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ARTICLE INFO ABSTRACT
Keywords: Electroencephalogram (EEG) signals are critical in interpreting sensorimotor activities for pre-
EEG dicting body movements. However, their efficacy in identifying intralimb movements, such as the
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Rehabilitation

dorsiflexion and plantar flexion of the foot, remains suboptimal. This study aims to explore
whether various EEG signal quantities can effectively recognize intralimb movements to facilitate
the development of Brain-Computer Interface (BCI) devices for foot rehabilitation. This research
involved twenty-two healthy, right-handed participants. EEG data were collected using 21 elec-
trodes positioned over the motor cortex, while two electromyography (EMG) electrodes recorded
the onset of ankle joint movements. The study focused on analyzing slow cortical potential (SCP)
and sensorimotor rhythms (SMR) in alpha and beta bands from the EEG. Five key featur-
es—fourth-order Autoregressive feature, variance, waveform length, standard deviation, and
permutation entropy—were extracted. A modified Recurrent Neural Network (RNN) including
Long Short-term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms was developed for
movement recognition. These were compared against conventional machine learning algorithms,
including nonlinear Support Vector Machine (SVM) and k Nearest Neighbourhood (kNN) clas-
sifiers. The performance of the proposed models was assessed using two data schemes: within-
subject and across-subjects. The findings demonstrated that the GRU and LSTM models signifi-
cantly outperformed traditional machine learning algorithms in recognizing different EEG signal
quantities for intralimb movement. The study indicates that deep learning models, particularly
GRU and LSTM, hold superior potential over standard machine learning techniques in identifying
intralimb movements using EEG signals. Where the accuracies of LSTM for within and across
subjects were 98.87 + 1.80 % and 87.38 + 0.86 % respectively. Whereas the accuracy of GRU
within and across subjects were 99.18 + 1.28 % and 86.44 + 0.69 % respectively. This
advancement could significantly benefit the development of BCI devices aimed at foot rehabili-
tation, suggesting a new avenue for enhancing physical therapy outcomes.
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1. Introduction

The brain-machine interface (BMI) is a tool that facilitates communication between humans and machines. It is intended to assist
disabled individuals with limited motor control due to illness or injury but normal mental function [1-3], Invasive methods, such as
inserting microelectrodes into the brain, can be used to interpret neuronal signals from the brain to peripheral devices. However,
non-invasive approaches are considered to reduce the medical risks associated with microelectrode insertion. Functional magnetic
resonance imaging (fMRI) [4,5], magnetoencephalography (MEG) [6,7],electroencephalography (EEG) [8,9],and functional
near-infrared spectroscopy (fNIRS) [10] are the primary non-invasive modalities used in brain imaging techniques [11,12]. Each form
of brain imaging has its own distinct benefits and drawbacks. Cost, weight, portability, and the required temporal and spatial reso-
lution for a particular activity or application play a role in selecting a BMI system. EEG is one of the most common electrophysiological
signals used in neural rehabilitation and Human-Robot Interaction (HRI) [13]. EEG can be used by both healthy and disabled people to
send commands directly from the brain, bypassing physical neural connections such as peripheral nerves and muscles that are not
working properly. Numerous methods for assessing motion intention using EEG in a BMI have been studied (both actual and imag-
ined). To achieve closed-loop control, the user’s motion intentions (real, attempted, or imagined) must be detected from the brain
signals with an extremely short latency. The EEG slow cortical potential (SCP) is a representation of cerebral activity during movement
planning and preparation [14,15]. Numerous studies have been conducted to examine SCP using cue-based or self-paced paradigms
[16]. On the one hand, studies have shown that SCPs can be used to identify movement in the legs. Niazi et al. [17] used offline
recordings to find the SCP during motor execution (ME) and motor imagery (MI) in healthy people, as well as during motor attempts in
patients. Additionally, the viability of eliminating extensive training in asynchronous BMIs based on SCP was investigated. The ability
to decode lower extremity limb motions using EEG has recently been demonstrated by researchers, highlighting the potential for
creating an EEG-based BMI to regain mobility following paralysis. A. Kline et al. [18] used EEG signals from sensorimotor areas (C1
and C2) and parietal cortex areas (PO3 and PO4) to differentiate between left and right leg movements. Tomoyuki et al. [19] employed
a classification technique to categorize the brain processes. As decoder inputs, they employed covariance matrices of the computed
EEG signals. The EEG signals of the subjects were used to identify their walking intentions and to regulate the movements of the
exoskeleton. The gait motion state was decoded using a classification paradigm applying sparse discriminant analysis (SDA), which
performs linear discriminant analysis. The decoding accuracy for the healthy individual was (84.44 + 14.56 %), whereas for the
patients, it was (77.61 + 14.76 %). The motor regions responsible for the lower limb motions in adults (right leg, left leg, and foot) are
near each other [20]. The mesial surface of both hemispheres generates ipsilateral action potentials for foot movement, which overlap
at the central line and are typically so deeply rooted that they are classified on the surface [21]. As a result, with current non-invasive
technology, the classification for various lower limb movements is especially difficult [22]. However, this is more difficult for the lower
limbs than the upper limbs due to the proximity of motor regions that control foot and knee movement. Since the foot area in motor
cortex is located around the central area, there are some issues with using EEG to study neural activity during lower limb movements.
This is because of the low spatial resolution and, EEG cannot accurately measure the activity of subcortical brain regions, most of the
data come from activity near the surface of the skull, within the first centimeters of brain tissue. Because of the small distance between
the left and right hemispheres of the motor cortex for lower limb areas, it is difficult to discriminate between left and right leg
movements [5]. Further, it is worst when it comes to intralimb movements, that is movement of the same limb, such as dorsiflexion and
plantar flexion of the ankle joint. However, most previous studies have focused on recognizing contralateral movements of the upper or
lower limbs, that is left, and right movements. Therefore, the purpose of the present study is to investigate whether the recognition of
intralimb movement via EEG signals is possible and which pattern recognition approaches are suitable for improving classification
performance. In particular, dorsi-flexion and plantarflexion of the right ankle joint movement were observed. These movements are
crucial for maintaining fundamental walking positions and postures. Moreover, most recent research performed the classification of
each subject and reported the average classification measure. In contrast, across-subjects movement classification has seldom been
reported. Therefore, both approaches were implemented to validate the selected EEG quantities and pattern recognition schemes.

2. Related work

As described previously, most related studies have focused on distinguishing between left and right movements. Therefore, this
section reviews state-of-the art method of utilizing EEG signals for decoding upper and lower limb movements. Dong Liu et al. [20],
extracted the SCP to decode ankle plantar flexion by implementing continuous classification and asynchronous detection. They re-
ported an average maximum True positive rate (TPR) was 0.86 + 0.08 for the left leg and 0.83 + 0.09 for the right leg. A. Dillen et al.
[23], investigated the feasibility of decoding lower limb movements based on EEG signals in different frequency ranges and different
decoding pipelines. Then the authors reported the decoding results of each individual with the best decoding pipeline and best fre-
quency results and the average decoding accuracies were 0.844 + 0.088 for able-bodied participants and 0.845 =+ 0.085 for amputees.
These results reveal a large diversity of decoding accuracies and best frequencies among the subjects.

R. Chaisaen et al. [24] investigated the differences in cortical activation between standing and sitting, and how the brain’s intention
modulates the premovement sensorimotor rhythm as they do for switching movements. This study aims to decode continuous EEG
rhythms during action observation, motor imagery, and motor execution for standing and sitting. The results demonstrated that ERD
was prominent during action observation, whereas ERS was typical during MI at the alpha band across the sensorimotor area. The
study also used a combination of the filter bank common spatial pattern (FBCSP) and support vector machine (SVM) for classification
for both offline and classifier testing analyses.

Additionally, J. H. Jeong et al. [25] presented a research study on developing a brain-machine interface (BMI) based on
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movement-related cortical potentials (MRCP) to decode user intentions in real-world environments. The authors proposed a
subject-dependent and section-wise spectral filtering (SSSF) method that considers the in-dividual MRCP characteristics of the subjects
in different temporal sections. The proposed method was evaluated using data acquired during self-initiated walking in a powered
exoskeleton environment. The results show a statistically significant improvement compared to previous methods and successful
decoding results in a pseudo-online analysis.

On the other hand, G. Zhang et al. [26] presented a method for distinguishing between left- and right-hand movements using EEG
signals. They used the LSTM model with an attention mechanism to learn from the temporal patterns of the EEG signals. They also
extracted various features from the different bands of EEG signals in both time and frequency domains and used them to train the LSTM
network for the classification task. Furthermore, they validated their approach for intra-subject and across subjects. The results showed
that the intra-subject accuracy was 98.3 £ 0.9 % using the LSTM + attention mechanism. However, the accuracy dropped to 83.2 +
1.2 % for the across-subject scheme.

Additionally, some systems that use EEG signals to classify different types of brain activity rely on decoding the signals generated
when a person imagines moving different parts of their body, such as their hands, feet, or tongue [27,28]. These signals are used to
infer the intended output command [29], although they may not match what the person wants to do. These signals are used because
they cause different regions of the brain’s outer layer, called the cerebral cortex, to become active, and these regions are far enough
apart from each other that they can be easily distinguished by the EEG sensors [30,31]. However, this approach has some drawbacks,
as these imagined movements are often unrelated to the actual instructions that the person wants to give to the system, and main-
taining these mental images for a long time is neither natural nor comfortable for the user.

For decoding the movements of the same limb, various studies have the majority of research sought to extract various movement-
related features, such as temporal and spectral features [32,33], phase-lock based features [34], and time-frequency (TF) map features
of each source signal in the motor cortex [35]. Other research has proposed the use of other neural network designs for feature
extraction and classification, such as the EEGNet compact convolutional neural network [36] and deep ConvNets [37]. Previous
research has yielded promising results in identifying two-class hand movements with one hand, with a classification accuracy of
approximately 80 %. However, the accuracy of multi-class hand motions of one hand ranged between 50 % and 70 %, which was
insufficient to justify the use of rehabilitation training [38]. R. Ma et al. [39], developed an EEG-BCI paradigm that matched the steps
of both one-sided lower and opposite-sided upper limb motions (also known as compound-limb movements). They evaluated the
efficacy of this paradigm under two conditions: motor execution (ME) and motor imagery (MI). They employed three techniques to
extract characteristics from EEG signals: common spatial pattern (CSP), subject-specific CSP (SSCSP), and filter-bank CSP (FBCSP). The
SSCSP approach achieved the highest average classification accuracy of 89.02 % + 12.84 % for ME and 73.70 % + 12.47 % for MI in
compound-limb paradigms. Motor imagery task showed lower recognition accuracy in comparison with that in the motor execution
task. For instance, unilateral upper limb movement recognition paradigm was proposed by Y. Chu et al. [40], developed a feature
learning approach to recognize six types of motor imagery tasks, such as elbow flexion/extension, wrist supination/protonation, and
hand close/open in the unilateral upper limb. The highest accuracy of 80.50 % was achieved by SVM. Additionally, study reported by
L. Gu et al. [41], compared the recognition accuracies of the motor imagery (MI) and motor execution (ME) in the lower limb
movements. The mean classification accuracy across all subjects is 61.85 % for MI and 62.94 % for ME.

It be conclude from Table 1 that most of the previous studies focused on the within subjects scheme and few of these studies
validated their proposed models with across subject scheme. Moreover, it is seldom to find the intralimb movement recognitions in the
related work. To summarize our contributions in this work, first we utilize different EEG quantities for the intralimb movement
recognition and find which quantity has the impact on the classification accuracy. Second, we validated our proposed recognition
model with two data schemes: within subject and across-subject’s data.

3. Methods
This section describes the data collection and preprocessing of EEG signals. Subsequently, the feature extraction and classification

stages using Machine and deep learning algorithms were demonstrated. Finally, statistical comparisons were performed to explore the
significance of using deep learning and an algorithm for movement recognition accuracy. The overall design of this study is depicted in

Table 1
Summary of related work.
Refer Year Classification scheme Classification Performance
Dillen et al. [23] 2022 Within Subject scheme for Inter limb movement. 0.844 + 0.088
G. Zhang et al. [26] 2019 Within Subject scheme 98.3+0.9%
Across subjects 83.2+1.2%
Liu et al. [20] 2018 Within Subject scheme 84.44 + 14.56 %
Tao et al. [38] 2022 Within Subject scheme 81.14 £ 6.76 %
Chaisaen et al. [24] 2020 Within Subject scheme 82.73 £ 2.54 %
J. Hoon te al [25] 2020 Within Subject scheme 86 + 9.0 %
R. Ma [39] 2023, Within Subject scheme 89.02 +12.84 %
Unilateral Lower limb 62.68 + 4.54 %
Yaqi Chu et al. [40] 2023 Within Subject scheme 80.50 %
L. Guetal. [41] 2023 Within Subject scheme 62.94 %
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Fig. 1. General flowchart of pre-processing, feature extraction and classification.

Fig. 1.

The classification problem started by recording the EEG signal from the subject’s scalp using EEG electrode during the right foot
movements. EMG signals were acquired form the shank muscles to find the movement onset. Then the acquired signal passed through
different preprocessing steps such as resampling, filtering, movement onset detection, artifact removal and epoching. After that,
features were extracted from the processed signal and fed to the machine learning and deep learning stages.

3.1. Experimental setup and data collection protocol

Twenty-two healthy, right-handed male participants (aged 27 + 2.9 years) participated in this study. They were chosen from
undergraduate and graduate students on the campus of the Universiti PETRONAS Teknologi (UTP). For more information of the data
collection procedure reader are advised to refer to our previous study [42]. The Monash University Human Research Ethics Committee
approved this study (MUHREC, CF16,/22165-2016001072). The experiment was conducted in accordance with the Helsinki Decla-
rations, and all participants supplied informed written consent. Before data were collected, all participants were briefed on the pro-
cedure. This study focused on two different ankle joint motion: dorsiflexion and plantar flexion movements (DF and PF) DF represents
class 1 and PF represents class 2. This arrangement allowed for a full range of motion at the ankle joints. For this movement task, the
monitor was set about a meter in front of the participant. He was then instructed to move his ankle into dorsiflexion and hold the
contraction for 3 s. This process was repeated until the specified number of trials (T = 25) had been completed. Following rest periods
between trials, the same plantar flexion of the ankle joint was carried out. Signal Recording and Pre-processing.

Cortical and muscular signals were recorded concurrently using an NVX52 amplifier (MKS cooperation Inc., Russia).

3.1.1. EEQG recording and processing procedure

The EEG data were collected from 21 channels (Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, Cp5, Cp3, Cpl, Cpz, Cp2,
Cp4, Cp6, and Pz) using Ag/AgCl electrodes with MCScap in line with the international 10-10 standard. The reference electrode was
placed on the left and right earlobes, and the ground electrode was set between Fz and Fpz. The signal was amplified using NVX52
(MKS Cooperation Inc., Russia) and sampled at 2 kHz. Before recording the EEG signal, several steps were taken, to ensure that the
electrode impedance was below 5 kQ by injecting conductive electrogel between the EEG electrode and the scalp. The EEGlab Toolbox
[34]was used in the preprocessing stage for all recorded EEG channels. First, a finite impulse response (FIR) bandpass filter was applied
to the EEG signals (0.05-40 Hz). The segmented data stream was then produced (each with a duration of 4s: 1s prior and 3s after the
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onset of the movement). Independent components analysis (ICA) based on the logistic infomax algorithm was utilized to eliminate
discernible artifacts such as ocular motions, heart activity, and muscular contractions [34]. The ICA components containing these
artifacts removed. The residual components were then projected back to induce free-form artifacts in the EEG signal. Modern BMI can
distinguish between two forms of EEG rhythms that correspond to motion intention: sensorimotor rhythms (SMR) and motor related
cortical potentials (MRCP). The EMG signals were recorded and processed to find the movement’s onset detection. Two bipolar
electrodes were placed on each muscle, Tibialis Anterior (TA) and Gastrocnemius Lateralis (GL), and the inter-electrode distance
ranged from 20 to 30 mm. On the lateral malleolus, in addition to the primary sensors, a reference electrode was implanted. After being
attached, the electrodes were taped together to prevent unintentional movement during the test. Then, an NVX52 amplifier (Russian
Medical Computer System) was used to capture EMG signals. Throughout the data collection process, all registered signals were
sampled at 2 kHz. Prior to processing the data, the EMG signals were down sampled from 2 to 1 kHz. To minimize noise levels, EMG
signals were filtered using a fourth-order Butterworth bandpass filter with high and low pass cut-off frequencies of 20 Hz and 400 Hz,
respectively [43]. The actual onset of the ankle movement was determined utilizing a data conditioning and threshold-based approach
to the EMG signal [44].

3.1.2. EEG signal analysis

In this section, the EEG analysis process is demonstrated, and to quantify SCP, the processed EEG data were filtered at [0.1,4 Hz]
with a 2nd order band pass filter. The EEG signal was segmented into 4s segments from —1 to 3 s relative to the onset of movement.
Before extracting the features in the SMR including alpha (8-12) Hz, beta (13-30) Hz and both bands (8-30) Hz, the time-frequency
representation of the EEG channels was analyzed to depict the EEG frequency band distributions during the movement task. Therefore,
a complex Morelet wavelet convolution was employed [45]. The time-frequency representation was then produced by applying the
wavelet transform to the processed EEG signals.

3.2. Feature extraction

The procedure from preprocessing to feature extraction and classification was carried out for each modality SCP, alpha, beat and
SMR (Alpha beta). The features from the 21 EEG channels were evaluated over 0.25 s windows overlapped with 0.125 s. EEG features
were extracted from SCP, including Permutation Entropy (PerEnt), Variance (VAR), Standard Deviation (STD), waveform length (WL)
and 4th Autoregressive model (4th AR). Equations (1)-(5) list the mathematical expressions for the proposed feature. The Shannon
entropy of the distribution over permutations, which can be expressed as shown in Equation (1), is the permutation entropy of the EEG
signal:

H, = = p(n)log, p(r) M

T

where n is the length of the time series, x is a permutation of order D, and p(x) is the empirical probability of z in EEG signals. The
variance formula is expressed in Equation 2

l n
Var:; Z (xi — ) 2

1

where n is the number of elements, x; is the i-th element, and y is the mean of the set whereas Equation (3) represents the waveform
length

N
WL=>"|x — x| 3)
1

where N is the length of the time series, and x; is the i-th element.
Equation (4) represents the standard formula.

(C)]

where N is the number of samples in the signal, x; is the value of the signal at sample i, and mu is the mean value of the signal and
Equation (5) expressed the 4th order auto-regressive model.

P
X = — Zai Xio1 +w; )
T

where p is the order of the model, g; are the coefficients, x; is the i-th element of the EEG signal, and w; is the error term.
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3.3. Classification algorithms

In this study, two different techniques, machine learning and deep learning, were utilized after feature extraction from the pro-
cessed EEG signals. Two well-known machine learning classifiers, SVM and kNN, were implemented, and modified RNN deep learning
models including LSTM and GRU, were employed to classify right foot movement. The results of each model are presented and
compared using statistical tests.

3.3.1. Machine learning classifiers

The final stage of separating intralimb movement involves applying one of the two classification models: SVM or kNN. This study
used binary class SVM classifiers with the RBF-base kernel as the basis. Equation (6) define the expression of the RBF [46]. The binary
class classification accuracy on the training dataset was optimized using a smoothing parameter s with a value of 0.5.

2
k(x,y) =exp (M> ®)

202

where x and y represent the two data points in the feature space and o represents the RBF’s width.

The kNN method becomes more robust and reliable as a non-parametric classification algorithm when k > 1, as it reduces the
impact of noisy points in the training set. Euclidean distance was used to measure the similarity between each trial and the training set
as shown in Equation (7), and the classifier was set to output k = 3 for the highest classification accuracy [47,48].

@

where d, is the Euclidean distance, x and y is two points in the feature space and N is the window length.

3.3.2. Deep learning models

Deep learning based on RNN modified models was used to classify the foot movement for intra and across-subjects’ schemes. These
two models were LSTM and GRU networks, respectively. A Recurrent Neural Network (RNN) is a type of neural network that can
process sequential data, such as time series. However, RNNs suffer from vanishing or exploding gradients, which means that they
cannot learn long-term dependencies between important events that are far apart in time.

LSTM is a special kind of RNN that solves this problem by having memory cells that can store, forget, or output values over long
periods of time. LSTM network consists of LSTM blocks that have three gates: input (i), output (Oy), and forget gate (f,), which control
the flow of information in and out of the memory cells as depicted in Fig. 2. LSTM can preserve the error signal used to update the
network weights through backpropagation through time and layers. By keeping a more stable error signal, they enable recurrent nets
to learn from many time steps [49].

The cell structure consists of different parts. The cell state is output by the horizontal line at the top of the diagram, and its data can
be modified or deleted by certain gates. The first interaction in the cell state is produced by the sigmoid layer, which filters out the
irrelevant data from the (ht-1) and (xt) sources and discards them from the cell state (ft).

ftZG(Wf -[ht—]\,xz] +bf) 8)

There are two steps in the cell input selection process. A sigmoid layer determines the key values and updates the most significant
ones in the first phase.

ir=0(wi [h1,x]+b;) >

Then in the second stage as shown in Equation (8), a tanh layer combines past information with newly created candidate data (C,).
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Fig. 2. Cell structure of the LSTM model.
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C =tanh(w, [h—1, %]+ b.) (10)

As a final step, Equation (9) shows how the updated cell state Finally, the data to forget (ft) are removed and the previously selected
data (C,). is obtained by discarding the data to forget (ft) and incorporating the previously selected data (Ct).

Ci=f* Cy+i* G an

A Gated Recurrent Unit (GRU) is a variant of the LSTM that is more simplified and efficient. It merges the input and forget gates into
one “update gate” and adds a “reset gate” to control the information flow. The final model is less complex than standard LSTM models
and is gaining more popularity [50]. A GRU, like LSTM, regulates the information inside the unit, but it does not have a separate
memory cell. Fig. 3 illustrates the structure of the GRU cell.

Equation (12) through (15) illustrate how the GRU model determines the current state value ht by taking into account both new
input (xt) and past information (ht-1).

re, =0 (wye Jhi_1,x,)) (12)
u,=o(w, [h_1,x]) (13)
hy = tanh(w; .[re, * h,_1,x,]) a4
Bo=(1— w) % by +u, % hy (15)

where, wre , W, , and w;, represent the weight parameters of the GRU network; re; and u, stand for reset and update gates, respectively. o
for sigmoid function.

For the data partitioning, 10-fold cross validation technique was applied for both schemes, within subjects and across subjects. The
classification performance of the different machine learning and deep learning approaches were statistically compared by employing
one paired t-test.

4. Results
4.1. Result of EEG signal analysis

The SCP and other EEG quantities were evaluated before the feature extraction process. Then the features were extracted from each
quantity and fed to the classifiers. For instance, the average SCP was calculated in the Cz area from —1 to 3 s before the onset of the PF
and DF movements is illustrated in Fig. 4. Negative deflection in both motions was first observed before the beginning of the motion
and reached its minimum deflection immediately after the start of the motion. In 0.16 s following the onset of the PF movement, the
SCP reached its maximum negative peak (MP) of —11.47 pV. In contrast, the maximum negative deflection during DF movements
occurred at 0.2 s and —9.46 puV.

4.2. Time frequency analysis results

Fig. 5 illustrates the average TF plot over the participants of the EEG channels in the right and left motor cortex during the ankle
joint motion. The phenomenon that causes a drop in power in the alpha and beta bands (8-12 Hz and 13-30 Hz, respectively) is
referred to as event related desynchronization. The blue color represents this phenomenon. ERD. While the red color shows an increase
in power and reflects the event-related synchronization ERS. The changes were assessed in relation to the baseline interval preceding
the onset of the movement. In addition, the ERD can be seen to be at its most prominent between the frequencies of 8 and 30 Hz, as

ht-l

4

Hidden state

A 4
A d
X, Reset Gate Update Gate Candidate
t for a hidden

state

Fig. 3. Cell structure of the GRU model.
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Fig. 4. The Average SCP of the PF and DF in the Cz area.

50
- - ﬁw
N N N
z z kS
= <= =
> >
M by o 30
€ c €
1] & ]
3 3 3
o o o
g & €20
w w w

2
50
N N
) £
Fy 330
c c
g H .
-4 -4
2 20
'S S
10 -1
0s 1 15 4 05 i 0 05 1 15 2
Time (s) Time (s)
FCz FC1 -2

N N N
z T z
= = =
> > >
Q o3¢ o 30
<€ € €
@ @ ]
3 2 2
o o o
e 220 220
w Y w

—
4 05 0 0s 1 15 2 4 05 0 0s 1 15 2 4 05 0 05 1 1.5 2
Time (s) Time (s) Time (s)

Fig. 5. The Average Time-frequency Map representation of the motor cortex area.

shown in Fig. 5.

Fig. 5 also shows that alpha and beta are the main bands that changed during the foot movements. Where the activity of the
movement was associated with the desynchronization in both alpha and beta band and then synchronization started with end of the
movement task.
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4.3. Feature extraction and classification results

4.3.1. Within subjects classification results

Table 2 demonstrates the average classification performance of the intralimb movement of the right foot (DF and PF) using four
EEG quantities: SCPs, alpha band, beta band, and SMR of both alpha and beta bands and four different classifiers including nonlinear
SVM, kNN, GRU and LSTM. The SCP band reported the lowest classification performance among all EEG quantities regardless of
classification algorithms. On the other hand, Beta band outperformed the other EEG quantities with both machine learning and deep
learning approaches. In terms of classification algorithms, both LSTM and GRU achieved better than kNN and SVM.

Table 2 shows that there are significant differences in the accuracy, sensitivity, and specificity among different combinations of
EEG bands and classifiers. For instance, the classification performance was enhanced where the accuracy increased from 82.57 % using
SCP and SVM to 91.98 % when implementing GRU model with SCP. Whereas the performance of the classification was better for the
alpha band in comparison to SCP where the differences is around 7.5 % when using kNN and 3.5 % for SVM. Similarly, the beta band
outperformed the other bands and recorded the highest accuracy for all the classifiers models with a (p < 0.00001). particularly, GRU
model recorded the highest classification performance in contrast with the SVM and kNN. Despite the superiority of the GRU, the
differences in the classification performance with LSTM were insignificant.

Table 3 lists the p-values of the different combinations of EEG quantities and classifiers algorithms in contract with GRU model. The
p-values reflects the significance of the classification performance enhancement using GRU model. Expect for those of the LSTM where
the differences were insignificant.

Fig. 6 illustrates a comparison of the classification accuracy for the EEG bands with different classification models.

4.3.2. Across-subjects classification results

The details listed in Table 4 compared the four algorithms for EEG classification: SVM, kNN, GRU, and LSTM. Similarly, for the
within-subject scheme four EEG quantities were used: SCP, Alpha, Beta, and SMR to examine the classification performance of right
foot movements. In contrast to the within subject scheme results, the classification performance dropped from (10-20) % in average for
the different classification models. Nevertheless, the LSTM model was superior to the other algorithms in all the classification metrics.
The differences between LSTM and the other machine learning algorithms (SVM and kNN) were statistically significant as illustrated in
Table 5. However, the differences between LSTM and GRU was insignificant (p > 0.05).

5. Discussion

This study investigated the discrimination of intralimb movement from different quantities of EEG signals and implemented
different classification approaches that could improve prediction accuracy and enable the development of BCI devices for foot
rehabilitation. This work aimed to recognize intralimb movement of the ankle joint using cortical signals. The acquired EEG signals
were processed, and four EEG quantities were extracted, including the SCP, alpha, beta and SMR signals. These quantities were utilized
to recognize intralimb movements separately. Particularly in SCPs-based classification, alpha rhythm-based classification, beta
rhythm-based classification and SMR-based classification. Furthermore, the intralimb movements were used in across-subjects and
within-subjects classification experiments. The features from the EEG data were extracted using four time-domain features and the
fourth autoregressive model. For the goal of classification, an LSTM model and GRU were used, and two machine learning classifiers
were used for comparison and to highlight the importance of utilizing a deep learning technique.

The SCP-based classification showed the lowest performance among the EEG quantities regardless of the classification model. This
low recognition accuracy is because motor areas that enable movement of the lower limb are located in close proximity to each other.
The slow cortical changes linked to movement preparation in the time domain are represented by SCPs [51]. For both ankle joint
movements, the MP during PF movement was greater than that during DF movement. The peak of the MRCP occurred 0.16 s after
movement commencement, with a maximum peak (MP) of —11.47 pV during the PF. During the DF movements, the maximum
negative deflection reached —9.46 pV MP at 0.2 s. The magnitude of the negativity of the MRCPs can be correlated with the amount of

Table 2
Classification performance metrics (Average value for within-subject scheme).
EEG quantities Classification metrics SVM kNN GRU LSTM
Mean + Std Mean + Std Mean + Std Mean + Std
SCP Accuracy (%) 82.57 +£13.21 82.94 + 13.96 91.98 + 8.25 91.37 £9.17
Sensitivity (%) 81.84 + 14.88 83.85 + 13.35 92.58 + 7.02 91.97 + 8.17
Specificity (%) 83.99 +13.2 82.22 + 14.64 91.70 + 9.65 91.02 + 10.06
Alpha Accuracy (%) 86.89 + 9.63 90.26 + 8.26 97.56 + 4.03 97.67 + 3.06
Sensitivity (%) 87.35 + 9.87 91.30 + 7.08 97.81 + 2.75 97.70 £+ 3.15
Specificity (%) 88.72 +10.98 89.45 + 9.61 97.45 £5.13 97.67 £+ 3.19
Beta Accuracy (%) 89.16 + 9.18 92.711 £ 7.32 99.18 + 1.28 98.87 +1.80
Sensitivity (%) 88.46 + 10.2 94.12 + 6.43 99.19 + 1.31 98.70 + 1.80
Specificity (%) 91.63 + 10.73 91.45 + 8.82 99.24 + 1.2 99.02 + 1.87
SMR Accuracy (%) 88.14 + 8.79 91.92 +7.10 98.76 + 2.03 98.57 +£ 2.18
Sensitivity (%) 87.66 + 8.71 92.78 + 6.60 98.79 + 2.09 98.52 + 2.22
Specificity (%) 90.64 + 10.8 91.12 + 8.51 98.78 + 2.03 98.66 + 2.15
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Table 3
Statistical Comparison of Different classification algorithms’ performance with GRU model.
p - values
SCP Alpha Beta SMR
KNN Accuracy 2.72E-05 7.82E-06 8.73E-05 2.15E-05
Sensitivity 3.66E-05 8.62E-06 2.68E-04 1.96E-05
Specificity 4.03E-05 2.92E-05 1.33E-04 9.62E-05
SVM Accuracy 1.02E-05 1.34E-07 9.92E-06 6.38E-07
Sensitivity 7.53E-05 7.95E-06 3.54E-05 1.32E-06
Specificity 1.04E-03 7.95E-05 1.41E-03 4.85E-04
LSTM Accuracy 1.09E-02 0.334 0.041 0.0832
Sensitivity 0.0181 0.3173 0.0237 0.0430
Specificity 0.05769 0.3427 0.1341 0.2598
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Fig. 6. Classification Comparison of different machine and deep learning models.
Table 4
Classification performance metrics (Average value for across-subjects scheme).
EEG quantities Classification metrics SVM kNN GRU LSTM
SCP Accuracy (%) 62.30 + 1.79 61.60 + 0.91 67.55 + 3.35 70.49 + 1.15
Sensitivity (%) 65.55 + 2.96 62.87 + 2.66 74.20 £ 9.43 70.34 + 4.48
Specificity (%) 59.55 + 4.67 60.45 + 1.63 61.06 + 14.3 71.46 + 3.15
Alpha Accuracy (%) 64.40 + 1.35 67.81 +£1.24 78.50 + 2.31 79.95 + 3.54
Sensitivity (%) 66.63 + 2.62 72.08 +£1.63 80.53 + 4.88 78.78 + 8.81
Specificity (%) 62.36 + 2.23 63.52 + 1.63 76.52 + 8.6 81.39 + 3.16
Beta Accuracy (%) 71.34 £ 1.53 69.12 +£1.51 86.44 + 0.69 87.38 + 0.86
Sensitivity (%) 66.70 + 1.27 74.96 + 2.38 87.28 +£1.34 87.17 + 0.78
Specificity (%) 76.04 + 3.08 63.23 + 2.07 85.58 + 1.10 87.57 + 1.82
SMR Accuracy (%) 69.30 + 1.34 68.90 + 1.57 85.95 + 0.90 87.08 + 1.20
Sensitivity (%) 64.86 + 2.36 75.49 £1.97 86.04 + 1.52 88.25 + 1.76
Specificity (%) 73.98 + 2.48 61.99 + 2.12 85.87 + 1.63 85.90 + 1.38
Table 5
Statistical Comparison of Different classification algorithms’ performance with LSTM model.
p-values
SCP Alpha Beta SMR
KNN Accuracy 9.81E-10 3.52E-06 1.98E-10 1.70E-11
Sensitivity 4.30E-05 0.0413 5.19E-08 5.84E-10
Specificity 8.42E-06 3.01E-10 3.01E-10 8.08E-11
SVM Accuracy 2.26E-07 5.90E-07 1.42E-09 6.66E-11
Sensitivity 0.0493 8.15E-08 7.41E-14 9.86E-10
Specificity 2.71E-04 8.15E-08 5.45E-06 1.26E-07
GRU Accuracy 0.021 0.177 0.025 6.89E-03
Sensitivity 0.104 0.309 0.398 0.017
Specificity 0.0282 0.0547 9.48E-02 0.474
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energy required for the action, whereas the MRCPs’ onset period is defined as the time spent planning and preparing the movement
[52]. Numerous studies [53,54] have used MRCPs for movement intention detection and recognition. According to Ref. [53],
self-paced upper limb reaching movements can be identified with approximately 80 % accuracy using MRCP pre-movement corre-
lations. In a recent related study, the properties of MRCPs were also used to predict single-trial foot torque movement. Depending on
the wavelet employed and the classification procedure, the classification accuracy is approximately 84.2 %. A recent study focusing on
recognizing pre-movement states from MRCP correlations when executing ankle dorsiflexion reveals a movement execution success
rate of 82.5 % [55]. In comparison with the related work, our proposed work based on the time domain features and GRU deep learning
model produced higher classification performance with the SCP with an average accuracy was 87.66 %.

On the other hand, evidence from time-frequency mapping, alpha ERD, and beta ERD indicates a bilateral control phenomenon
during the actual execution of movements. During movement preparation or intention, the alpha ERD was primarily contralateral,
suggesting a contralateral role for brain excitability. In accordance with prior research [13], the alpha ERD observed in this inves-
tigation began in the contralateral region and became bilaterally symmetrical during movement execution. In the current work, alpha
oscillations in the central brain region represented synchronized neuronal population activity. Recent research has exploited SMR in
alpha and beta oscillations to detect movement intention and movement execution [56-58]. The contralateral and ipsilateral motor
cortices were engaged in motor tasks, even though the SCP and SMR characteristics in lateralization phenomena differed. The co-
ordination of motor tasks requires brain networks within and across hemispheres for both bilateral and unilateral movements [59].
Recognitions in the beta band have the highest classification accuracies than other EEG quantities, with an accuracy of 97.62 %. In
contrast to the within-subject scheme, the classification performance measures dropped dramatically in the across-subjects’ scheme,
and this conclusion was expected due to the high variability among the subjects. However, GRU and LSTM showed robust and
satisfactory performance compared with kNN and SVM. In the current study, implementing deep learning approaches based on LSTM
and GRU with EEG quantities significantly impacted the classification performance. Table 6 depicted the significant improvement of
the proposed work in comparison with related work. Hence, the results of this study highlighted the potential of the deep
learning-based approach’s for speeding up the development of a BCI for lower-limb rehabilitation in the future.

Furthermore, the developed EEG systems can influence the growth of biorobotic assistive devices that can support human
movements and improve quality of life. This study has some limitations; the experiments in this work were carried out with healthy
subjects. Therefore, the reliability of the proposed framework remains to be tested using data from patients with movement disabilities
or neuromuscular diseases. Additionally, include female subjects to the experiment will increase the robustness and make the
developed model more generalized. Another limitation is that the current work was conducted offline and moving to real world and
real time application is our future direction.

6. Conclusion

Robotic devices are increasingly used in rehabilitative medicine, mainly because they can be controlled by neural signals. This
study demonstrated the classification of intralimb movement. Four EEG correlates, including SCP, alpha band, beta band, and SMR of
(alpha and beta) bands were analyzed. The outcomes revealed that SCPs showed the lowest accuracy compared to other EEG quan-
tities. Furthermore, the combination of the beta band and GRU and LSTM models significantly enhanced the classification accuracy in
both across- and within-subjects schemes. The highest accuracy was 99.18 + 1.28 % when the beta band and GRU were used for the
within-subject scheme. In the across-subjects scheme, the LSTM and SMR band outperformed the other combinations with accuracy of
87.38 £ 0.86 %
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publication of the results derived from their data.
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Table 6
Comparison of the proposed work with the related works.
Ref Intralimb movement ~ Within Subject scheme  Across Subject scheme  Within Subject scheme Accuracy ~ Across Subject scheme Accuracy
2018, [20] 84.44 £ 14.56 %
2019, [26] X X 98.3+09% 83.2+12%
2020, [24] 82.73 £ 2.54 %
2022, [23] X 0.844 + 0.088
2023, [39] X X X 89.02 +£12.84 % 62.68 + 4.54 %
2023 [40] 80.50 %
Our Work X X X 99.18 +£1.28 % 87.38 £ 0.86 %
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