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Abstract: The prevalence of Helicobacter pylori infection remains significant worldwide and it depends
on many factors: gender, age, socio-economic status, geographic area, diet, and lifestyle. All successful
infectious diseases treatments use antibiotic-susceptibility testing, but this strategy is not currently
practical for H. pylori and the usual cure rates of H. pylori are lower than other bacterial infections.
Actually, there is no treatment that ensures complete eradication of this pathogen. In the context of
an alarming increase in resistance to antibiotics (especially to clarithromycin and metronidazole),
alternative and complementary options and strategies are taken into consideration. As the success of
antibacterial therapy depends not only on the susceptibility to given drugs, but also on the specific
doses, formulations, use of adjuvants, treatment duration, and reinfection rates, this review discusses
the current therapies for H. pylori treatment along with their advantages and limitations. As an
alternative option, this work offers an extensively referenced approach on natural medicines against
H. pylori, including the significance of nanotechnology in developing new strategies for treatment of
H. pylori infection.

Keywords: Helicobacter pylori; antibiotic resistance; alternative therapy; nanoformulations

1. Introduction

The Helicobacter pylori is a helix-shaped, microaerophilic, Gram-negative bacterium,
with high motility owing to its four to six flagella, capable of colonizing the gastric mucosa
and thereby establishing infection. Most infected subjects remain asymptomatic for a long
time, but this colonization produces a silent destruction of the gastric mucosa. Since its
discovery in 1982, by Australian doctors Barry Marshall and Robin Warren, more and more
studies have proven that H. pylori is responsible for atrophic gastritis, peptic ulcer, and
gastric malignancies [1,2]. From a physiological point of view, H. pylori is microaerophilic,
requiring oxygen to survive, but at a lower concentration than in the atmosphere. Another
special feature of this bacteria is its nitrogen metabolism. As amino acids and urea are
well known major sources of nitrogen in the gastric environment, the main necessary
amino acids for H. pylori are valine, methionine, arginine, histidine, isoleucine, leucine,
phenylalanine, fermentation being the most important mode of amino acid utilization [3].
On the other hand, all H. pylori strains produce high amount of urease (which accounts for
up to 6% of total bacterial protein) as one of its adaptation methods to overcome stomach
acidity. The mechanism involves the hydrolysis reaction of urea which results in ammonia
and carbonic acid, and hence, neutralizes the strong acid in its environment, due to their
buffering properties.
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The arginase of H. pylori also plays an important role for acid protection in vitro, as
the only pathway of arginine catabolism in H. pylori is that initiated by arginase [4,5].
In addition, another protection mechanism is involved, chemotaxis, H. pylori being able
to detect the pH modifications in the gastric mucosa and move towards the less acidic
region [6].

The H. pylori genome has been completely sequenced in 1980 being isolated from a
patient suffering from gastritis [7]. It has a circular chromosome of 1,667,867 base pairs
and 1590 predicted coding sequences [8]. The results suggest that the basic mechanisms
of replication, cell division and secretion are similar to those of E. coli and H. influenza [8].
However, the size of its core genome (namely the number of genes present in isolates)
varies depending on the number of analyzed strains and their geographical origin. Also,
based on genome investigation, the virulence of H. pylori species has been related to their
ability to produce a cytotoxin-associated protein (CagA) and active vacuolating cytotoxin
(VacA) [9]. VacA is known to damage epithelial cells, disrupts tight junctions, and causes
apoptosis, while CagA may cause inflammation and is a potentially carcinogen agent [10].

Actually, due to existing diversity between strains of H. pylori, the specific strain that
infects a person can predict the outcome. On the other hand, the clinical aspects and the
epidemiology of H. pylori infections have been drastically changing in the last decades,
especially in developing countries. Despite the treatment regimens and international
guidelines developed by specialists in microbiology, there is currently a noticeable failure,
mainly due to H. pylori resistance to several antibiotics, in the context of global increase
in antibiotic consumption in the general population [11,12]. For example, WHO admitted
that clarithromycin-resistant strains of H. pylori are among the twelve priority pathogens
for which novel antibiotics or alternatives are urgently required [11,13]. Many efforts
have been made in order to understand the mechanisms of antibiotic resistance and hence,
the sound understanding of its genetics and physiology attracted a huge interest form
both fundamental and applied microbiology researchers, along with ecology, medical, and
veterinary disciplines [14–16].

In the context of increasing rates of antibiotic-resistant H. pylori strains, the risk factors
and prevalence on global population, the aim of our work is to highlight the main draw-
backs of currently used treatment regimens against H. pylori and at the same time, to empha-
size the huge potential of natural alternatives, plants extracts and new formulation design
and strategies to combat this pathogen. Special attention is also given to nanotechnological
formulations, with huge potential for tissue microenvironment-responsive treatment.

2. Prevalence and Risk Factors Relevant for Therapeutical Support
2.1. Prevalence of H. pylori Related to Different Geographic Areas and Global Population

The prevalence of H. pylori infections varies worldwide in terms of epidemiological, demo-
graphic and socioeconomic criteria. A systematic review with meta-analysis from 73 countries,
in six continents, conducted by Zamani et al. for the period 1 January 2000–31 June 2017, re-
vealed an overall prevalence of 44.3% worldwide and it is suggested that approximately
60.3% of the world population was infected in 2015 [17,18].

In terms of geographical distribution, Latin America and the Caribbean have shown
the highest rate of infection in the world (59.3%), while at the opposite pole, in the Northern
America, the prevalence was only 25.8%. While in North and South America, the pooled
data presented a good homogeneity, large variations in country-based prevalence were
noticed in Asia and Europe. For example, a high rate was observed in the population of
Kazakhstan (79.5%) compared to those from Indonesia (10.0%), while in European countries,
Serbia seems to have the highest prevalence (88.3%) in opposition to Belgium (11.0%) [19].
As expected, in terms of demographic and socio-economic criteria, in developing countries
the rates were higher compared to the developed ones (50.8% vs. 34.7%), which can be
related to the lifestyle and environmental parameters, fact agreed by another meta-analysis
reported by K.Y. Hooi et al. [18].
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Although the risk of exposure increases with the age, some studies suggest that
children who became infected with H. pylori, were infected at very young age (<5 years),
and approximately 85% have long asymptomatic periods and clinical manifestations are
non-specific [20,21]. Another study from 2006 in Ireland concluded that most children
become infected with H. pylori at a very young age, and the risk of infection declines rapidly
after 5 years of age [20]. Obviously, children living in the most crowded conditions are at
the greatest risk for H. pylori acquisition. An inverse correlation was noticed between the
mother’s education and H. pylori positivity in children. On the other hand, it is generally
accepted that breast-feeding plays a protective role against the acquisition of H. pylori
infection [22,23]. However, in children, the treatment should be considered in a different
approach than in adults, as the immune mechanisms are different.

In terms of epidemiology, many studies have proposed that acquisition of H. pylori
occurs via common environmental sources such as drinking water [24,25], animals or
animal products [26–28]. The most probable route of transmission seems to be the ingestion
route [29].

Even if H. pylori-associated disorders usually regress or heal completely after suc-
cessful treatment with antimicrobials, the available antimicrobial therapies for H. pylori
infection have many shortcomings and side effects. A combined therapy is very often
required, especially because of the development of antimicrobial resistance [30].

2.2. Risk Factors: Oncogenicity

H. pylori is extremely variable in prevalence, taking into consideration risk factors
such as: age, gender, socio-economic status, geographic area, and diet and lifestyle. It is
widely accepted that lower socio-economic status is linked to poor hygiene conditions
and lack of sanitary education, thus leading to higher rates of H. pylori incidence. That is
why the prevalence of H. pylori infection is higher in developing countries and lower in
high-industrialized countries. Beside the socio-economic status, deficient sanitation, and
crowded living conditions, which are well known risk factors, some studies suggested
that smoking, use of nonsteroidal anti-inflammatory drugs, 0 blood group, high body
mass index and family history of gastric disease are also considered risk factors in the
acquisition and transmission of H. pylori [31–33]. Diet may be another risk factor for
H. pylori infection. Several epidemiological studies have revealed that good dietary habits
such as consumption of green tea, fruits, vegetables with high levels of carotenoids, folate,
vitamin C and phytochemicals are protective against H. pylori infection and gastric cancer
risk [34–38].

Salt and some transition metals such as iron, zinc, nickel, can alter H. pylori virulence
and accelerate H. pylori-dependent disease progression [34]. H. pylori can also exert its
carcinogenesis effect directly over its virulence factors such as cytotoxin-associated gene A
(CagA) containing the Cag Pathogenicity Island (CagPAI), vacuolating cytotoxin A (VacA).
The strains protecting CagA can cause more inflammatory responses (blood group antigen-
binding adhesin A (BabA) and progression to gastric cancer. CagPAI encodes a bacterial
type IV secretion system which secretes CagA and peptidoglycan into the epithelial cells.
CagA and peptidoglycan induce multiple cellular signaling pathways such as MAPK
cascade and phosphoinositide-3 kinase (PI3K-AKT) signaling pathways, respectively, as
described in Figure 1. The explanation is based on the fact that the most important virulence
factors expressed by H. pylori, VacA and CagA toxins, are transcriptionally regulated in by
iron [39].
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Figure 1. Carcinogenic effect of H. pylori through different mechanisms.

On the other hand, several studies have shown a correlation between zinc intake and
H. pylori-dependent disease progression in the Asian population, which are well known
related to CagA strains of H. pylori [34,40–42]. There are also differences between genders
and age. A systematic review and meta-analysis published in 2017 showed that male
gender is associated with a higher prevalence rate for H. pylori than the female gender,
both in grown-ups and in children [43]. In a study from 2003 that included 307 children
and 604 adults, H. pylori was diagnosed in 40 children and 308 adults [44]. There is
also evidence that it plays a significant role in gastric cancer [45–50]. Gastric cancer is the
number 5th most frequently diagnosed malignancy worldwide. It has a poor life expectancy
despite medical treatment, being the 3rd cause of death due to cancers worldwide [45].
H. pylori has been recognized as a first-class risk factor for gastric malignancies by the
International Agency of Cancer Research since 1994. Based on histological characteristics,
gastric cancers can be classified in two major types: adenocarcinoma and lymphoma
of gastric mucosal-associated lymphoid tissue (MALT). According to several scientific
data, the second one is less common than adenocarcinoma (only 3% of all gastric tumors),
while MALT-lymphoma is in 90% of cases caused by H. pylori infection [46,47]. Effective
eradication of H. pylori has been proved to improve clinical outcome of patients suffering
from gastric ulcers, preventing clinical relapses, lowering the risk of MALT-lymphoma
incidence and inducing regression in diagnosed MALT-lymphomas [51–53]. Therefore, it is
of crucial importance to evaluate the time frame in which H. pylori causes a carcinogenic
effect, because beyond this time point, the intervention is significantly less effective. Taking
into account the virulence factors and metabolic processes of H. pylori in developing gastric
carcinogenesis, a complex approach should be consider including multiple measures
and usage of appropriate antibiotics, eventually combined with natural biomedicines are
necessary in order to eradicate this bacterium.

3. Current Treatment Regimens for H. pylori Infections

H. pylori seen as a bacterial infection, has been intensely studied, concerning a proper
treatment. Although in vitro testing made it seem sensitive to a wide range of antimicro-
bials, in vivo only a few are useful [54]. Even so, there are more factors that must be taken
into consideration such as: doses, formulations, frequency of dosing in relation to meals,
treatment duration, use of anti-secretory drugs, antiacids, or probiotics [55]. The success of
the therapy for many antimicrobial drugs is greatly diminished by special conditions such
as acidic pH, formation of a biofilm but antibiotic resistance is the most important cause of
failure of H. pylori eradication. The mechanisms underlying antimicrobial resistance are
well known and they are also applicable for H. pylori. There are only a few antibiotics active
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against H. pylori: clarithromycin, amoxicillin, metronidazole, fluoroquinolone (levofloxacin,
norfloxacin) tetracycline, rifabutin. Of concern is the increase in resistance to clarithromycin
and metronidazole. It is currently accepted that H. pylori effective therapy requires two or
more antimicrobials for a period of 14 days, along with an antisecretory drug to reduce
gastric secretion.

The best treatment antibiotic option is established by drug-susceptibility testing which
identify susceptible and resistant strains. There are many methods for this purpose, Kirby
Bauer method, microdilution, E-test but all are time consuming and not available in all
laboratories. Instead, a better option are molecular methods that detect specific changes in
the H. pylori genome [56–58].

3.1. Clarithromycin Triple Therapy

International guidelines for treating infection with H. pylori are consistent with the use
of triple therapy as the first-line treatment. Triple therapy consists of the administration of
a proton pump inhibitor (PPI), clarithromycin, and amoxicillin for one-two weeks [59,60].
Currently, concomitant therapy (PPI, amoxicillin, clarithromycin, and a nitroimidazole
administered concurrently) should be the preferred non-bismuth quadruple therapy, as
it has shown to be the most effective to overcome antibiotic resistance according to the
Maastricht V Convention [59]. The clarithromycin regimen is one of the first and most
effective eradication therapies. The regimen has a high-eradication rate >95%, but the best
results are obtained if the regimen is followed for 14 days [61,62]. For various reasons,
sometimes is prescribed for 7 or 10 days, leading to lower rates of eradication mainly
due to an increase in clarithromycin resistance [63]. Other regimens called second-line
therapies have been proposed and applied [63]. These treatments consist of an association
of PPI with two or three antibiotics: amoxicillin, clarithromycin, metronidazole. Lately,
it was proven that rates of eradication go as far as 70%, which is considered very low for
an infectious disease. Concomitant therapy is preferred over sequential one because it
is easier to be administrated. There are controversies about superiority of concomitant
therapy toward sequential therapy [64–67], but there is relevant evidence proving that
there is no significant difference in the eradication rate between concomitant therapy and
sequential therapy [68,69]. In case of resistance to both metronidazole and clarithromycin,
the alternative candidates for third-line therapy are quinolones, tetracycline, rifabutin, and
furazolidone, but the rate of resistance to metronidazole and quinolones used as second- or
third-line regimens is more than 15% worldwide [70–72].

3.2. Bismuth Quadruple Therapy. Non-Bismuth-Based Quadruple Therapy

The bismuth quadruple therapy consists of administrating bismuth, proton-pump
inhibitors, tetracycline, metronidazole or tinidazole for a period of 7–14 days. In the 19th
century bismuth was widely used in gastroenterology. Since 1970, bismuth was used as
colloidal bismuth subcitrate (De-Nol), as an ulcer medication. It has many pharmaceutical
properties such as: bactericidal effect on H. pylori, binding to the ulcer base, inactivation
of pepsin, binding of bile acids, stimulation of prostaglandin biosynthesis, suppression of
leukotriene biosynthesis, stimulation of complexation with mucus, inhibition of various
enzymes, binding of epithelial growth factor, stimulation of lateral epithelial growth [73].
The bismuth quadruple therapy has an excellent H. pylori eradication rate (more 80%)
therefore is considered a second line therapy [74–76]. Bismuth was used as a medical
agent ever since 1697 [76]. Its disadvantages are the inaccessibility to bismuth in some
countries, the rising resistance to metronidazole and low adherence to the regimen [77].
A single capsule therapy containing bismuth, metronidazole, and tetracycline has been
developed and administrated with large successful rates [78]. According to a meta-analysis,
first- and second-line single-capsule therapy as described above achieved an eradication
rate approaching 90% [79]. The non-bismuth-based quadruple therapy consists of adding
metronidazole to the classic PPI, amoxicillin, and clarithromycin. It is efficient in clar-
ithromycin resistant populations, but it has not been studied for metronidazole resistant
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populations. Eradication rates can go as high as 88%. It is safe to use, efficient, but it has
gastro-intestinal side-effects [80,81].

3.3. Rifabutin-Based Triple Therapy

Rifabutin is a structurally similar to rifampicin use as anti-tuberculosis drug, mainly
for atypical tuberculosis. The action of rifabutin consists in stopping protein synthesis by
inhibition of the beta-subunit of the Helicobacter DNA-dependent RNA polymerase. This
enzyme is encoded by RpoB. In case of mutation of RpoB results resistance to rifabutin [82].
The rifabutin-based triple therapy used as a third-line therapy in patients that failed to
response to classic antibiotic treatments such as amoxicillin, clarithromycin, metronidazole,
tetracycline, and levofloxacin. It consists of rifabutin, amoxicillin and a PPI taken for
a period of 14 days. The ideal dosage is 150–300 mg rifabutin daily. The therapy with
rifabutin has many advantages (fat-soluble, good absorption after oral intake, stable at a
wide range of pH values), but the most important is low the rate of resistance in H. pylori
because it is rarely used clinically [83]. Rifabutin-based regimens are important for rescue
therapies, but the eradication rate is different reported and future related studies are needed.
Overall, the efficacy rates of eradication are 73%. Its disadvantages include leucopenia and
myelotoxicity [84,85].

3.4. Fluoroquinolone Therapy

The levofloxacin triple therapy is used because of increasing resistance to clarithromycin.
The ideal dose is 2 mg × 500 mg of levofloxacin daily, with fewer side-effects than the
bismuth quadruple therapy. It is used as a second-line rescue therapy, after first-line
eradication treatments fail [86]. New generations of fluoroquinolones are levofloxacin,
moxifloxacin, gatifloxacine, and pefloxacine. They have a broad-spectrum activity and are
used in infections of the respiratory and urogenital tract. Because they are more frequently
used, the bacterial resistance, including H. pylori, is rising [87]. Data containing other
fluoroquinolones, other than levofloxacin, are rare. Moxifloxacin used with esomepra-
zole and tinidazole or moxifloxacin with esomeprazole and amoxicillin had eradication
rates of about 88–90% in a study from 2005 [88,89]. A study from India showed an eradi-
cation success of up to 77% for a 2-week dual therapy with proton pump inhibitors and
norfloxacin [90,91]. They are used as a second line therapy in countries where bismuth is
not available or where the population has high rated of clarithromycin resistance.

3.5. Potassium-Competitive Acid Blockers (P-CABs)

Potassium-competitive acid blockers are a group of drugs that inhibit gastric secretion
faster and with a longer action. They seem to be more potent than PPI because they do not
require activation by stomach acid and their efficacy is not influenced by various subtypes
of cytochromes P450. The P-CABs are bases that inhibits the H+ K+ ATPase enzyme, key
enzyme in formation of HCL. In addition, the protonated form of this drug is less able
to pass via cellular membranes than the nonionic molecules, so they concentrate into the
canaliculi of parietal cells, the place where HCl is produced [92]. The efficacy for H. pylori
eradication was assessed in more multicenter studies using P-CABs in association with
antibiotics (triple therapy). The eradication rate was 94.4% for the first-line therapy and
97.1% for the second-line therapy. The conclusion was that P-CABs-triple therapy was safe
and effective [79], while the eradication and the incidence of adverse events was 4.4% [93].

4. Antibiotic Resistance and Alternative Therapy

The 1980 discovered H. pylori bacteria is nowadays considered as the etiologic agent
for gastric ulcers and gastric cancer. Earlier, various drug regimens were used for the
treatment and cure of such bacterial infections. However, now, the alarming situation
of increasing resistance to antibiotics, moreover the high-cost therapy, resulted into the
emergence of alternative approaches such as anti-inflammatory agents, anti-oxidants and
most importantly, herbal plants and their extracts. These alternative approaches inhibit
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and modulate the release of inflammatory cytokines, reactive oxygen species and other
inflammatory mediators which generate on the interaction of H. pylori with gastric mucosa
and ultimately lead to atrophy, dysplasia, metaplasia and changes in the gastric gland.
The herbal extracts have shown important roles such as anti-inflammatory, antioxidant,
anti-cancer, and bactericidal against H. pylori [94,95]. There are alternative therapies for the
treatment H. pylori infection as shown in Figure 2.

Figure 2. H. pylori infections and alternative treatment approaches.

As a result, there is an increasing trend of herbal drug therapy in almost 80% of
population, especially those who found modern antibiotic therapy not affordable, not
accessible, and not accepted. Various plants and their extracts show promising results
against H. pylori [94]. A selection of the most relevant natural extracts was performed by
searching the full text information in databases of PubMed, Web of Science, Embase, and
Google Scholar, with priority within the time interval 2005–present, as presented in Table 1.

Table 1. Plants and their formulations as active agents against H. pylori.

Name/Family Formulation Main Outcomes In Vitro/In Vivo Reference

Allium sativum/
Amaryllidaceae

Garlic oil and
powder

In vitro (standard and clinical isolates)—significant loss of viability,
inactivation irrespective of strain, depending on allicin concentration

In vivo (clinical trials)-improves eradication rates, healing rates of
ulcers, remission of peptic ulcers, synergism with conventional therapy

[96–98]

Bridelia micrantha/
Euphorbiaceous Stem bark extract

In vitro (standard strains and clinical isolates)—killing rate depending
on concentration and time (agar-well diffusion and MIC method)

Antioxidant, anti-inflammatory properties
[99–101]

Camellia sinensis/
Theaceae

Young shoot
extract

In vivo (animal model)—prevents gastritis, limits the localization of
bacteria and VacA to the surface of the gastric epithelium. In vivo

(clinical trial)—suppression of gastritis and prevalence of H. pylori in a
dose-dependent manner.

In vitro—inhibits the production and function of the urease enzyme.

[102–104]

Daucus carota/
Apiaceae

Essential oil of
carrot seed

In vitro and in vivo (animal model)—co-administration with
pantoprazole exhibits strong anti-H. pylori activity [105,106]
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Table 1. Cont.

Name/Family Formulation Main Outcomes In Vitro/In Vivo Reference

Eugenia
caryophillus/
Myrtaceae

Extracts of
flowers

In vitro (standard strains and clinical isolates)—decrease viability of H.
pylori, irrespective of the strain, at acidic pH, effective in gastritis [107,108]

Geum iranicum/
Rosaceae

Aqueous extract
of roots

In vitro- effective against clinical isolates of H. pylori resistant to
metronidazole [109]

Hancornia speciosa/
Apocyanaceae

Bark’s
hydroalcoholic

extract

In vivo (rodent model)- anti-H. pylori effect by increasing of gastric
mucus formation and antioxidant properties of polymeric

pro-anthocyanidins
Anti-inflammatory, antibacterial, and anticancer properties.

[110,111]

Myrtus communis/
Myrtaceae

Essential oil
extract

In vitro—effective against clinically isolated strains resistant to
nitroimidazoles and clarithromycin.

Antimicrobial, antidiarrheal, anticancer, antioxidant, antiulcer,
anti-inflammatory and antidiabetic activity

[112,113]

Malus domestica/
Rosaceae

Apple peel
extract

In vitro—prevents vacuolation in HeLa cells, antiadhesive effect
against H. pylori.

In vivo (short-term infection model mice)—inhibitory effect on H.
pylori attachment, anti-inflammatory effect on H. pylori-associated

gastritis, reversible inhibitory effect

[114,115]

Olea europaea/
Oleaceae

Olive leaf
extract

In vitro (clinically isolated meticillin resistant strains)—regulates the
composition of the gastric flora, selectively reduce levels of H. pylori

Antiulcer, antioxidant and antimicrobial effects
[116,117]

Prunus dulcis/
Rosaceae

Polyphenol
extract

In vitro (standard strains and clinical isolates)—effective against H.
pylori with different virulence irrespective of the cagA and vacA status. [118,119]

Rumex aquaticus/
Polygonaceae Plant extract

In vitro (human adenocarcinoma gastric cells)—cytotoxic effects
against AGS cells, inhibit the production of proinflammatory cytokines,

antioxidant
[120,121]

Stachys setifera/
Lamiaceae

Aerial part
extract In vitro (isolates)—strong inhibitory effect [101,122]

Zingiber officinale/
Zingiberaceae Rhizome extract

In vitro—potent inhibitors of proton potassium ATPase activity and H.
pylori growth.

In vivo (pilot study)—significant H. pylori eradication rate in dyspeptic
patients, additive effect along with antibiotics

[123–125]

Propolis/
Apis melifera Ethanolic extracts In vitro—anti-H. pylori and anti-urease activities, 92.1% inhibition rate,

synergism with clarithromycin or metronidazole [126–134]

Curcuma longa/
Zingiberaceae

Rhizome extract,
polyphenolicrich
extract of the root

In vitro (clinical isolates)—stabilizes the vacuolar membrane and
prevents the escape of cytosolic pathogens, suppressor of the type 1

immune response.
In vivo (mouse model)—increase IL-4 serum levels and IgG, decrease

IFN-γ levels

[135–141]

Ginseng/
Panax ginseng

Meyer

Korean Red Ginseng
extract

In vitro (infected gastric epithelial cells)—reduces reactive oxygen
species and prevents cell death

In vivo (animal model Mongolian gerbils)—anti-inflammatory effect
on H. pylori-induced gastric inflammation

[142–147]

In the next section, a more detailed discussion is provided, referring to propolis,
curcumin, ginseng, and garlic extracts, as a valuable source of active ingredients against
H. pylori mediated disease, due to their easy accessibility and affordability for population.

4.1. Role of Propolis in Treatment of H. pylori Mediated GIT Diseases

One of the important and beneficial natural treatments for H. pylori infection is propo-
lis, produced by honeybee Apis melifera. Different studies conducted all over the world
reported that caffeic acids, flavonoids, and phenolic esters are the main biologically ac-
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tive compounds in propolis [126,127]. Specifically named chemical compounds (to men-
tion only a few) arechalcones-2,6-dihydroxy-4-methoxychalcone and 2,4,6-trihydroxy-4-
methoxy-chalcone, benzoic acid derivatives such as salicylic acid, 4-methoxybenzoic acid,
4-hydroxybenzoic acid, procatechuic acid, gallic acid, etc., benzaldehyde derivatives such
as vanillin and isovanillin, cinnamyl alcohol, cinnamic acid and its derivatives, terpene,
sesquiterpene alcohol and their derivatives, aliphatic hydrocarbons, sterols and steroid
hydrocarbons, sugars such as d-glucose, d-fructose and ribofuranose, amino acids, and
some minerals such as Na, K, Mg, Zn, Cd, Ca, Ag, Ni, Fe. These mentioned compounds
and their derivatives account for the pharmacological importance of propolis [128].

The bioactive phenolic compounds are present as free or alkyl and phenyl esters which
are responsible for various antioxidant, antimicrobial, anticancer and anti-inflammatory
properties of propolis. According to literature, 21 polyphenols were detected in propolis
which account for the anti H. pylori activity [128–131]. The main compounds and their
combination of chrysin, pinocembrin, galangin and caffeic acid phenethyl ester showed the
bactericidal effect against H. pylori. The research studies conducted by Shapla et al. [128]
have proven the scientific evidence in treatment of H. pylori infection and clearly justifies
the protective role of propolis phenolic compounds in decreasing and neutralizing the
host and bacteria’s physiology. Hence, they suggest propolis as an alternative treatment
approach in H. pylori associated gastrointestinal diseases [128].

4.1.1. Anti-Inflammatory Effect of Propolis

The caffeic acid phenethyl ester (CAPE) obtained from propolis also has anti-inflammatory
properties. It shows immunosuppressive action on T cells of host and also inhibits cell acti-
vation cycle. It also shows inhibitory effect on other inflammatory mediators such as NFkB
and transforming growth factor. In an in vitro study CAPE blocks the MAPK signaling and
NFkB activation and ultimately decrease IL-8 production, because IL-8 production is an
important pathological role in H. pylori induced gastritis. In addition to the inhibitory effect
on mediators, it also shows its action on enzymes such as myeloperoxidase, and NADPH-
oxidase, and this activity indirectly inhibits neutrophils and other inflammatory cells
infiltration. The other important enzyme peptide deformylase in pathogenesis is also com-
petitively inhibited by CAPE. The oxygen free radicals produced by Xanthine oxidase also
cause tissue damage and inflammation which are inhibited by propolis extract [132,133].

4.1.2. Antioxidant Effect of Propolis

Through research studies propolis is found to have higher antioxidant effects than
green tea. It contains various polyphenols and flavonoids which show antioxidant proper-
ties in many ways such as hydrogen donors, reducing agents, chelating ions, etc. It protects
the blood cells from oxidative stress induced by free radicals and maintain their cellular
structures, rigidity, and their functions [126,133,134]. Hence, based on several evidence
presented, the role and benefits of propolis are clearly against H. pylori infection. Therefore,
it can be concluded that propolis may be used as an alternative therapeutic approach in the
treatment and ailment of the gastrointestinal diseases such as ulcers and gastritis.

4.2. Role of Curcumin in Treatment of H. pylori Mediated GIT Diseases

Curcumin is a well-known polyphenolic bioactive yellow color pigment obtained
from rhizomes of curcuma longa also known as turmeric. It is widely used as a spice and
food coloring agent especially in India. Various research studies previously shown multiple
health benefits such as antioxidant, anti-inflammatory, anti-cancer, and anti-microbial, with
the approach of anti-angiogenesis for the prevention and treatment of certain diseases such
as cancer, chronic inflammation, or atherosclerosis [135]. The invitro studies and preclinical
trials also gave results on its effect on H. pylori and its induced diseases. From a chemical
point of view, curcumin exists as a keto-enol tautomer, where the enol isomer is more stable
than keto form, in both solid and liquid state. The yellow color is found at acidic pH, while
basic pH shows red color of curcumin. The polyphenolic chemical compounds possess
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two aromatic rings with two unsaturated carbonyl groups. This molecule is stable due to
the central hydroxyl group (-OH) which is found to be the crucial functional group for
antioxidant and other biological activities [136].

4.2.1. Antioxidant Effect of Curcumin

The curcuminoids in alcoholic extract reported to act as scavengers for oxygen free
radicals. They interact with reactive oxygen intermediates and protect the cells from
damage. Curcumin is found to be more stable at acidic pH in GIT. Oxidative stress and
damage play a vital role in pathogenesis of H. pylori induced diseases. So, it has shown to
be a potent oxidative scavenger to treat oxidative induced diseases [137].

4.2.2. Anti-Inflammatory Effect of Curcumin

The anti-inflammatory effect of curcumin is already well known. Curcumin inhibits
carrageenan- induced paw edema in mice in various inflammatory diseases such as ul-
cerative colitis in preclinical trials. The mechanism behind the anti-inflammatory effect is
inhibition of nitric oxide synthase, cyclooxygenase-2, and inflammatory mediators such as
cytokines (IL-1, IL-6, IL-8, IL-12), tumor necrosis factor-α etc. It also inhibits prostaglandins
along with lipoxygenase activity [138].

4.2.3. Anti-Carcinogenic Effect of Curcumin

Curcumin has also anti-cancer property and plays an important role in treatment of
gastric and other types of cancer. The inflammation and malignancy are correlated. The in-
hibition of I-Kβ kinase, and various transcription factors reduces the effect of inflammatory
mediator NF-Kβ and synthesis of cytokines, respectively, which is involved in pathogenesis
of cancer. Along with gastric cancer treatment it is also used in oral, esophageal, duodenal,
and colon cancer [139].

4.2.4. Anti-Microbial Effect of Curcumin

Curcumin inhibits the growth of various bacteria’s and parasites including H. pylori,
Bacillus subtilis, Plasmodium falciparum, Leishmania, etc. Curcumin, the Indian gold has all
the properties from being an antioxidant to a beneficial anti-inflammatory agent, that is
why it is used in treatment of H. pylori bacterial infection. The invitro studies by Marathe
et al., gave results on inhibition of growth of 19 different strains of H. pylori [140]. Using a
mouse model, Vetvicka et al. [141] studied the effects of curcumin on lipid peroxide level,
myeloperoxidase and urease activity, along with levels of anti- H. pylori antibodies, biofilm
formation, and levels of IFN-γ and IL-4 in serum. They found significantly increased IL-4
and decreased IFN-γ serum levels, while the levels of LPO (an oxidative damage index)
were decreased by supplementation with curcumin. The results of this study also support
the hypothesis that curcumin has strong immunostimulating properties.

Hence, curcumin can be used either alone or in combination with other antibiotics to
cure and treat H. pylori induced gastric diseases due to its multiple benefits.

4.3. Role of Ginseng in Treatment of H. pylori Mediated GIT Diseases

Since centuries, Ginseng, obtained from the roots of Panax ginseng is a widely used
herb in Asian folk medicine. The antioxidant, anti-inflammatory, anti-microbial, and anti-
cancer properties of ginseng have already been proved in many pharmacological and
clinical studies [142–144]. Ginseng mainly contains saponins called ginsenosides, which
are secondary metabolites, responsible for pharmacological activity. Actually, the structural
diversity of ginsenosides contributes to the multiple pharmacological benefits of ginseng
on cancer and diabetes treatment, inflammation, stress, immune, cardiovascular system,
and central nervous system disease.

The acidic polysaccharide from ginseng helps to dislodge the H. pylori from human
gastric epithelial cells and Ginsenoside Rb1, an important primary Ginsenoside improves
inflammation by inhibiting pro-inflammatory mediators mainly cytokines and TNF-α.
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Ginseng inhibits DNA mutagenesis, pathogen mediated hemagglutination, improves
immune–modulatory functions and exerts bactericidal effect and protects the host from
pathogen induce inflammation. The lactic acid present in fermented ginseng extract also
exhibits potent anti- H. pylori activity [144].

Another research study shows the beneficial effect of red ginseng as it exerts protec-
tive function against carcinogenesis in gastric mucosal cells [143]. Red ginseng inhibits
ERKI/2 signaling which on further inhibits DNA damage and apoptosis induced by H.
pylori. It also inhibits synthesis of pro-inflammatory mediators especially IL-1β, iNOS,
MOP activity. Panaxytriol shows effective inhibition of H. pylori growth and Ginsenoside
Rh1 and protopanaxatriols inhibits the terminal stage H+/K+ ATPase of stomach acid
secretion [145,146].

White ginseng extract has also shown antimicrobial, anticancer, and anti-inflammatory
effects. Through disk diffusion assay study, it has been concluded that it inhibits the
bacterial growth effectively. Additionally, it exerts cytotoxic effects and used in treatment
of lung cancer, endometrial and uterine carcinoma. Moreover, the anti-inflammatory effect
is shown by inhibiting nitric oxide production and activity [144,145]. In a very recent
paper, [147] it was demonstrated the inhibitory effect of Korean red ginseng extract on
DNA damage response and apoptosis in Helicobacter pylori-infected gastric epithelial cells,
by increasing apoptotic indices and ROS levels. The authors suggests that supplementation
with Korean red ginseng is beneficial for preventing the oxidative stress-mediated gastric
disorders associated with H. pylori infection.

Therefore, it can be concluded that ginseng may be used as an alternative or comple-
mentary therapeutic approach in the treatment of H. pylori induced infections.

4.4. Role of Garlic in Treatment of H. pylori Mediated GIT Diseases

Currently, the principal medicinal uses of garlic are to prevent and treat cardiovascular
disease by lowering blood pressure and cholesterol, as an antimicrobial agent, or as a
preventive agent against different types of cancer. The antimicrobial activity of allicin, a
diallyl thiosulfinate compound, was identified in garlic by Cavallito and Bailey in 1944 [148].
The garlic extract was found to be effective against H. pylori infection, as thiosulfinates
(allicin) play an important role in the antibiotic activity of garlic [96]. Based on a systematic
review and meta-analysis, Xiao-Bei Si et al. [98] highlighted the output of clinical trials that
included allicin as an add-on treatment to triple therapy or bismuth containing quadruple
therapy for H. pylori infection. The results of this meta-analysis revealed that allicin treated
groups showed an eradication rate of ~93.81%. Additionally, higher healing rates and total
remission rates of peptic ulcers were evidenced, and different scenarios for the mechanisms
involved in ulcer response were proposed: (i) the activation of NF-Kβ was inhibited by
allicin, which further inhibits the production of TNF-α, leading to anti-inflammatory effects;
(ii) garlic extracts possess a protective role against oxidative stress in gastric tissue, which
cause mucosal injury and ulcer development; (iii) garlic extracts favors NO synthesis,
increasing the activity of nitric oxide synthase with crucial role in endothelial function [98].

The Feldberg in vitro research study has elucidated the mechanism behind the antimi-
crobial activity [144]. Allicin mainly inhibits the mRNA degradation as well as RNA, DNA
and protein synthesis in the cells, where RNA polymerase is the major target of allicin. The
major garlic materials available are garlic powder and garlic oil. Garlic powder is prepared
by slicing, drying, and pulverization of garlic cloves, whereas the oil is prepared by heating
the cloves and collection of its vapor. These commercial formulations are widely used for
its antimicrobial activity against H. pylori [97]. Chemopreventive activity of garlic was
also demonstrated either as fresh extract, garlic oil, or organosulfur compounds derived
from garlic [149–151]. Garlic is also rich in antioxidants which destroys free radicals that
can damage the cell membrane of epithelial cells, inducing gastric cancer. The antioxidant
activity of garlic is mainly due to the organosulfur compounds derivatives which inhibit
the pathological mechanisms involved in cancer, including free radicals formation, mu-
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tagenesis, angiogenesis, DNA formation, and cell proliferation. The cell proliferation is
inhibited by garlic, mainly acting on G2/M phase of cell cycle [96,152].

With the evidence provided by the studies, it is clear that garlic serves as beneficial
alternative therapy to antibiotics against different gastrointestinal tract diseases induced
by H. pylori.

5. Nanotechnology-Based Approach against H. pylori Infections

Metallic NPs such as silver, gold, zinc or iron have been previously reported to
possess the ability of killing a wide range of bacteria including H. pylori [153,154] by
well-known underlying mechanisms involving oxidative stress, metal ion release and
nonoxidative stress. A very low NPs concentration is necessary for bactericidal effect, and
hence, it is difficult for the bacteria to develop resistance. Among different metallic NPs,
AgNPs are convenient, especially the biologically derived ones, as the preparation methods
demonstrated a controlled particle size, shape, and mono-dispersity, while reducing time
of preparation, in the context of environmentally friendly approaches.

5.1. Role of Biologically Synthesized Silver Nanoparticles

Biosynthesis of silver nanoparticles using different plants extracts, along with other
biological sources such as bacteria, fungi, algae, emerges as a good alternative production,
using nontoxic, clean and eco-friendly approach, allowing to modulate its physicochemical
parameters. The concentration of plant extract and the substrate, reaction temperature and
pH strongly affect size, shape and stability of silver nanoparticles. The number of publi-
cations dealing with AgNP synthesis with the assistance of various plant extracts (leaves,
stems, roots, etc.) is huge, but recently, several papers aiming to highlight the importance
of biosynthesized AgNPs, demonstrated that the main advantage of AgNPs synthesized
from plant extract is that they are more stable compared to microorganisms synthesized
nanoparticles [155,156]. The study conducted by Gurunathan et al. [157], AgNPs were
biologically synthesized using leaf extract of Artemisia princeps as a bio-reductant and
evaluated against H. pylori. The average size distribution of the synthesized particle was
between 10–40 nm. The main results of this study demonstrated a dose-dependent decrease
in cell viability and biofilm of H. pylori formation, potentiation of reactive oxygen species
generation and DNA fragmentation in H. pylori. Moreover, cytotoxic effect against human
carcinoma cells was evidenced [157]. According to literature [158], the mechanism of
AgNPs action on cells involve several steps: adhesion on the surface of the bacterial cell
wall (especially observed for Gram-negative bacteria, knowing to have a thicker cell wall),
penetration into the cell and disruption of intracellular organelles and biomolecules, induc-
tion of oxidative stress, and modulation of signal transduction pathways. It is generally
accepted that the bactericidal properties of AgNPs are associated with a disruption of RNA
transcription, purines, pyrimidines, and fatty acids of bacteria, while upon interaction of
AgNPs with cell DNA, the replication can break [158].

Muhammad Amin et al. [159] performed the green synthesis of silver nanoparticles
using methanol extract from the plant Solanum xanthocarpum and analyzed its anti H. pylori
activity in vitro, by comparing with four standard drugs: amoxicillin, clarithromycin,
metronidazole, and tetracycline.

The results of this study indicated a stronger anti- H. pylori activity of AgNPs compared
to AgNO3 and metronidazole, showing almost similar results to tetracycline, but less potent
than amoxicillin and clarithromycin. Moreover, a significant inhibition was noticed in the
H. pylori urease inhibitory assay. It was suggested that biological silver nanoparticles act as
a potent therapeutic compound with anticancerous and antimicrobial properties, opening
a new area of research for large medical applications of silver nanoparticles, including
eradication of the H. pylori mediated gastric diseases [159]. Besides silver, other metallic
nanoparticles such as bismuth, zinc, and gold were proved to be effective in the treatment
of H. pylori, as reviewed by Safarov et al. [160]. Although there are enough evidences of the
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antimicrobial effect of metallic nanoparticles, there are also limitations, as most of them
tend to accumulate in kidneys and liver, leading to cytotoxicity.

5.2. Other Nanoparticles Formulations for H. pylori Mediated GIT
5.2.1. Polymeric Nanoparticles Encapsulating Drugs and Other Therapeutic Agents

Polymer-based nanocarriers are advantageous formulations when it comes to gastric
delivery as they exhibited very good stability and loading capacity. The drug or thera-
peutic molecules can be directly encapsulated with polymeric nanoparticles or covalently
conjugated to their surface. The role of nanocarriers is to protect the bioactive compounds
in harsh gastric environments, to enhance the internalization by microbes and eradicate
them in multiple pathways.

PLGA (poly lactic- co- glycolic acid) are good candidates because due low toxicity
and possibility to encapsulate low water-soluble drugs such as clarithromycin, in order to
reach the target region [161,162]. PLGA nanoparticles loaded with clarithromycin, in size
of about 360 nm, have shown MIC values in the range 0.003 µg/mL to 0.05 µg/mL, which
were significantly lower than non-encapsulated drug solution, as demonstrated for clinical
five H. pylori strains [162]. Gliadin, a biodegradable, biocompatible, and natural origin
biopolymer, is known to adhere to mucosa membranes. Thus, its mucoadhesive properties
is advantageous for the development of nanoparticulate delivery systems against H. pylori,
as demonstrated by Ramteke S. et al. [163]. When using omeprazole and clarithromycin
together, in a gliadin nanoformulation, the anti- H. pylori effect was found to be over 80%.
Clarithromycin was also encapsulated into ethylcellulose nanoparticles and its activity
against H. pylori was investigated by Pan-In, P. et al. [164] in animal model (rats).

The encapsulated clarithromycin was more effective than the free clarithromycin
formulation, when administrated in rats. Actually, the initial reason for the antibiotic
encapsulation was mainly due to its susceptibility to the highly acidified environment in
the stomach.

Chitosan is another non-toxic polysaccharide, cationic in nature, with mucoadhesive
properties, and widely used in the form of nanoparticles for gastric delivery of different
bioactive compounds. It is composed of D-glucosamine and N-acetyl-D-glucosamine units,
being insoluble at neutral pH, while rapidly ionizes and dissolves under the acidity of
stomach [165]. The potential utility of chitosan micro and nanoparticles in the treatment
of gastric infection was evaluated by Gonçalves et al. [166]. Enhanced effect of encapsu-
lating amoxicillin into chitosan nanoparticles to treat H. pylori was demonstrated in vivo
using Wistar rats, highlighting that H. pylori inhibition was not influenced by particle
size [166]. Alginate, heparin, and poly-g-glutamic acid are anionic polymers commonly
used for preparation of chitosan-based polyelectrolyte complexes, in the form of micro-
or nanoparticles, and have been developed for encapsulation of antibiotics for H. pylori
treatment [167,168]. According to literature, the novel strategy using targeted treatments
based on chitosan micro/nanoparticles, specific to H. pylori, may include chemically modi-
fied (functionalized) particles with targeting compounds that bind H. pylori urease, flagella,
adhesins, aiming to inhibit, kill or remove the bacteria, while avoid the destruction of the
normal gut microbiome of the patients.

5.2.2. Liposomal Formulations against H. pylori

Liposomes are also widely studied drug-delivery systems for antibiotic delivery, con-
sisting of spherically assembled phospholipid bilayers, encapsulating various antibiotics,
including metronidazole, ampicillin, amoxicillin, and doxycycline against to H. pylori [169].
The encapsulation efficiency of these drugs was found to be relatively low, and the in vivo
effect of these formulations against H. pylori has not been verified. Fatty acids such as
stearic acid, oleic acid and linoleic acid have been encapsulated into liposomes and evalu-
ated against the resistant strains of H. pylori [170]. The hydrodynamic diameter of these
formulations was around 86 nm. Both the liposomal formulation and free linoleic acid
were effective in killing spiral and coccoid forms of the bacteria. The results demonstrated
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that linoleic acid possess the most relevant bactericidal effect thanks to its increased per-
meability, being capable of completely eliminate eliminating H. pylori within 5 min at a
concentration of 400 µg/mL [170]. Because of its amphiphilic nature, linoleic acid can
be readily loaded into liposomes and subsequently fuse with bacteria for antibacterial
activity. Moreover, in vivo tests (mice animal model) confirmed that linoleic acid-based
liposomal formulation was efficient in killing H. pylori and reducing bacterial load in the
mouse stomach [171]. Additionally, the treatment was efficient in reducing the levels of
proinflammatory cytokines including interleukin 1β, interleukin 6, and tumor necrosis
factor alpha.

Other liposomal formulations were prepared using incorporation of docosahexaenoic
acid into nanostructured lipid carriers, which resulted in increased bactericidal efficacy at
much lower concentration compared to free docosahexaenoic acid. The suggested mecha-
nism was related to the fragmentation of H. pylori cell membrane upon interaction with
nanoliposomes, and leakage of cytoplasmic content, as revealed by Transmission Electron
Microscope images, acting very rapidly in a dose-dependent manner [172]. An interesting
approach used an engineered liposomal formulation based on gold/chitosan nanoparticles
adsorbed on the liposomes surface, which demonstrated a smart “on-demand” antibiotic
delivery in a controlled manner: the more enzymes or bacteria present at the infection
site, the more antibiotic molecules released in situ [173]. Such on-site release of antibiotics
enables localize and rapid killing of H. pylori, and minimizes side effects.

6. Conclusions

H. pylori is responsible for a chronic, transmissible, infectious disease and the increas-
ing prevalence of antibiotic resistance has complicated the therapy. All therapies should
assume the possibility of antimicrobial drug resistance. As an infectious disease, therapy
should be based on drug susceptibility testing, but it is not always available. Since its
classification as a group 1 carcinogenic by International Agency for Research on Cancer,
substantial effort has been allocated in the investigation of therapeutic alternatives beyond
antibiotics. Clarithromycin triple therapies now typically produce less than 80% cure rates
and thus is no longer acceptable. Bismuth and non-bismuth-based quadruple therapy are
inaccessible in some countries, and often are accompanied by gastro-intestinal side-effects.
The rate of eradication in the case of rifabutin-based triple therapy is about 73%, but its
disadvantages include leucopenia and myelotoxicity, while fluoroquinolone therapy, as a
second line therapy in countries where bismuth is not available or where the population
has high rated of clarithromycin resistance, may offer eradication success of up to 77%.
The P-CABs triple therapy is probably the most safe and effective against H. pylori, but the
treatment may cause individual variability regarding the effect. Selection of appropriate
treatment should be made taking into account the molecular mechanisms of pathogenesis
and virulence factors engaged in the development of gastric disease, while keeping in
mind that successful antibacterial therapies depend on susceptibility to given drugs, doses,
formulations, use of adjuvants, treatment duration, and reinfection rates. In this respect,
the use of natural compounds in H. pylori treatment has gained huge popularity due to
their low side effects and low toxicity, as encouraging results from in vitro and in vivo
studies were reported. This work offers an extensively referenced approach on natural
medicines against H. pylori, including the significance of nanotechnology in developing
new strategies for treatment of H. pylori infection.
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