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Abstract

Third-variable effect refers to the effect transmitted by third-variables that intervene in the

relationship between an exposure and a response variable. Third-variable effect analysis

has been broadly studied in many fields. However, it remains a challenge for researchers to

differentiate indirect effect of individual factor from multiple third-variables, especially when

the involving variables are of hierarchical structure. Yu et al. (2014) defined third-variable

effects that were consistent for all different types of response (categorical or continuous),

exposure, or third-variables. With these definitions, multiple third-variables can be consid-

ered simultaneously, and the indirect effects carried by individual third-variables can be sep-

arated from the total effect. In this paper, we extend the definitions of third-variable effects to

multilevel data structures, where multilevel additive models are adapted to model the vari-

able relationships. And then third-variable effects can be estimated at different levels. More-

over, transformations on variables are allowed to present nonlinear relationships among

variables. We compile an R package mlma, to carry out the proposed multilevel third-vari-

able analysis. Simulations show that the proposed method can effectively differentiate and

estimate third-variable effects from different levels. Further, we implement the method to

explore the racial disparity in body mass index accounting for both environmental and indi-

vidual level risk factors.

Introduction

A third-variable effect (TVE) refers to the effect conveyed by a third-variable to an observed

relationship between an exposure and a response variable of interest. Depend on whether

there is a causal relationship from the exposure variable to the third-third variable and then to

the response, the third-variable (denoted as M) is often called a mediator (when there are

causal relationships) or a confounder (no causal relationship is involved). Research purposes

for the third-variable analysis are generally, 1) identify significant third-variables that can par-

tially or completely explain the relationship between the exposure variable (X) and the out-

come (Y); and 2) differentiate the TVE from different paths that connect between X and Y.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0241072 October 23, 2020 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yu Q, Li B (2020) Third-variable effect

analysis with multilevel additive models. PLoS ONE

15(10): e0241072. https://doi.org/10.1371/journal.

pone.0241072

Editor: Gang Han, Texas A&M University, UNITED

STATES

Received: August 29, 2020

Accepted: October 8, 2020

Published: October 23, 2020

Copyright: © 2020 Yu, Li. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This study is funded by the National

Institute on Minority Health and Health Disparities

(https://www.nimhd.nih.gov/). The award number

is #1R15MD012387. The PI is Dr. Qingzhao Yu.

The funder had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-8194-0798
https://doi.org/10.1371/journal.pone.0241072
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241072&domain=pdf&date_stamp=2020-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241072&domain=pdf&date_stamp=2020-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241072&domain=pdf&date_stamp=2020-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241072&domain=pdf&date_stamp=2020-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241072&domain=pdf&date_stamp=2020-10-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241072&domain=pdf&date_stamp=2020-10-23
https://doi.org/10.1371/journal.pone.0241072
https://doi.org/10.1371/journal.pone.0241072
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.nimhd.nih.gov/


Except for the difference in explaining the effects from a mediator and from a confounder, the

TVE analysis method can be used to make inferences on both mediation and confounding

effects [1]. Third-variable analysis has been widely used in psychology, social sciences, behav-

ioral research, health prevention, epidemiological studies, and genetic analysis. Within the

context of generalized linear models, general predictive models, and counterfactual frame-

work, a number of methods have been proposed for inferences on TVEs, to name a few, [2–7].

In research practices, the experiment data are often collected hierarchically. For example, to

identify variables that are related with childhood obesity, we consider both environmental (e.g.

walkability of the neighborhood) and individual factors (e.g. snacking habit). When hierarchi-

cal databases are considered, third-variable analysis method based on generalized linear mod-

els are usually not readily adaptable since the independence assumption among observations is

violated. In such cases, hierarchical models, also known as multilevel or mixed-effect models,

are more appropriate to fit relationships among variables since these models can catch depen-

dencies among observations and allow for predictors from different levels of the data [8]. In

this paper, we propose a third-variable analysis method based on multilevel models. For the

hierarchical model, we assume there are two levels of data and refer the individual level as level

1, and the group level as level 2. Although more than two levels of hierarchy is possible, this

paper focuses on two-level databases only.

In third-variable analysis, besides the pathway that directly connect the exposure variable

with the outcome, we explore the exposure! third-variable! response or X!M! Y path-

ways. When doing third-variable analysis with multilevel models, the level of the variables at

the left of the arrow should be higher than or equal to that of the right, since a group level vari-

able may affect an individual level variable but not vice versa [9]. In this setting, only the 2! 2

! 2, 2! 2! 1, 2! 1! 1, and 1! 1! 1 relationships are legible. Multilevel models are

necessary to deal with hierarchical data base even for the 1! 1! 1 relationship. [10] studied

the bias brought by using single level models when data are hierarchical. [9, 11–13] proposed

third-variable analysis methods for all three types of multilevel models. Moreover, [14–16]

proposed alternative methods to test the indirect effects in 2! 2! 1, 2! 1! 1 models.

In addition, [17] proposed to use Bayesian third-variable analysis to deal with hierarchical

databases.

In this paper, we propose to use generalized additive multilevel models for third-variable

analysis with hierarchical databases. The major contributions of this proposed method are

that: 1) we extend the general definitions of TVEs proposed by [7] to multilevel data structure;

2) the method allows any types (categorical or continuous) of the exposure(s), third-variables

and response variable(s) in exploring TVEs; 3) TVEs from individual or group of third-vari-

ables and from different levels are differentiable; 4) nonlinear associations among variables are

allowed in calculating the TVEs; 5) multiple exposure(s) from different levels and multivariate

outcomes are allowed in the third-variable analysis, and 6) an R package mlma was developed

for the method proposed in this paper. Practitioners can easily implement the method in real

data analysis.

The rest of the paper is organized as follows. In Section 2, we review the general definitions

of TVEs and then extend these concepts to the multilevel model situation. We also review the

generalized additive multilevel models (GAMM) that are used to model relationships among

variables. Based on that, we propose the multilevel third-variable analysis with GAMM. In Sec-

tion 3, we illustrate the use of the proposed method in different multilevel data structures and

the usage of the mlma R package. We then use the method in a real data example in Section 4:

to explore the ethnic disparity in obesity considering both individual and environmental risk

factors. Section 5 gives a summary of the proposed method and points out future research

directions.
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2 Third-variable analysis with multilevel additive models

[7] proposed general definitions for TVEs. First we recapitulate the definitions and then pro-

pose the multilevel additive models in third-variable analysis with hierarchical databases.

2.1 Definitions of third-variable effects with single-level data

The conceptual model for TVE of one level is shown in Fig 1. In the Figure, X is the exposure

variable, Y is the outcome, M = {M1, . . ., Mp} is the vector of p third-variables, and Z is the vec-

tor of other variables which relate with Y but do not intermediate the X−Y relationship. As

usual, the TVE includes total effect—the overall effect from the exposure variable X to the out-

come Y, direct effect—the remaining effect from X to Y after accounting for effects form third-

variables, and indirect effect from Mi—the effect from the path X−Mi−Y.

Basically, [7] defines the total effect as the changing rate in the outcome when the exposure

variable changes. Compared with the traditional definition of TVEs, which are defined as the

amount of change of the outcome when the exposure variable changes from one status to

another, the Yu et al.’s definition has the following benefits:

1. The total effect is scale invariant to the unit of the exposure variable. This is because the

effect is defined as the changing rate but not as the changing amount of Y with X.

2. There is no need to define the two status of the exposure variable. Therefore the total effects

can be calculated not only for binary but also for continuous exposures.

3. The total effect can be calculated with nonlinear models when the relationship among

variables are changing at different values of the exposure variable. The total effect can be

expressed as a function of the exposure variable by the Yu definition [7].

The direct effect not from Mi is similarly defined as the total effect except that the relation-

ship between the exposure variable and Mi is manipulatively broken. In such case, Mi are con-

trolled not to change with X: Mi follows its marginal distribution from the observations. The

indirect effect from Mi is then defined as the total effect minus the direct effect not from Mi.

All the benefits of the definition of total effect are also fit for the direct and indirect effects. In

additon, multiple third-variables can be considered simultaneously, and the indirect effects

carried by individual third-variables can be separated from the total effect. For the formal defi-

nitions of TVEs, readers are referred to [7] and [18]. [7] showed that the proposed definitions

of TVEs are equivalent to the conventional TVEs under certain situations (e.g., linear regres-

sion models with continuous third-variables and outcome). They also established the relation-

ship between the proposed definitions of direct or indirect effect and the natural direct or

indirect effect for binary exposure variables. Later, the definitions have been implemented to

Fig 1. Conceptual model for one-level third-variable effects.

https://doi.org/10.1371/journal.pone.0241072.g001
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explore racial and ethnic health disparities by [19, 20] and extended to deal with time-to-event

outcomes ([21]) and for multiple exposures and multivariate outcomes ([22]). In this paper,

we extend the method to the context of multilevel models.

2.2 Definitions of third-variable effects with data of two levels

The unique data structure in multilevel models raises the potential problem of confounding

TVEs from different levels. As pointed out in [13], the relationship between two level-one vari-

ables can be decomposed into between-group and within-group components. In particular,

the aggregated variables at the second level can be highly related while the relationship may be

very weak or even at an opposite direction when considered at the individual level [23]. For

example, [24] points out that the proportion of black residents may be an important variable

for the census tract, while it is different from the meaning of ethnicity as an individual-level

variable. [25] discussed the difference of the two components extensively. It is important to dif-

ferentiate the between-group and within-group components in third-variable analysis, where

the TVEs can be decomposed to level 1 and level 2 effects. To identify the level 1 and level 2

TVEs separately, [13] proposed the group-mean centering method (CWC), where they sub-

tracted the group means from individual level variables and added group means as level 2

covariates. In their paper, [13] showed that the CWC method efficiently separated level 1 and

level 2 TVEs and resulted in less bias and more power compared with non-centering methods.

In this paper, we use a different way to estimate the level 1 and level 2 TVEs: extend the defini-

tions of TVEs with single level models by [7] to multilevel models.

With the generalized definition of TVEs, [22] has shown that a third-varaible analysis can

involve multiple exposure variables and multivariate outcomes. The purpose of third-variable

analysis is to differentiate the direct effect and indirect effect from each third-variable for each

pair of the exposure-outcome relationship. If the outcome is at level 2, all exposure and media-

tors have to be level 2 as discussed in Section 1. Therefore, a single-level third-variable analysis

works. If the outcome is at level 1, the exposure variable can be a level 1 or level 2 variable. The

third-variables can be level 1 or 2 for a level 2 exposure, but have to be level 1 for a level 1 expo-

sure variable. In this paper, we focus on level 1 outcomes.

Denote Mij = (Mij1, . . ., MijK) as the vector of K potential level 1 third-variables for the ith
object at the jth group. Mij,−k is the vector Mij excluding the kth element. Denote M.j = (M.j1,

. . ., M.jL) as the vector of the L potential level 2 third-variables or level 1 third-variables aggre-

gated at level 2 within group j. Let Mijk(xij) be a random variable that has a conditional distri-

bution given Xij = xij. For an exposure variable X at any level, let u� be the minimum unit of X,

such that if x 2 domain(X), then x + u� 2 domain(X). For now, we ignore other covariates Z.

Assume effects of exposures and third-variables on the outcome are additive, we have the gen-

eral definitions of TVEs, following [7], for level 1 (Definition 1) and level 2 exposure variables

(Definition 2). Note that a level 1 exposure can have only level 1 mediators while a level 2 expo-

sure can have both level 1 and level 2 mediators.

Definition 1. For a level 1 exposure variable X, the level 1 total effect (TE1) of X on Y, the
level 1 direct effect (DE1;nMk

) of X on Y not from level 1 third-variable Mk and the level 1 indirect
effect of X on Y through Mk at X = xij (IE1;Mk

) are defined as:

TE1ðxijÞ ¼ lim
u!u�

EYijðxij þ u;Mijðxij þ uÞ; x:j;M:jÞ � EYijðxij;MijðxijÞ; x:j;M:jÞ

u
; ð1Þ

PLOS ONE Third-variable effect analysis with multilevel additive models

PLOS ONE | https://doi.org/10.1371/journal.pone.0241072 October 23, 2020 4 / 17

https://doi.org/10.1371/journal.pone.0241072


DE1;nkðxijÞ ¼ lim
u!u�

EMijk

�EYijðxij þ u;Mij;� kðxij þ uÞ;Mijk; x:j;M:jÞ

u
;

�
EYijðxij;Mij;� kðxijÞ;Mijk; x:j;M:jÞ

u

� ð2Þ

IE1;kðxijÞ ¼ TE1ðxijÞ � DE1;nkðxijÞ: ð3Þ

The average level one TVEs are the mean value of the TVEs defined by Definition 1: ATE1

= Eij[TE1(xij)], ADE1,\k = Eij[DE1,\k(xij)] and AIE1,k = ATE1 − ADE1,\k.

Definition 2. For a level 2 exposure variable X, the level 2 total effect (TE2) of X on Y, the
level 2 direct effect (DE2;nMk

) of X on Y not from the level 1 third variable Mk and level 2 third var-
iable Ml, and the level 2 indirect effect of X on Y through Mk and Ml at X = x.j (IE1;Mk

) are defined
as:

TE2ðx:jÞ ¼ lim
u!u�

Ei
EYijðxij;Mijðx:j þ uÞ; x:j þ u;M:jðx:j þ uÞÞ � EYijðxij;Mijðx:jÞ; x:j;M:jðx:jÞÞ

u

� �

; ð4Þ

DE21;nkðx:jÞ ¼ lim
u!u�

EiEMijk

� EYijðxij;Mij;� kðx:j þ uÞ;Mijk; x:j þ u;M:jðx:j þ uÞÞ
u

;

�
EYijðxij;Mij;� kðx:jÞ;Mijk; x:j;M:jðx:jÞÞ

u

�

;

ð5Þ

DE22;nlðx:jÞ ¼ lim
u!u�

EiEM:jl

� EYijðxij;Mijðx:j þ uÞ; x:j þ u;M:j;� lðx:j þ uÞ;M:jlÞ

u
;

�
EYijðxij;Mijðx:jÞ; x:j;M:j;� lðx:jÞ;M:jlÞ

u

�

;

ð6Þ

IE21;kðx:jÞ ¼ TE2ðx:jÞ � DE21;nkðx:jÞ; ð7Þ

IE22;lðx:jÞ ¼ TE2ðx:jÞ � DE22;nlðx:jÞ: ð8Þ

The average level 2 TVEs are the TVEs defined by Definition 2 averaged at the group level:

ATE2 = Ej[TE2,j(x.j)], AIE21,k = Ej[IE21,jk(x.j)] and AIE22,l = Ej[IE22,jl(x.j)].

2.3 Multilevel additive models

We use multilevel additive models to build relationships among variables of hierarchy. The

additive model is a nonlinear regression method that was first proposed by [26]. A multilevel

additive model can deal with both nonlinear covariate effects and cluster-specific heterogene-

ity [27]. It is now gaining rapid popularity in psychological and social research [28]. Using

the notations in Section 2.2, assume that we have L level 2 and K level 1 third-variables.

In addition, assume that there are E1 level 1 and E2 level 2 exposure variables, denoted as

XT
ij ¼ fXij1; . . . ;XijE1

g and XT
:j ¼ fX:j1; . . . ;X:jE2

g respectively. We propose the following linear

additive multilevel models for multilevel third-variable analysis. The boldfaced letter indicates

a potential vector of functions or numbers.
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For level 2 third-variables, M.jl, l = 1, . . ., L:

g:lðEðM:jlÞÞ ¼ a0l þ
XE2

e¼1

a2le
Tf2leðX:jeÞ:

For level 1 third-variables, Mijk, k = 1, . . ., K:

g1kðEðMijkÞÞ ¼ u0jk þ
XE1

e¼1

α1ke1
Tf1ke1ðXijeÞ þ

XE2

e¼1

α2ke1
Tf2ke1ðX:jeÞ;

u0jk ¼ a00k þ r0jk:

The full model:

EðYijÞ ¼ u0j þ
XE1

e¼1

β1e
Tf1eðXijeÞ þ

XE2

e¼1

β2e
Tf2eðX:jeÞ þ

XK

k¼1

β3k
Tf3kðMijkÞ þ

XL

l¼1

β4l
Tf4lðM:jlÞ;

u0j ¼ b00 þ r0j:

In the models, r0jk and r0j are second-level random errors with mean zero and finite vari-

ances. f(�) is a function/transformation vector of �. The transformation enables modeling non-

linear relationships among variables. We assume that all the transformation functions are

first-order differentiable. α and β are coefficient vectors for transformed variables in predicting

the response variable on the left side of each equation. In addition, g(�)s are the link functions

that link the expected response variable with the right-hand-side of each equation, the system-

atic component of a generalized linear model. For example, a binary Mijk may have a link func-

tion g1k = logit(P(Mijk = 1)). Similarly, a link function can be used on the outcome. With the

link function, we can deal with different types of third-variables and outcomes.

2.4 Third-variable effects with multilevel additive model

Based on the definitions of TVEs, we derive the TVEs in Theorems 1 and 2. In the theorems,

f0(x) denotes the first derivative of function f on the random variable X and realized at X = x.

In addition, g−1 denotes the inverse function of g. We further denote μijk = E(Mijk) and μ.jk =

E(M.jk). The proofs of theorems are included in the S1 File.

Theorem 1 With the relationships among variables built by Section 2.3, the TVEs for level 1
exposure variable Xije, e = 1, . . ., E1 on the outcome variable Y are:

IE1;kðxijeÞ ¼ ½α1ke1
Tf 0

1ke1ðxijeÞ � g
� 1
1k
0
ðmijkÞ� � ½β3k

Tf3k
0
ðmijkÞ�; k ¼ 1; . . .K

DE1ðxijeÞ ¼ β1e
Tf1e

0
ðxijeÞ

TE1ðxijeÞ ¼ DE1ðxijeÞ þ
XK

k¼1

IE1;kðxijeÞ
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Theorem 2. With the relationships among variables built by Section 2.3, the TVEs for level 2
exposure variable X.je, e = 1, . . ., E2 on the outcome variable Y are:

IE22;lðx:jeÞ ¼ ½α2le
Tf 0

2leðx:jeÞ � g
� 1
:l
0
ðm:jlÞ� � ½β4l

Tf4l
0
ðm:jlÞ�; l ¼ 1; . . . L

IE21;kðx:jeÞ ¼ ½α2ke1
Tf 0

2ke1ðx:jeÞ � g
� 1
1k
0
ðmijkÞ� � ½β3k

TEf3k
0
ðmijkÞ�; k ¼ 1; . . .K

DE2ðx:jeÞ ¼ β2e
Tf2e

0
ðx:jeÞ

TE1ðxijeÞ ¼ DE2ðx:jeÞ þ
XK

k¼1

IE21;kðx:jeÞ þ
XL

l¼1

IE22;lðx:jeÞ

2.5 Bootstrap method for third-variable effect inferences

Finally, we use the bootstrap method to calculate the variances of the TVEs. In particular, at

the group level, a bootstrap sample of the same size for each group is drawn with replacement

from the original data set. Then multilevel additive models are fitted based on the bootstrap

sample to get the estimates of βs, based on which the TVEs can be calculated by Theorems 1

and 2. The above process repeats many times and inferences can be made based on the

repeated estimates. To draw the bootstrap sample, we keep all groups at the second level and

then at the individual level, we draw observations with replacement of size nj from the jth

group, where nj is the number of observations in the jth group. This bootstrap method is

adopted in the R package mlma to estimate the variances of estimates and to build up confi-

dence intervals. The mlma package is available from the Comprehensive R Archive Network

(CRAN) at https://cran.r-project.org/web/packages/mlma/index.html and illustrated by the

simulations in Section 3.

2.6 The mlma R package

The authors developed a R package, mlma, for multilevel third-variable analysis. The analysis

is based on multilevel additive models where nonlinear transformations of variables are

allowed. The package mlma contains three groups of functions: function data.org is used to

prepare data sets for analysis—transforming variables, dichotomizing categorical third-vari-

ables, and getting the derivatives of the transformation functions. The functions mlma and

boot.mlma are used for statistical inferences on the TVEs. The former estimates the TVEs and

the latter generates bootstrap samples from the original data sets and does the third-variable

analysis based on the bootstrap samples. The estimates of TVEs from the bootstrap samples

are then used for statistical inferences. The third group of functions are generic functions—

print, summary and plot results from the mlma and boot.mlma functions. The details of how to

use the functions are fully documented within the package and the mlma vignette. The analysis

in Section 3 are all performed using the package.

3 Simulations

In this section, we show the performance of the proposed method and illustrate the use of the

R package mlma. The first simulation is based on a 2! 1! 1 true model adapted from [13]

but it is extended to include exposure and third-variables at both levels. There is one exposure

variable at each level and one third-variable at each level. The level 1 exposure and level 2

third-variable are binary. No transformation is performed on the original variables. The first

simulation is to exam how the sensitivity and specificity of identifying important third-vari-

ables are influenced by different sets of parameters.
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The second simulation is based on nonlinear multilevel models with both level exposures

and one level 1 continuous third-variable. The second simulation is to demonstrate how to

include transformation terms of variables in the multilevel mediation analysis and how to use

the graph tools in the R package mlma to illustrate relationships among variables.

The simulations are performed using the R package mlma. The R codes are included in the

S1 File.

3.1 Simulation 1

The first simulation includes one level 1 binary exposure, Xij, and one level 2 continuous expo-

sure, X.j, where j denotes the jth group and i denotes the ith observation in the jth group. There

are 600 observations in total and n observations in each group. Therefore, there are 600/n
groups. To check how group sizes and number of groups can influence the sensitivity of identi-

fying important TVEs, we set n at 5 and 20 respectively. Xij are generated through binomial

distribution with the probability of success 0.5. X.j are generated through a standard normal

distribution. There are a level 2 binary third variable, M.j, and one level 1 continuous third-vari-

able, Mij. In detail, the simulation data are generated from the following models for i = 1, . . ., n
and j = 1, . . ., 600/n:

logitðm:j ¼ 1Þ ¼ 0:8x:j;

mij ¼ u0j þ 0:8x:j þ 0:8xij þ �0ij;

yij ¼ u1j þ b1xij þ b2x:j þ b3mij þ b4m:jþ �1ij;

where u0j� N(0, 0.5), �0ij� N(0, 1), u1j� N(0, v2) and �1ij� N(0, v1) are independently gener-

ated random errors at both levels. The level two random error for the response variable is set as

one-fifth of the level one variance—v2 = v1/5, which makes the intraclass correlation (ICC) to

be.17. As pointed out by [29], this medium ICC value facilitates model convergence. v2 is chosen

to be 5 or 1, β1 and β2 ranges within the set {−.59, −.14, 0, 0.14, 0.39} and β3 and β4 from {0,

0.14, 0.59}. We then check the influence of these parameters on the sensitivity and specificity of

identifying important TVEs. The data with each combination of parameters are generated 20

times. The sensitivity of a TVE is the proportion of times that the estimated confidence interval

of the effect does not include 0 when the actual effect is not 0. Relatively, the specificity is

defined as the proportion of times that the estimated confidence interval of the effect includes 0

when the true effect is 0.

For the level 2 exposure, the average direct effect for X.j! Yij (denoted as de2), the indirect

effect from M.j for X.j!M.j! Yij (denoted as ie2.2), the indirect effect from Mij for X.j!Mij

! Yij (denoted as ie2.1), and the total effect (te2) are estimated.

For the level 1 exposure, the average direct effect for Xij! Yij (denoted as de1), the indirect

effect from Mij for Xij!Mij! Yij (denoted as ie2.1), and the total effect (te1) are estimated.

Fig 2 shows the sensitivity (or 1-specificity when β2 = 0) of identifying significant level 2

direct effect, when βs change but n is fixed at 20 and v1 at 1. The x-axis is β2, the true level 2

direct effect. Different color and line type in each plot represents different values of β1. Each

row of the 3 × 3 panel in Fig 2 is a different value for β4, each column is for a different value of

β3. We found that the sensitivity of correctly identifying important level 2 direct effect depends

on the value of other TVEs. This is mainly due to the increased correlations among variables

that results in raised variances in the estimation.

Fig 3 shows the sensitivity or 1-specificity (when β1 = 0) of identifying important level 1

direct effect. The sensitivity is averaged over β3 and β4 for different values of β1, v1 and n. We
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see that the sensitivities reduce a lot when the variances are bigger. However, values of n have

minimum influence on the sensitivity.

Finally, Figs 4 and 5 show the sensitivity and specificity of identifying indirect effects. For

both Figures, we fix v1 at 1. Fig 4 shows how the sensitivity of level 2 indirect effects of Mij and

M.j changes with β3 and β4. The left panel is the sensitivity and 1-specificity (when β3 = 0) of

identifying Mij. The level 2 indirect effect of Mij is proportional to β3, so the sensitivity

increases with β3. The sensitivity is minimally influenced by the value of β4. The right panel is

the sensitivity and 1-specificity (when β4 = 0) of identifying M.j. Again, the sensitivity of identi-

fying M.j is proportional to β4, but is not systematically influenced by the value of β3.

Fig 5 shows how the actual direct effect influences the estimation of the indirect effect of

Mij. The left panel is for the level 1 indirect effect and the right panel is for the level 2 indirect

effect. For both panels, the black solid line is the 1-specificity and the other two lines are the

sensitivity. The sensitivity for level 1 indirect effect increases with β3 and that for level 2 indi-

rect effect increases with β4. The x-axis is the true level 1 or 2 direct effect for the left and right

panel respectively. We see very small influence of the true direct effect on the estimation of the

indirect effect.

Fig 2. Estimates of level 2 direct effect from simulation 1. The x-axis is the true direct effect, and y-axis is the sensitivity (or 1-specificity when true de

is 0). Different color and line type represents different value for β1. Rows are for β4 = 0, 0.14 and 0.59, and columns are for β3 = 0, 0.14 and 0.59

respectively.

https://doi.org/10.1371/journal.pone.0241072.g002
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3.2 Simulation 2

The second simulation is to illustrate the use of the mlma package with transformations in the

variables. In the simulation, there is only one level 2 third-variable, Mij and the variable is caus-

ally proceeded by two exposure variables, Xij� N(0, 0.5) at the first level and Xj� χ2(df = 2) at

the second level. In the simulation, there are 30 groups, and 20 observations generated for each

group. That is i = 1, . . ., 20 and j = 1, . . ., 30. The data are generated from the following model:

mij ¼ u0j1 þ 1:2x2
ij þ 1:2xij þ �1ij;

yij ¼ u0j þ 0:98xij þ 0:98logðx:jÞ þ 0:98mij þ �ij;

where �1ij� N(0, 1), �ij� N(0, 2), u0j� N(0, 0.4) and uoj1� N(0, 0.5) are independently gener-

ated as the level 1 and level 2 random errors respectively. For the data generation mechanism,

the true level 1 direct effect is 0.98 and the true level 2 direct effect is de2(xj) = 0.98/xj. In addi-

tion, the true level 1 indirect effect for M at xij is 1.2 × 0.98 × xij and the true level 2 indirect

effect is 1.2 × 0.98 = 1.176, where the former depends on the value of xij representing a nonlin-

ear relationship between M and Xij and the latter represents a strong (1.176) constant indirect

effect.

Fig 3. Estimates of level 1 direct effect from Simulation 1. The x-axis is the true direct effect, and y-axis is the sensitivity (or 1-specificity when the

true de is 0). Different color and line type represents different value for β2. Each plot is for a different combination of n and v1.

https://doi.org/10.1371/journal.pone.0241072.g003
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Fig 6 shows the estimated direct effects at both levels from the simulated data. We see that

the estimated direct effect correctly delineates the nonlinear relationship among variables.

The mlma package provides a plot function to show relationships among variables. Fig 7

shows the results of the plot function without specifying a specific third-variable. The

Figure shows the relative effect (defined as the TVE divided by the total effect) at each exposure

variable.

Fig 8 shows results of the plot function with the third-variable M. The left panel is the effect

of M with the level 1 exposure denoted as x1 and the right panel is for the level 2 exposure

which is denoted as x2. The first row of Fig 8 gives the estimated indirect effect with confidence

intervals. The second row shows the changing rate of M with the exposure variables and the

Fig 4. Estimates of level 2 indirect effect from simulation 1. The left panel is the sensitivity and 1-specificity of identifying Mij. The right panel is the

sensitivity and 1-specificity of identifying M.j.

https://doi.org/10.1371/journal.pone.0241072.g004

Fig 5. Estimates of indirect effects of Mij from simulation 1. The left panel is for the level 1 indirect effect and the right panel is for the level 2 indirect

effect of Mij.

https://doi.org/10.1371/journal.pone.0241072.g005
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third row gives the changing rate of the outcome with the third-variable M. Again, the figures

correctly describe relationships among variables.

The codes for simulating data set and transforming variables in the third-variable analysis

are available in the S1 File.

4 Explore the racial disparity in obesity

Finally, we implement the method in a real data example: to explore the racial disparity in

body mass index (BMI). In a previous research, we found that on average, non-Hispanic blacks

have a higher BMI and higher rate of obesity compared with non-Hispanic whites [19, 22]

using the 2003-2006 National Health and Nutrition Examination Survey (NHANES). We are

interested to see how the disparities can be explained by both individual and environmental

factors. Environmental risk factors are generated at the census tract level, which include both

food environments and physical activity environments. Individual level variables include

age, gender, smoking status, etc. Readers are referred to [19, 22] for more details about the

variables.

In this demonstration, we try to use risk factors to explain the racial disparity in BMI. We

first use multiple additive regression trees to describe the relationships between BMI and all

risk factors, and then we performed a data transformation on the risk factors so that the trans-

formed variables have a roughly linear relationship with BMI. For the individual level risk fac-

tors, we did the following transformations:

The natural cubic spline bases for age with degrees of freedom of 4.

Truncate the physical activity measurement to two parts: smaller than 2.1 and larger than 2.1

since we see a change point at 2.1 when depicting the relationship between physical activity

and BMI.

We also use the natural cubic spline basis with different degrees of freedom on some of the

environmental factors. Please refer to the S1 File to see how we make the transformations. The

Fig 6. Estimates of direct effects of at both levels for simulation 2.

https://doi.org/10.1371/journal.pone.0241072.g006
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individual level exposure variable is the race (black (0) and white (1)). The census tract level

exposure is the proportion of whites in the census tract. Table 1 shows the estimated third vari-

able effects at both the individual and census tract levels. Note that since high level variable

(e.g. census tract level) can influence the lower level (individual level) variable but not the

reverse, all level 1 third-variables have both individual and census tract level effects, while all

level 2 third-variables have only census tract level effects.

We found that at the individual level, on average, the BMI among Whites is 1.94 (TE) lower

than that for Blacks. Individual level factors can partially explain the racial difference. For

example, age explains about 15%(−0.30 dividedby −1.94) of the difference. Fig 9 shows that a

larger proportion of Blacks (x = 0) are at the middle age (late 30s to early 60s), compared with

Whits. In addition, middle age is related with the highest BMI. The right panel of Fig 9 shows

the relationship between age and BMI, which is not linear. BMI increases with age, peaked at

the middle age and then declines. By the transformation in third-variable analysis, we can

catch the nonlinear relationship between age and BMI.

On the other hand, the racial difference in BMI at the census tract level is not significant.

The total effect is −0.9 with a 95% confidence interval that includes 0. In the study, no environ-

mental risk factors that significantly influences the racial disparity in BMI is found. However,

Fig 7. Relative effect at different exposure variables for simulation 2.

https://doi.org/10.1371/journal.pone.0241072.g007
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in the analysis, multilevel model is required to control the dependencies of subjects who come

from the same residential environments.

5 Discussion and future work

In this paper, we extend the definitions of TVEs proposed by [7] to multilevel data settings,

based on which the direct and indirect effects can be differentiated from different levels. In

addition, indirect effects from different third-variables can be separated. Multilevel additive

models are adapted to model the relationships among variables to account for the hierarchical

data structure. Data transformation is allowed to represent potential non-linear relationship.

We also create an R package, mlma, that implements the proposed method for multilevel

Fig 8. Indirect effect of M at different exposure variables for simulation 2.

https://doi.org/10.1371/journal.pone.0241072.g008

Table 1. Inferences on third-variable effects of risk factors in explaining racial disparities in BMI.

Individual Level Census Tract Level

Total Effect -1.94(-2.39,-1.07) -0.09(-1.03,0.98)

Race (direct effect) -1.46(-2.05,-0.72) -0.08(-0.86,0.72)

Age -0.30(-0.28,-0.17) -0.01(-0.030,0.01)

Foreign Born -0.11(-0.14,-0.07) 0.02(-0.01,0.04)

Smoker 0.06(0.03,0.09) 0.05(-0.02,0.11)

Sex -.004(-.01,-.003) -0.01(-.03,0.01)

Physical Activity -0.08(-.01,-0.03) -0.21(-0.39,-0.06)

Elevation - -0.04(-0.43,0.60)

Street Density - -0.07(-.28,0.18)

Connected Node Ratio - 0.00(-0.00,0.00)

Intersection Density - 0.25(-0.15,0.51)

https://doi.org/10.1371/journal.pone.0241072.t001
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third-variable analysis. Using the package, TVEs on average as well as at different values of the

exposure(s) can be estimated. Simulations showed that the proposed method and package can

accurately estimate TVEs at different levels. We implement the method to explore the racial

disparity in BMI accounting for both environmental and individual-level risk factors.

There are some limitations in the current method. One is that we have to know how to

transform the variables so that the multilevel additive linear models can accurately catch the

relationships among variables. Also, the transformation functions have to be differentiable to

calculate the indirect effects. Alternative, we can use the multilevel smoothing splines [30], to

analyze the multilevel relationship. In such case, there is no need to know the transformation

forms beforehand and the bases for smoothing splines are differentiable. Another limitation of

the package of the current version is that the research is confined to deal with data of at most

two levels. Extension to more levels is more complicated due to the conditions of TVEs such

that the predictor should have equal or higher level than the third-variables, which in turn

should have higher or equal levels than the outcome. Furthermore, when the dataset has more

levels, TVEs from different levels should be estimated separately. A future work is to develop a

more flexible algorithm for general models of potentially more levels.
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