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Abstract

We describe a simple, inexpensive, but remarkably versatile and controlled growth environment for the observation of plant
germination and seedling root growth on a flat, horizontal surface over periods of weeks. The setup provides to each plant a
controlled humidity (between 56% and 91% RH), and contact with both nutrients and atmosphere. The flat and horizontal
geometry of the surface supporting the roots eliminates the gravitropic bias on their development and facilitates the
imaging of the entire root system. Experiments can be setup under sterile conditions and then transferred to a non-sterile
environment. The system can be assembled in 1-2 minutes, costs approximately 8.78$ per plant, is almost entirely reusable
(0.43$ per experiment in disposables), and is easily scalable to a variety of plants. We demonstrate the performance of the
system by germinating, growing, and imaging Wheat (Triticum aestivum), Corn (Zea mays), and Wisconsin Fast Plants
(Brassica rapa). Germination rates were close to those expected for optimal conditions.
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Introduction

Approximately 97% of the calories consumed by humans

originate from plants [1]. Recent estimates indicate that the food

supply will have to increase by approximately 70% by 2050 to

match demand [1]. However, even optimistic estimates predict

only a 50% increase in crop yield by 2050 [2].

Improving our understanding of seed germination and root

growth could be necessary to ensure our food security in the

future, since the germination, emergence, and early establishment

of seedlings have a large effect on agricultural yields, especially if

below a critical level [3]. Low germination rates reduce crop

density, which results in indirect yield loss. Late emergence can

result in poor plant performance and a direct yield loss [4],

because roots are inadequately established and have less access to

water and nutrients during later stages of vegetative and

reproductive growth.

Tests of seed viability and vigor typically employ paper to act as

a support and to supply moisture: seeds are placed over moist

germination paper (and often covered with a second sheet) and

incubated. A germination table (also known as a Copenhagen

table or Jakobson apparatus) can germinate several seeds

simultaneously under one set of conditions [5,6]: filter paper

wicks moisture from a temperature-controlled water tank and

provides a flat, horizontal surface on which germination can be

observed. However, germination tables are expensive, not

universally available, and do not provide control of conditions to

individual replicates. Furthermore, they are not ideally compatible

with – and never used for – the study of plant root growth. Most

plants grown for research purposes are transplanted at least once

after germination.

Roots are responsible for the vast majority of the water and

nutrient supply to the plant [7], they establish synergic interactions

with soil biota [8,9], and they anchor the plant to the soil [10]. By

these functions, the roots influence the growth of the plant and its

resilience against environmental stresses such as drought. Root

architecture (i.e. its size and structure) plays a fundamental role in

plant productivity and crop yield [11]. Nonetheless, roots and their

development are one of the most complex and relatively

unexplored aspects of the food supply problem [12].

Seedlings are grown in granular media (e.g., soil, sand, perlite,

vermiculite) or homogeneous media, such as water (hydroponics),

air (aeroponics), or gels (e.g., agar, gelatine, gellan gum). Gels

provide a 3D growth environment for the roots, but they otherwise

poorly represent the mechanical and structural properties of soils

[13], and may expose plants to anoxic conditions [14]. Analysis of

the size and structure of a 3D root system requires relatively

sophisticated equipment and cumbersome image analysis [15].

Granular media (e.g., soil, sand, vermiculite) is structurally closer

to soil, but is opaque to most forms of radiation. The imaging of

root systems in those environments requires expensive equipment

(X-ray computed tomography or magnetic resonance imaging

[16,17]) that is not widely available, currently has low throughput

(individual scans can take hours), and cannot routinely or
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accurately distinguish live roots from dead organic matter [18].

Roots can be imaged growing against a transparent surface in soil-

filled 2D root-boxes called rhizotrons [19]. However, even when

tilted at a 43u angle to encourage the roots to grow against the

transparent surface, less than half of the total root length is visible

[20], root density is overestimated [21], root development is

affected by gravitropism, and the soil/glass interface is unlikely to

be representative of real soil structure.

The study of both germination and root development in the

same environment is experimentally and logistically difficult,

because of the lack of convenient and yet highly controlled and

capable environments in which to study these processes [22].

Conditions for experimental plant germination and growth must

be precise and uniform, because plants are highly sensitive to

environmental conditions, and exhibit phenotypic plasticity to a

vast array of abiotic stimuli [23]. Some of these conditions (e.g.

temperature, light, humidity and CO2 concentration) can be

controlled using growth chambers [24]. Growth chambers are not

ideal environments to study the effect of humidity on plant

development because (i) they cannot control humidity of individual

replicates, (ii) they expose the plant to the atmosphere and

potential contamination, and (iii) they are expensive and not

universally available. Therefore, laboratory studies of plant

germination and growth under controlled humidity conditions

typically require a large upfront investment. These barriers are

bound to inhibit or prohibit investigators from other disciplines or

developing nations from entering into this area of science.

We describe in this paper an experimental setup for the study of

germination and root development of a variety of plants (as shown

here, Brassica rapa; Wisconsin Fast Plants; Astroplants, dwf1 [25],

Triticum aestivum; Wheat, and Zea mays; Corn). The platform

displays the following capabilities and characteristics: (i) It

constantly exposes the plant is to a nutrient solution and to a

controlled humidity (ranging between ,56% and ,91% in each

setup). (ii) It can be used on any laboratory bench, as long as

uniform illumination and temperature are provided. (iii) It is

composed of reusable or inexpensive parts. (iv) It is scalable to

virtually any plant size. (v) It allows imaging of the shoot and root.

(vi) It eliminates the gravitational bias on root development by

growing the roots on an horizontal and flat 2D surface, which

facilitates the imaging and analysis of the entire root system

architecture.

System Design

The assembly of the platform is shown in Figure 1a. It consists

of 8 steps that can be completed in approximately 1 to 2 minutes

(see Supporting Information S1 for a detailed description and

Movie S1 and Movie S2 for a video demonstration) and result in

the self-contained plant growth environment shown in Figure 1b.

The design of the platform was constrained by a stringent set of

conditions. Delivery of nutrients and moisture to the seed/
plant. In our setup, the seed (B. rapa, T. aestivum, or Z. mays) is

supported on a flat sheet (the ‘‘growth sheet’’) of filter paper

(Whatman #1). The growth sheet lies on top of a larger sheet (the

‘‘pump sheet’’) of filter paper (Whatman #1) that wicks nutrient

solution from an underlying reservoir. The pump sheet imbibes

the growth sheet with the nutrient solution. Coating the newly

sown seed with a hydrogel droplet (50 ml of gellan gum) improves

germination rates: the hydrogel draws water from the filter paper

and ensures the seed is moist without eliminating the access to

oxygen. Compatibility with both germination and growth.
The setup is easily scalable. Figure 1b-d show that three plants

with different seed size can be germinated in our platform. The

overall scale of the experiment can be controlled to match the size

of the plant after the intended growth period (see Supporting

Information S1). Plant roots anchor to the filter paper. As shown

in Figure 1e, plants grown for 2-3 weeks can be turned sideways

without toppling over. Control of humidity. Supersaturated salt

solutions in a closed environment establish an atmosphere of

known relative humidity [26]. Different salts controlled the relative

humidity of the air 5 cm above the growth sheet between ,56%

and ,91% at 25uC (Figure 2a). The external container

(containing the salt solution) is never in contact with the nutrient

solution, so neither the salt nor the container can contaminate the

paper on which the plant is grown. Exclude the influence of
gravity on the direction of plant root growth. Gravity affects

root growth by creating a gradient of auxin across the root tip.

Auxin is a hormone that inhibits the expansion of root cells. A

gradient of auxin across the root cross-section cause the root to

bend due to differential expansion of the tissue [27,28]. The

Figure 1. Schematics and picture of plant germination
platform. a) Scheme of the assembly of the plant germination and
growth platform. Pictures of the assembled setup growing (b) Brassica
rapa; Wisconsin Fast Plants; Astroplants, dwf1, (c) Triticum aestivum
(Wheat), and (d) Zea mays (Corn). e) Picture of a Corn seedling held at
90 degrees on paper, demonstrating the anchoring of the roots to the
filter paper support.
doi:10.1371/journal.pone.0096730.g001
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gradient of auxin is determined by the angle between the root tip

and the gravitational field: if the root is pointing downward the

angle is zero, there is no cross-sectional gradient of auxin, and the

root grows mostly straight. Therefore, gravitropism cannot

influence the direction of root growth in a horizontal plane.

Gravitropism typically dominates the early stages of root growth

and can complicate the assessment of the influence of other stimuli

(e.g. water or nutrient gradients) on the development of roots: as

the root grows, the angle it makes with the gravitational field can

change, therefore changing the distribution of auxin in time and

space. Roots grown on a horizontal surface still develop a gradient

of auxin (the gravitational field is still present), but it remains

constant and homogeneous across the whole root system.

Therefore, a flat, horizontal surface provides a convenient way

to monitor root development in response to stimuli other than

gravity, since the effect of gravity is not removed but is constant.

Our setup provides a flat horizontal surface by overlaying the

paper on a glass slide – which provides a flat surface – supported

on a platform constructed from LEGO bricks – which ensures the

surface is horizontal. The remarkable precision of LEGO bricks

(molds have a tolerance of 5 mm or less [29]), together with their

convenience, reusability, modularity, transparency, low cost,

chemical inertness, and compatibility with autoclaving makes

them nearly ideal building blocks for the rapid prototyping of

structurally precise biological environments in the mm to cm scale

[30]. Several setups can be arranged on a single flat leveled surface

to ensure that all growth sheets in all setups are horizontal. Other

options to control for gravitropism exist (e.g., using agravitropic

mutants [31], growing plants in space [32] or in a clinostat [33])

but are considerably more demanding. Low cost. There is a

growing requirement to consider the cost of science from the

beginning [34]. Our setups cost 8.78$ per plant, of which only

0.43$ is for disposable items. The setup does not require any

equipment unless sterilization is required (in which case a class II

biosafety cabinet is sufficient). High throughput. High through-

put plant experiments are typically conducted on gel in Petri

dishes that (i) are capable of processing thousands of individual

seeds/plants per week or month [35,36,37], (ii) can be setup in less

than 1 minute, and (iii) can be stacked so that up to 5000 per m2

[35] can be fit in growth chambers. Our experimental units can be

assembled in ,1 to 2 minutes (see Movie S2 for a demonstration)

and each of the parts can be prepared (i.e., autoclaved, cut,

dissolved) in batches (we can assemble from scratch approximately

100 setups per person, per day). Each setup has a footprint of 60

cm2, or ,167 units per m2. Although our setup does not have the

throughput of Petri dishes, it provides control over humidity and is

compatible with much larger plant sizes. Sterile. Plant science

research requires the growth and development of plants under

sterile conditions [38]. All components are easily sterilized (the

LEGO bricks, plastic cup, glass slide, MAGENTA box, gellan

gum, salt and nutrient solutions are autoclaved, while the paper

and plant seeds are soaked with 70% ethanol). After our setup is

assembled in a sterile environment and sealed within the

MAGENTA box, it can be transferred to a non-sterile environ-

ment without contamination. Suitable for any laboratory
bench. The advancement of life science in the 21st century will

require contributions from other disciplines [39] and developing

world laboratories [40]. Facilitating these collaborations will

require methods compatible with any laboratory bench in the

world, regardless of discipline or resources. Our experiments were

performed in handmade chambers (see Supporting Information

S1) constructed from a wooden frame and aluminum foil. The

purpose of the chambers was to provide uniform illumination of

the plants, and prevent the establishment of thermal gradients.

Plants were grown in our growth chambers underneath an array of

225 white LEDs so that the plants would receive ,9000 lumens.

Capable of supporting increasing levels of complexity.

The support of the seed is filter paper. This choice was influenced

by the recent reports of ‘lab-on-paper’ technologies that have been

developed to provide fluid manipulation [41], chemical reactions

[42], and environments for microorganisms and cell cultures [43]

in paper substrates. The combination of the platform presented

here with the tools of paper microfluidics is beyond the scope of

this communication, and will be the focus of future publications.

Results and Discussion

The performance of the germination and growth environment

was assessed by (i) its control over relative humidity, and (ii) its

ability to yield high germination rates. Figure 2a shows the relative

humidity (RH) measured 5 cm above the surface of the growth

sheet (the approximate height of the cotyledons of a B. rapa plant

after the hypocotyl straightens), as a function of the super saturated

salt water solution held in the external container. All measure-

Figure 2. Performance of the germination and growth plat-
form. a) Relative humidity in the setup as a function of the salt used to
form the supersaturated solution in the reservoir. Error bars are 3
standard errors, n = 3. b) Plot of the maximum germination rates
obtained for Fast Plants, Wheat and Corn in our platform, compared to
optimal germination rates reported by our seed source.
doi:10.1371/journal.pone.0096730.g002
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ments were performed at 20uC: the measurements were made on a

laboratory bench where the temperature was not stabilized (we

estimate the error on the temperature to be ,2uC). The RH can

be controlled between 90.6 6 0.9% (with KSO4, error is three

standard errors, n = 3) and 5668% (with LiCl, error is three

standard errors, n = 3). The difference between these measured

RH values and those expected from the respective saturated

solutions – a super saturated LiCl solution in water should

establish a RH of 12% – probably results from the fact that the

atmosphere within the enclosed setup is exposed to both the

saturated salt solution and the nutrient solution. Thereby, while

the saturated salt solution is absorbing water from the atmosphere,

reducing the RH, the nutrient solution is evaporating, increasing

the RH. The steady state results in the observed RH. Of course,

the above explanation implies that the observed RH will not only

depend on the salt solution chosen to reduce RH, but also on the

ratios between the areas of the exposed surfaces of the saturated

salt solution and the nutrient solution in the setup. Broader ranges

of RH should be accessible by changing the ratios of the exposed

surfaces. The evaporation of the nutrient solution and the

absorption of water by the saturated salt solution should increase

the concentration of the nutrient solution over time. Our

measurements indicate that the change is not detectable over the

course of 15 days, at least when using NaCl as the saturated salt

solution (see Supporting Information S1).

Figure 2b shows the germination rates for B. rapa, T. aestivum,

and Z. mays, in our platform, compared to the germination rates

reported by our seed source. The rates we obtained are

remarkably close to the expected ones, especially considering that

minimal effort was put into optimizing standard seed handling

protocols for our platform (see Supporting Information S1 for

details).

The ability to visualize whole root systems will be increasingly

important for understanding the responses of roots to stimuli, and

breeding plants with desirable traits. Figure 3 demonstrates the use

of our setup for the quantitative analysis of the whole root system

of a T. aestivum seedling. The root system was photographed from

above after the shoot is removed (Figure 3a). We increased the

contrast of the image (details in Supporting Information S1) and

removed the seed from consideration by superposing a white

colored circle over it (Figure 3b). The resulting image was then

analyzed with standard root-analysis software (in our case

WinRhizo) yielding phenotypic data for the whole root system

(Figure 3c).

Conclusions

We addressed in this communication the challenge of providing

a simple, inexpensive, and yet reproducible and capable apparatus

for the observation of germination and seedling growth in sterile

environments with controlled humidity.

The system we designed combines tools that are commonly used

by plant scientists (e.g., filter paper, MAGENTA boxes) and others

that are not (e.g., LEGO bricks) to fulfill a number of strict design

requirements which include low cost, simplicity, structural

precision, control over humidity, scalability to any plant size,

and high throughput. Specifically, we demonstrated that the setup,

as it is designed, (i) can grow plants for weeks, despite its planar

geometry (the plants do not topple over but balance and anchor

themselves with their roots), (ii) provides a constant supply of

water, to the seed and root system, (iii) maintains a constant

relative humidity between 91% and 56%, (iv) is capable of

germination rates comparable to those expected from the species

we tested (B. rapa, T. aestivum, and Z. mays), (v) enables sterile plant

growth experiments in a non-sterile environment, (vi) facilitates

imaging and image analysis of whole root systems, and (vii) cost

8.78$ (of which only 0.43$ are in non-reusable items) to buy and 1-

2 minutes to assemble.

This platform represents one element of a series of integrated,

simple, and reproducible tools that our group will be introducing

to create highly controlled mm and cm-scale biological environ-

ments for plants and other organisms.

Supporting Information

Supporting Information S1 Figures S1-S16. Figure S1.

Construction of LEGO support. Figure S2. MAGENTA box

containing LEGO support and glass slide. Figure S3. Preparation

of nutrient solution and saturated sodium chloride solution. Figure

S4. Preparation of cylinders and tweezers for sterilization. Figure

S5. Form and dimensions of pump sheet (Whatman no. 1 filter

paper). Figure S6. Form, dimensions and wax pattern of growth

sheet (Whatman no. 1 filter paper). Figure S7. All consumables

needed for the experiment. Figure S8. MAGENTA box

Figure 3. Example of root image analysis performed on roots
grown on our experimental setup. a) Top-view photograph of a
Wheat (Triticum aestivum) seedling grown for 7 days after the shoot has
been removed. b) Modified version of the photograph in panel a) after
the seed has been digitally removed, the color has been made black
and white, the contrast has been maximised. c) Table of selected root
parameters obtained by the analysis of the image in panel b) by
WinRhizo.
doi:10.1371/journal.pone.0096730.g003
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containing 50 ml of super saturated sodium chloride. solution

(liquid + powder NaCl). Figure S9. Mini cup (reservoir) box

containing 25 ml of nutrient solution (x0.5 MS). Figure S10. Steps

of MAGENTA box assembly with nutrient reservoir and pump

sheet. Figure S11. Addition of the growth sheet paper. Figure S12.

Gel and seed added to experimental setup, fully assembled setup.

Figure S13. Growth chamber containing 18 setups. Figure S14.

Photographs of a corn plant growing on a scaled-up version of the

setup described in the manuscript. Larger sizes are possible. Figure

S15. Measure of relative humidity (%), control without pump and

growth paper and the experiment with pump and growth paper.

Figure S16. The concentration of nitrates and ammonium ions

measured in the pump sheet does not significantly change over

time.

(PDF)

Movie S1 Assembly of LEGO support for setup.
(M4V)

Movie S2 Assembly of plant growth setup.

(M4V)
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