal adhesions,
without changing the overall EGFR phosphorylation. More-
over, a reduction in FAK turnover at focal adhesions at the
leading edge occurs in EGFR-inhibited cells, suggesting
EGFR promotes activation of FAK to enhance focal adhesion
disassembly and cell migration. The results observed here
agree with previous studies showing that active EGFR
promotes disassembly of focal adhesions [31] and defects
in focal adhesion turnover occur in FAK-defective cells
[27,32,33]. The inhibition of FAK and EGFR also causes
an accumulation of actin bundles, inhibiting membrane pro-
trusion, correlating with previous studies where an increase
in F-actin was observed in EGFR-inhibited cells [40] and
larger F-actin cables seen in FAK-knockdown mouse
keratinocytes [33]. It should be noted that our findings in
increased myosin bundles seem inconsistent with previous
findings [17,41]. However, the previous reports focus on
the contributions of EGFR in early cell spreading events,
rather than the collective cell migratory behaviour demon-
strated in this study. Therefore, it is likely that different
EGFR-dependent mechanism was involved in the regulation
of myosin contractility during collective cell migration.
It is currently unclear how inactive EGFR is relocated to
the focal adhesion-containing FAK at the leading edge.
One possibility is the inhibition of FAK results in the
sequestration of membrane-associated inactive monomeric
EGFR to sites of F-actin bundling, leading to the formation
of the inactive EGFR/FAK complex. This may represent a
mechanism for these kinases to slow adhesion dynamics
and migration under low EGF conditions, where both kinases
are inactive. Future studies analysing local dynamics and
dimerization status of EGFR upon FAK inhibition will
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provide further insight into how these complexes may
assemble at the leading edge.

Our data show that inactive FAK binds preferentially to
EGFR. Although FAK has been widely studied as a modulator
of migration in its active form, is also notable that inactive FAK
can act as a binding partner and scaffold for other proteins
involved in migration. One example is the Arp2/3 complex
that binds to inactive FAK at the leading edge of motile cells
[42]. Inactive FAK can also bind to the dynein-associated
protein Nudel and in doing so, displaces Nudel from paxillin
and modulates cell–matrix adhesion. The formation of the
FAK/EGFR complex may therefore represent a new non-
catalytic role for FAK in coordinating EGFR signalling and
provide a mechanism for epithelial cells to actively suppress
migration when EGFR and FAK activity is low.

In this study, we have also identified ezrin as a novel shared
target for EGFR and FAK. We show pY478 ezrin forms a com-
plexwith EGFR/FAKand suppresses focal adhesion dynamics
and migration, which has been shown to also occur in ezrin-
depleted cells [43]. The Y478 residue is not a canonical phos-
phorylation site, such as T567 and Y353, that are required for
the conformational activation of ezrin. Our datawould suggest
pY478 ezrin can actively recruit and enhance F-actin bundles
and actomyosin contractility proximal to focal adhesions. It is
currently unclear whether the phosphorylation at Y478 may
stabilize the open conformation of ezrin, and whether this
modification results in ezrin association with proteins that
control F-actin assembly. We have further shown Y478 phos-
phorylation is promoted by the activation of Src within focal
adhesions, in agreement with a previous study showing this
site to be substrate for Src kinases [35]. Moreover, the inhibition
of PTP1B results in an increase in active Src and pY478 ezrin
within focal adhesions, phenocopying the effects of EGFR/
FAK inhibition. This suggests inactive FAK/EGFR complexes
suppress local PTP1B activation and in doing so, enhance
active Src. It is notable that we also identified RhoGEF2 as
significantly activated in EGFR/FAK-inhibited cells. This
may represent an interesting target for future studies to deter-
mine contributions to Rho-induced actomyosin assembly at the
leading edge.

Previous studies have shown that both EGFR and FAK
can activate Src, and indeed, we saw robust increased Src
activity in EGF treated keratinocytes in our study, but no
change in global Src when EGF or FAK were inhibited. One
potential explanation for this apparent discrepancy lies in
the basal activity state of EGFR/FAK in keratinocyte mono-
layers. Many of the previous studies have been performed
in cancer cells that are highly motile and display increased
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activity of these kinases, meaning they may positively con-
tribute to Src activity, whereas alternative pathways
regulate basal Src activity in keratinocytes. Moreover, most
studies analyse bulk pSrc levels biochemically, rather than
by imaging. Our study shows pSrc is only elevated in focal
adhesions upon EGFR/FAK inhibition, suggesting this is a
tightly spatially controlled event.

EGFR is constitutively expressed in normal skin and
hair follicles and is involved in mediating a wide range of
processes in keratinocytes, such as differentiation and pro-
liferation [2,3,44], as well as in many pathophysiological
conditions, during wounding and injury [45]. Therefore, dis-
ruptions to EGFR-dependent pathways often lead to the
development of skin fragility diseases or epithelial cancers
and therefore EGFR has been a popular target for cancer.
However, cancer patients receiving EGFR inhibitors often
develop eventual resistance to the treatments. Emerging evi-
dence has proposed that EGFR TKI resistance operates
through an integrin-mediated pathway [46,47], with some
showing the increased involvement of FAK in the resistance
of cancer cells to EGFR TKIs [48,49]. The treatment with erlo-
tinib and FAK inhibitors together in EGFR TKI-resistant
NSCLC cells has been shown to effectively reduce cell viabi-
lity [50]. Here, we describe a novel mode of cooperation
of EGFR and FAK signalling, which converge on ezrin, and
has provided the opportunity to investigate possible
treatments such as targeting FAK and/or ezrin in combi-
nation with EGFR to overcome EGFR TKI resistance in
cancer cells.

In summary, we have identified a new role for inactive
FAK/EGFR complexes in focal adhesions in promoting
local phosphorylation of Src, leading to phosphorylation of
ezrin at Y478 in a PTP1B-dependent manner. pEzrin at
focal adhesions promotes spatial assembly of actomyosin
cables that restrict forward migration. Our data provide
new insight into how active and inactive pools of these key
regulatory kinases cooperate to control spatial signalling
events to control epithelial cell adhesion and migration.
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