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Abstract

As the energy consumption has been surging in an unsustainable way, it is important to

understand the impact of existing architecture designs from energy efficiency perspective,

which is especially valuable for High Performance Computing (HPC) and datacenter envi-

ronment hosting tens of thousands of servers. One obstacle hindering the advance of com-

prehensive evaluation on energy efficiency is the deficient power measuring approach.

Most of the energy study relies on either external power meters or power models, both of

these two methods contain intrinsic drawbacks in their practical adoption and measuring

accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces

has promoted the power measurement ability into next level, with higher accuracy and finer

time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of

the existing architecture designs to understand their impact on system energy efficiency. In

this paper, we leverage representative benchmark suites including serial and parallel work-

loads from diverse domains to evaluate the architecture features such as Non Uniform

Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy

is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore

components and Dynamic Random-Access Memory (DRAM) through exploiting the power

measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the

mismatch between local compute and remote memory node caused by NUMA effect not

only generates dramatic power and energy surge but also deteriorates the energy efficiency

significantly; 2) for multithreaded application such as the Princeton Application Repository

for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable

increase of energy efficiency using SMT, with more than 40% decline in average power con-

sumption; 3) Turbo Boost is effective to accelerate the workload execution and further pre-

serve the energy, however it may not be applicable on system with tight power budget.

Introduction

For decades, the advancements in computer architecture are undoubtedly pushing the fron-

tier of system performance, fulfilling the prophecy of Moore’s Law. However, it becomes well
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accepted nowadays that the computer systems can not continue to reap the benefits of the

existing architecture designs without considering energy efficiency [1]. Especially, for large

scale computer systems that are pervasively deployed in HPC and datacenter environment

hosting tens of thousands of interconnected computers, energy consumption is no longer a

second class citizen but becomes a major concern in daily operation. Similarly, the energy

consumption has already been payed significant attention in other research areas such as

vehicle electronics and electrification [2–5]. The shifting emphasis promotes the system

developers to re-evaluate the architecture designs in terms of energy efficiency other than

raw performance. Although some of the hardware designs have been existing for several

decades and tremendous efforts have been devoted to understand their performance capabil-

ity, comprehensive study on how these architecture designs affect system energy consump-

tion is missing, and thus hinders intelligent strategies to be applied optimizing system energy

efficiency.

Energy proportionality [6] is an attractive merit for future computer hardwares. Theoreti-

cally, system built with energy proportional hardwares consumes energy strictly adhere to its

actual resource usage with no additional cost. For instance, no energy should be consumed as

long as the system remains idle. However, the fulfillment of energy proportionality requires

fundamental breakthroughs in material science as well as to overcome the formidable

manufacturing obstacles. Therefore, there is still a long way for its wide adoption in real sys-

tems. Even though energy proportionality is possible in the near future, the diversity of appli-

cation characteristics, interacting software layers and distinct system configurations are all

factors to prevent the system reaching its peak performance and thus offsetting the benefits

provided by energy proportional hardwares. It is imperative to design and implement adaptive

strategies based on a thorough evaluation of the existing architecture designs, especially from

the energy perspective, in order to bridge the energy proportionality gap in foreseeable com-

puter systems.

The ability of power measurement plays an important role in energy study, since measure-

ment at fine granularity as well as with high accuracy can reveal more details about system

behaviors on energy consumption. Previous work [7–10] either relies on external power

meters or power models to obtain the system energy consumption. However, each approach

has its own strength and weakness in practice. For the power meter approach [7, 8], although

it is competent in fine granularity and high accuracy, it requires additional devices to be pur-

chased with extra financial cost which prohibits its wide adoption in large scale environment.

Whereas, the power model approach [9, 10] is pure software based utilizing statistical methods

to correlate the energy consumption with resource usage. The drawback of the modeling

approach is that most of the power models are with limited accuracy, since they are not

exposed to the energy specification at the level of transistors and circuits of the underlying

hardwares. Therefore, we argue the existing power measurement approaches are either

impractical or inaccurate to evaluate the impact of different architecture designs on system

energy consumption especially at subcomponent granularity.

The advent of Intel Running Average Power Limit (RAPL) interfaces [11] combines the

advantage of both hardware and software measurement approaches. The RAPL interfaces

leverage built-in power sensors collecting voltage and current ranging from CPU, Last Level

Cache (LLC), bus interconnect to DRAM, as well as sophisticated power models to predict the

energy consumption on different system components instantaneously. The power measure-

ment ability exposed by RAPL enables measuring the system energy consumption at fine gran-

ularity (approximately 1 millisecond interval) on multiple system components that was

impossible before, which provides an unique opportunity to reason about how architecture

designs affect the system energy consumption in unprecedented details. In the meanwhile, we
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expect the in-depth architecture evaluation reveals non-intuitive insights to guide system and

application optimization exploiting the strength of different architecture designs toward better

energy efficiency.

The goal of this study lies on investigating the impact of the existing architecture designs

including NUMA, SMT and Turbo Boost, in terms of energy efficiency. We leverage represen-

tative benchmark suites and the RAPL interfaces to provide fine-grained energy measurement.

Specifically, this paper makes the following contributions:

• We identify the energy proportionality gap on real system via quantitive analysis of the

power consumption on different system components.

• The deviation on the time interval for the RAPL interfaces to update the energy registers is

studied, which determines whether it is necessary to align the energy measurement with the

RAPL updates regarding the specified measurement granularity.

• A comprehensive evaluation of power consumption on each system components and system

level energy efficiency is presented with the NUMA, SMT and Turbo Boost enabled respec-

tively. In addition, detailed interpretation of the architecture strength considering the diverse

characteristics of the representative benchmark suites is complemented based on experiment

observations.

The remainder of the paper is organized as follows. Section 1 highlights the uniqueness of

our work by discussing the related work. Section 1 illustrates the energy proportionality gap

with quantitive analysis and describes the capability of RAPL power measurement. Section 1

introduces the methodology applied to evaluate the architecture designs, including the con-

siderations to choose representative benchmark suites and identify the deviation of RAPL

energy update interval. Section 1 presents the detailed analysis results to reveal the energy

impact of different architecture designs. Finally, section 1 presents our conclusion and future

work.

Related work

Prior research works on computer architecture have primarily concentrated on accelerating

system performance. Sato et al. [12] argue the importance of single core performance even in

the multicore era, and propose a technique to improve single core performance based on Intel

Turbo Boost. Majo et al. [13] design and implement a small set of language-level primitives for

memory allocation and loop scheduling to eliminate the costly remote memory access caused

by the NUMA architecture. Su et al. [14] present algorithms and a runtime system that opti-

mize the execution of Open Multi-Processing (OpenMP) applications through thread place-

ment to minimize the critical path of OpenMP parallel regions on NUMA architectures.

Ramirez et al. [15] illustrate RaT, an interesting design choice for SMT processor that would

influence the way in which future SMT processors balance resource usage between ILP and

memory-bound threads. Hiroshi Inoue and Toshio Nakatani [16] explore the performance

between multi-process and multi-thread processing on a multi-core SMT processor. Their

evaluation shows that both models achieve almost comparable core scalability, whereas the

multi-thread model achieves much better SMT scalability and higher performance. DeVuyst

et al. [17] propose scheduling policies on chip multiprocessors with simultaneous multithread-

ing cores, which allows the system to identify and migrate threads toward better performance

and energy efficiency. However, none of these research works can provide deep insights in

understanding the role of the existing architecture designs from the energy efficiency

perspective.
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At the same time, tremendous efforts have been devoted to improve the power measure-

ment methodology. [18, 19] conclude that RAPL offers a viable alternative to physical power

meters while the only drawback is lack of interfaces that would allow measuring the energy

consumption of the main memory as RAPL only offers counters related to the operation of the

main memory controller. Khanna et al. [20] develop UEFI based firmware methodology to

allow energy aware memory allocation, accurate DRAM energy measurement and efficient

energy limiting. The methodology optimizes the DRAM locality as well as enhances the accu-

racy of RAPL. Weaver et al. [21] propose the PAPI performance analysis library to measure

energy and power consumption of the workload incorporating the capability of RAPL. Roun-

tree et al. [22] quantify the power envelope on Xeon Sandy Bridge server. They also explore the

potential of RAPL as a DVFS replacement and explain how the RAPL technology can measure

and limit power. Distinct from the above work, our study leverages the superior power mea-

surement capability of RAPL to evaluate the energy impact of architecture designs such as

NUMA, SMT and Turbo Boost.

There are emerging research works trying to understand the energy consumption from

both hardware and software aspects. Subramaniam et al. [23] investigate the possibility to

achieve energy proportionality for an enterprise-class server workload with RAPL power

limiting ability. Chandrasekar et al. [24] demonstrate the effects of process variations on

DRAM performance and power consumption with over-estimation up to 28% by the vendor.

Balaji et al. [25] characterize the variability in power consumption of modern mobile proces-

sors, and the fine-grained power measurements reveal the variability across parts is indeed

significant, ranging from 7% to 17%. Esmaeilzadeh et al. [26] quantitatively analyze the mea-

sured power and performance at the chip level across five hardware generations using

diverse benchmarks. Their results suggest it is necessary to expose on-chip power meters to

the researchers in order to optimize the power and performance. Schone et al. [27] evaluate

the energy efficiency of SMT on on state-of-the-art x86_64 processors. Hahnel et al. [28]

leverage RAPL to measure the energy cost of short code path for decoding video slices.

Despite the pioneering explorations in reasoning the energy consumption, a comprehensive

evaluation of the existing architecture designs on their impact to energy efficiency is missing.

Our study complement this absence through characterizing the energy behavior of represen-

tative benchmark suites at subcomponent level with fine-grained time resolution and high

accuracy.

In addition to the effort on general purpose hardware, researchers are resorting to special

hardwares for energy efficiency in the era of dark silicon [29]. Especially due to the recent suc-

cess of deep neural networks, large body of research works [30–34] have been devoted to

design energy efficient hardwares for Deep Neural Networks (DNNs). The Diannao family

[30] propose a series of hardware accelerators specially designed for neural networks with an

emphasis on the impact of performance as well as energy efficiency. [31] elaborate the effort at

Microsoft to implement a Convolution Neural Network (CNN) accelerator using server aug-

mented with Field Programmable Gate Arrays (FPGAs). Their evaluation results show prom-

ise performance comparable to high-end Graphic Processing Unit (GPU) but only a fraction

of its power consumption. Moreover, several optimizations are proposed to further improve

the energy efficiency of DNN accelerators from both algorithm [32] and data movement [33]

perspectives. Minerva [34] presents a highly automated co-design approach across the algo-

rithm, architecture, and circuit levels to optimize DNN hardware accelerators. These studies

are orthogonal to our energy characterization on general purpose processor. In addition, the

characterization methods in our paper can also be applied to special hardware to understand

the energy impact of different designs.
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Energy background

In this section, we first elaborate the discrepancy between current enterprise server and its

energy proportional counterpart in ideal by running benchmark workload on real system.

Then, we briefly introduce the power measurement capability provided by RAPL interfaces.

Energy proportionality gap

The energy proportionality gap is commonly used to depict the difference of energy consump-

tion between current deficient computer system from its appealing counterpart composed of

energy proportional hardwares. In the definition of energy proportionality, the ideal computer

system is supposed to consume energy proportional to its resource utilization, with no energy

cost when the system is idle. In order to articulate the energy discrepancy of the real world sys-

tem from the energy proportional expectation with quantitative data, we perform the workload

Embarrassingly Parallel (ep) from the NAS Parallel Benchmarks-Message Passing Interface

(NPB-MPI) benchmark suite with different input scales to observe the system energy behavior.

The workload requires a significant amount of computational resources from the system, stress-

ing the CPU component intensively. We execute epwith six MPI processes to fully occupy the

physical cores on a state-of-the-art Intel processor with increasing input scales. The RAPL inter-

faces are utilized to measure the average power consumption on different system components.

As shown in Fig 1, the power consumption of DRAM remains almost constant under dif-

ferent load levels, indicating the DRAM is the most non energy proportional component in

the system. It is similar with the uncore components that the power consumption stays stable

Fig 1. The energy proportionality gap for each system component with the ep workload running at different input

scales.

https://doi.org/10.1371/journal.pone.0188428.g001
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regardless of the input scale, which includes hardwares such as LLC, snoop pipeline and mem-

ory controller. Even with the energy efficient component as CPU, it is far beyond the energy

proportional behavior, which is identified in the shaded area in Fig 1. The ideal power con-

sumption of energy proportional CPU is extrapolated by assuming the system is fully utilized

with ep running at input scale D. According to the NPB input specification, the problem size

of each input scale is shown in Table 1. The energy proportional CPU power consumption is

derived by normalizing other input scale to input scale D, then multiplied with the maximum

system power consumption. We believe the huge energy proportional gap will continue to

exist for the coming decades. Therefore, it is necessary to leverage the architecture designs to

bridge such gap based on thorough evaluation with representative benchmarks from energy

efficiency perspective.

Power measurement

As the ability to perform effective power management is highlighted on Intel’s 2nd and 3rd

generation processor architectures, RAPL has played an important role in fulfilling the prom-

ise. RAPL is designed and implemented to support power management on critical system

components with high resolution and accuracy. It relies on reading and writing a certain range

of bits within the Machine Specific Registers (MSRs) to profile and control the system energy

consumption. Instead of developing a specific kernel driver to manipulate MSRs, the MSRs

have already been incorporated into the kernel modules, which are loaded automatically when

the kernel is started.

In the view of RAPL, the processor socket is divided into three domains: 1) Package (PKG),

2) Power Plane 0 (PP0) and 3)DRAM. The PKG domain measures the energy consumption of

the whole CPU socket. In multi-socket system, after RAPL modules are loaded by the kernel,

the RAPL interfaces are exported through /dev/cpu/X/msr register file associated with each

socket respectively. While the PP0 domain consists of all the CPU cores in the same socket

exclusively, the DRAM domain monitors the power consumption of the memory node con-

nected to the CPU socket. Note that there is also a PP1 domain that manages the energy con-

sumption of the graphic cards, which only exists on the client machine with graphic card on

chip. Another implicit domain worth to be mentioned is the uncore domain that covers the

components critical to performance such as LLC, memory controller and snoop pipeline. The

energy consumption of the uncore domain is usually derived by subtracting the energy profile

of PP0 from PKG.

Evaluation methodology

In this section, we first describe the benchmark suits selected to characterize the energy behav-

iors of the architecture designs. Then we verify the resolution for RAPL updating its internal

energy registers, which is an indispensable property for fine grained energy measurement.

Benchmark suites

A well-defined benchmark suite should contain relevant workloads that represent important

applications in contemporary computing facilities such as HPC and datacenter, and be diverse

Table 1. The size of the problem at different input scale for workload ep.

Workload Scale S Scale W Scale A Scale B Scale C Scale D

EP 224 225 228 230 232 236

https://doi.org/10.1371/journal.pone.0188428.t001
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enough to stress various aspects of the architecture designs. In this study, we select workloads

exhibiting a broad spectrum of characteristics from the SPECCPU 2006v1.1 [35], PARSEC

v2.1 [36] and NPB-MPI v3.3 [37], as listed in Table 2. SPECCPU 2006 is an industry standard

and well accepted benchmark suite that is pervasively used in system performance evaluation.

While PARSEC benchmark suite represents the emerging multi-core applications incorporat-

ing workloads from multiple domains, and NPB-MPI stands for the traditional HPC work-

loads derived from NASA real fluid computational applications.

According to the characteristics of the workloads, the benchmark suites can be briefly

divided into two categories, serial and parallel workloads. The serial benchmark SPECCPU is

leveraged to evaluate the architecture impact of Turbo Boost, while the parallel benchmarks of

NPB-MPI and PARSEC are used to stress the NUMA and SMT architecture designs respec-

tively. Note that we are not using multiple instances of the same SPECCPU workload as paral-

lel workload to fully occupy the CPU cores, in contrast to previous work [27]. Since we believe

multiple instances of serial workloads should be treated as multiple applications, which may

cause severe interference to the analysis of architecture impact on energy consumption due to

the unexpected contention on shared resources such as LLC and memory controller [38].

RAPL measurement resolution

The Intel Developer Manual describes the fine grained energy measurement capability of

RAPL at approximately 1 ms granularity, however, indicates the actual time resolution for

RAPL to update the MSR registers varies from product to product without mentioning how

large the deviation is. In some cases, such deviation may become unacceptable such as energy

measurement at function and system call level. Therefore, it is important to identify the dispar-

ity between theoretical and actual measurement resolution for RAPL interfaces. In order to

capture the RAPL update interval, we utilize an infinite loop to profile the RAPL interfaces

continuously. Whenever there is a difference between current and previous energy reading,

the time duration from last energy update is recorded into a log file for future analysis. As

many as 5,000 samples are collected before we stop profiling. Since RAPL directly measures

energy consumption of the system components, the energy readings increase monotonically.

Thus it is valid for our method counting the energy difference to reveal the update interval.

The profiling result is shown in Fig 2. The average time interval between two consecutive

RAPL energy updates lies exactly in 1 ms. However, the margin between the mean and 98th

percentile update interval is as large as 13%. The deviation between each RAPL energy update

indicates additional alignment may be required depending on the specific energy measure-

ment scenario. For instance, in our study the execution time of all the workloads within the

benchmark suites is at second granularity. Thus the deviation less than one millisecond does

not deteriorate the measurement accuracy. Whereas, for much finer grained energy measure-

ment such as at function and system call level, delicate mechanism to align the energy

Table 2. Benchmark suites of representative workloads.

Benchmark

Suite

Parallelization Workloads

NPB-MPI MPI MultiGrid (mg), Conjugate Gradient (cg), Fast Fourier Transform (ft), Integer Sort (is), Embarrassingly Parallel (ep),

Block Tridiagonal (bt), Scalar Pentadiagonal (sp), Lower-Upper symmetric Gauss-Seidel (lu)

SPECCPU - astar, bwaves, bzip2, cactusADM, calculix, dealII, gamess, gcc, GemsFDTD, gobmk, gromacs, h264ref, hmmer, lbm,

leslie3d, libquantum, mcf, milc, namd, omnetpp, povray, sjeng, soplex, specrand, sphinx3, tonto, wrf, xalancbmk,

zeusmp

PARSEC Pthread blackscholes, bodytrack, ferret, freqmine, raytrace, swaptions, vips, x264

https://doi.org/10.1371/journal.pone.0188428.t002
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measurement with the workload execution is necessary since the deviation significantly affects

the measurement accuracy.

Analysis of architecture impact

In this section, the hardware and software configurations applied in our evaluation are pre-

sented. Then the experimental results on energy efficiency when NUMA, SMT and Turbo

Boost enabled respectively are elaborated with comprehensive analysis.

Experimental setup

The experiments have been performed on two Intel Sandy Bridge servers with system configu-

rations depicted in Table 3. The particular parameters to specify the range and granularity of

the energy measurement supported by RAPL are defined in theMSR_PKG_POWER_INFO,

MSR_DRAM_POWER_INFO andMSR_RAPL_POWER_UNIT registers. The range parame-

ters of RAPL interfaces on the two systems are identical as shown in Table 4, with the energy

unit 1.52 × 10−6 J. To note that, RAPL does not provide the power measurement ability directly

instead of energy. In order to derive the average power consumption of each workload, the

total execution time is recorded and then divided by the energy consumption.

Most of the NPB-MPI workloads require the number of CPU cores to be power of two as

well as N-th root. Therefore, we execute the NPB-MPI workloads on server T2 to evaluate

NUMA impact, and other workloads on server T1 since SMT and Turbo Boost are not sup-

ported on server T2. In the meanwhile, one architecture feature is evaluated at a time with the

rest disabled to eliminate the interference. We leverage the Linux command numactl to pin the

threads/processes to one CPU node and remote memory node in the NUMA experiments,

Fig 2. The cumulative distribution of the time interval for RAPL updating the energy registers. 98% of

energy update interval fall in the range that less than 1.15 ms.

https://doi.org/10.1371/journal.pone.0188428.g002
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while in other experiments taskset is used to bind the threads/processes to particular CPU

cores. The Instruction Per Cycle (IPC) is used as an indicator for workload performance.

Non Uniform Memory Access

In order to measure the NUMA energy effect, we artificially constrain the memory accesses on

socket 0 not to utilize its local memory node, instead they are redirected to the memory node

adjacent to socket 1 through the Intel QuickPath Interconnect (QPI), so that the computation

of the workload is performed locally with its memory space allocated remotely. To make fair

comparison, the additional energy introduced by NUMA on the remote socket is also counted

into the energy measurement.

The X axis in Fig 3(a), 3(c) and 3(d) indicates the name of the workload as well as the num-

ber of MPI processes to run the workload. For instance, ep.4 means we run the workload ep
with four MPI processes. Whereas the X axis in Fig 3(b) includes more information such as

the input scale. For instance, ep.S.4means we run the workload ep with four MPI processes at

input scale S. Fig 3(a) depicts all the NPB-MPI workloads suffer from different amount of

energy efficiency degradation when NUMA takes into effect. The workload cg experiences the

most severe energy efficiency decline of more than 38.4% at input scale A, while the NUMA

Table 3. System configurations of two Sandy Bridge servers.

Server T1

Vendor/Model Intel Sandy Bridge EP

CPU Sockets 2x Intel Xeon E5-2620

Core per Socket 6

SMT 12 logical threads when enabled

Turbo Boost 2.0GHz(2.5GHz)

Memory 4x 4GB SamSung DDR3-1333

Motherboard Lenovo RD630

Disk 3x 300GB SATA Seagate ST9300605SS

OS CentOS 6.2

Linux Kernel 2.6.32-220.el6.x86_64

Server T2

Vendor/Model Intel Sandy Bridge EP

CPU Sockets 2x Intel Xeon E5-2609

Core per Socket 4

SMT not supported

Turbo Boost not supported

Memory 4x 8GB Kingston DDR3-1066

Motherboard Supermicro X9DRG-QF

Disk 2x 128GB SATA Western Digital WD1003FBYX-01Y7B1

OS CentOS 6.3

Linux Kernel 2.6.32-279.el6.x86_64

https://doi.org/10.1371/journal.pone.0188428.t003

Table 4. Parameters of RAPL measurement range including Maximum Time Window (MTW), Maximum

Power (MaxP) and Minimum Power (MinP).

Domain/Range MTW MaxP MinP

PKG 46ms 150w 63w

DRAM 39ms 75w 15w

https://doi.org/10.1371/journal.pone.0188428.t004
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hardly causes significant impact on workload ep with energy efficiency decline less than 4% at

all input scales. The difference in energy efficiency between these two workloads can be

explained that ep is pure computation intensive with trivial memory accesses, thus the mis-

match between CPU and memory through NUMA setting can not generate obvious influence

on the execution of workload ep. Whereas workload cg shows large memory footprint, and the

additional ad-hoc through QPI to the remote memory node not only prolongs the execution,

but also introduces extra energy consumption on the remote socket. It is also notable that

most of the workloads exhibits a large energy efficiency drop when the input scale goes beyond

W except ep, however, there is a light increase of energy efficiency at the largest two input

scales B and Cwith workloads ft, is and bt.
The energy ratio of the CPU cores increases uniformly for all workloads as the input scales,

with the largest increase occurs at workloadmg by from 14.7% (CLASS = S, NUMA) to 60.9%

(CLASS = C, NUMA) when NUMA takes into effect as shown in Fig 3(b). Correspondingly,

the energy ratio of DRAM becomes smaller as input scales due to more energy is consumed by

Fig 3. Energy characterization of NUMA with NPB workloads, (a) performance per watts (b) energy ratio of RAPL domains, (c) average power

consumption and (d) total energy consumption. The results are normalized to NUMA disabled.

https://doi.org/10.1371/journal.pone.0188428.g003
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the CPU cores. We also notice that workload ep is insensitive to the NUMA effect since the

energy ratio of DRAM is almost the same compared to the baseline at all input scales. Whereas

for the rest of the workloads, the energy ratio of DRAM increases apparently compared to the

baseline when the input scales beyondW. The largest increase of DRAM energy ratio occurs at

workload sp with input scale B, from almost 0.6% at baseline to 5.8% due to NUMA effect. The

distinct DRAM energy sensitivity between workload ep and the others can be explained as fol-

lows. For workload ep, it is highly computation intensive with limited memory accesses. Thus

the memory accesses to the remote NUMA node have almost no effect on the DRAM energy

consumption of workload ep compared to the baseline. However, for the rest of the workloads,

the number of memory accesses increases dramatically as the size of the input scales. The

increased memory access latency due to NUMA leads to more energy consumed at the

DRAM. As depicted in Fig 3(c) and 3(d), the power consumption for most of the workloads

rises up less than 7% except thatmg and cg at input scale A approach 10%, whereas the energy

consumption has been elevated remarkably with maximum increase of workload sp at input

scale C by more than 40.5%. The discordance of increase between power and energy indicates

the remote memory accesses caused by NUMA generate dramatic latency overhead and pro-

longs the execution, which in turn accounts for additional energy consumption. During the

experiments, we also notice that there is an obvious power increase on the remote compute

and memory node by 8% on average, which can be attributed to the remote memory access

that activates the LLC, memory controller and DRAM, preventing the CPU package to switch

to deep sleep state.

Insight-1 (NUMA) The energy efficiency of workload with intensive memory operations sig-
nificantly deteriorates due to the mismatch of computation and memory accesses caused by
NUMA, which not only prolongs the workload execution but also introduces extra energy con-
sumed on other CPU sockets. This insight is quite important to design effective process/thread
schedulers for load balance. Current load balance schedulers only take into account the CPU utili-
zation, neglecting the impact of remote memory access due to NUMA. Therefore, when balancing
the load, only the computation is migrated without carrying along its data. It is highly possible
after migration the process/thread still needs to access its data residing on the remote memory
node, which degrades both application performance and system energy efficiency. We recommend
future load balance scheduler should be NUMA aware and take care of the data when performing
process/thread migration.

Simultaneous multithreading

PARSEC workloads are utilized to evaluate the energy impact of SMT. The X axis in Fig 4(a),

4(c) and 4(d) indicates the name of the workload. Whereas the X axis in Fig 4(b) includes

more information such as the input scale. For instance, blackscholes.small means we run the

workload blackscholes at input scale small. As shown in Fig 4(a), the energy efficiency of all

PARSEC workloads except freqmine has been improved at certain input scale when SMT is

enabled, with the highest energy efficiency increase of 26.8% achieved by ferret at input scale

native. The exception demonstrates the SMT is not beneficial to workload freqmine when its

input scales. In contrast, we notice that some workloads maintains good scalability with SMT

such as blackscholes, bodytrack and ferret. Compared to the rest of the workload execution,

there is an abnormal behavior of workload swaptions at input scalemedium with degrading

energy efficiency of 25.2%.

The energy consumption ratio of different system components is depicted with RAPL

domains in Fig 4(b). The DRAM consumes the least energy for all the workloads with average

2.9% of the total. On the contrary, the CPU cores are the most power hungry components
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when the input scales beyond small, taking up more than 50% of the entire system energy con-

sumption except freqmine and raytrace, for which the uncore components such as LLC and

memory controller dominate the energy consumption. As the input scales, the portion of CPU

energy consumption increases obviously with most of the workloads. For workload black-
scholes, the energy increase on CPU occurs immediately from input small tomedium and

remains constant for the rest of input scales, which also reaches the highest increase of 25.9%

among other workloads. Whereas for other workloads such as bodytrack, ferret, vips and x264,

the energy growth happens gradually in response to the input scale. In addition, there is a nota-

ble energy increase on CPU when SMT is enabled for most workloads except freqmine and

raytrace. We also notice that with SMT enabled, the energy ratio of the CPU component

increases slightly for workload blackscholes, bodytrack and vips at all input scales compared to

the baseline. Whereas for workload raytrace, the energy ratio of different components remains

the almost same compared to the baseline, and thus is insensitive to SMT. The amount of

increase on the CPU energy ratio actually reflects how much the workload can explore the

simultaneous processing from SMT. The larger increase on the CPU energy ratio, the higher

performance the workload can achieve with SMT enabled.

Fig 4. Energy characterization of SMT with PARSEC workloads, (a) performance per watts (b) energy ratio of RAPL domains, (c) average power

consumption and (d) total energy consumption. The results are normalized to SMT disabled.

https://doi.org/10.1371/journal.pone.0188428.g004
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It is demonstrated in Fig 4(c) that SMT is able to reduce the average power consumption

significantly for most of the workloads when enabled. For the best case with workload vips at

input scale native, the power saving reaches as much as 45.6%. However, the actual energy sav-

ing is not as perfect as power compared to Fig 4(d). For workloads except freqmine, swaptions
and x264, the average energy saving is 4.2% at all input scales when SMT enabled. The ten-

dency exhibited by ferret is more promising that the energy saving is in reverse proportion to

input scales with 21.1% reduction in energy consumption at input scale native. The disparity

between power and energy consumption of PARSEC workloads can be attributed to the pro-

longed execution due to shared resource contention such as LLC, memory controller and even

arithmetic units.

Insight-2 (SMT) In general, SMT is helpful to bring down the power and energy consumption
for multithreaded applications, and effective to improve the energy efficiency for applications in
this category. However in certain cases with SMT enabled, there is high possibility to generate
severe contention on shared resources such as LLC, memory controller and arithmetic units. Espe-
cially for memory intensive applications (e.g., raytrace), on one hand with more SMT cores it con-
sumes less power during the computation, on the other hand the interference due to shared
resource contention apparently degrades the performance of the application, and thus offsets the
benefit of less power consumption in the view of energy efficiency. Nevertheless, it is always recom-
mended to turn on SMT when running applications in power constrained scenarios such as
embedded and mobile system since it is quite effective to reduce the power consumption.

Turbo Boost

The SPECCPU is an appropriate benchmark candidate to evaluate the impact of Turbo Boost,

since most of the workloads within SPECCPU are sensitive to CPU frequency. For our system

on Server T1, there is only one Turbo step supported. Whenever the Turbo Boost is enabled,

the CPU frequency jumps from 2.0 GHz to 2.5 GHz immediately. Each SPECCPU workload is

constrained to execute on the first core of socket 0.

The X axis in Fig 5 indicates the name of the workload. The results shown in Fig 5(a) is

quite non-intuitive that the energy efficiency for most of the SPECCPU workloads uniformly

decreases significantly with 17.6% on average. The best and worst case is achieved by workload

omnetpp and gamess that the energy efficiency deteriorates by 2.4% and 49.9% respectively.

The reason is explained later in this section. Fig 5(b) indicates the energy ratio of CPU cores is

the most sensitive component to Turbo Boost, which increases uniformly across all the work-

loads compared to the baseline, with minimum increase of 5.4% (specrand) and maximum

increase of 9.1% (povray). The uniform increase of the CPU energy ratio can be attributed to

the increased frequency of CPU cores when Turbo Boost is enabled, which leads to larger por-

tion of the energy consumption with CPU compared to other components.

Another interesting phenomenon revealed from Fig 5(c) and 5(d) is that although the aver-

age power consumption for most of the workloads has been raised up by more than 20%, the

energy consumption is not actually increasing, some even reduced by as much as 17.9%

(omnetpp). The opposite tendency of power and energy consumption indicates the execution

of SPECCPU workloads can be significantly accelerated with Turbo Boost enabled, which off-

sets the increase in power consumption. However, memory intensive workloads such as

bwaves, GemsFDTD, lbm, leslie3d and etc. hardly reap notable energy savings from Turbo

Boost. The reason can be attributed to the memory bounded nature of these workloads that

does not scale well with the CPU frequency, thus it is a waste of power consumption for the

CPU frequency staying at the highest frequency during Turbo stage.
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However, beyond our expectation, the results illustrated in Fig 5(a) seem that Turbo Boost

is not an effective way to execute the workload in terms of performance delivered per watt,

which are intuitively conflicting with the energy savings shown in Fig 5(d). After verifying the

experimental data, the confusing results can be attributed to the performance metric adopted

to evaluate the energy efficiency of Turbo Boost. Although IPC is a good performance indictor

for applications when the CPU frequency remains constant, it is incapable to depict the impact

of frequency speeding on energy efficiency. As known, once the application and the execution

environment is determined, the IPC of a particular application stays almost unchanged regard-

less of the CPU frequency, which is in accordance with our experimental data. The only thing

affected by CPU frequency is the actual time consumed by each CPU cycle. The higher the

CPU frequency is, the shorter time each CPU cycle takes. Therefore, when the Turbo Boost is

enabled, the power consumption increases and the total execution time decreases apparently,

Fig 5. Energy characterization of Turbo Boost with SPECCPU workloads, (a) performance per watts (b) energy ratio of RAPL domains, (c)

average power consumption and (d) total energy consumption. The results are normalized to Turbo Boost disabled.

https://doi.org/10.1371/journal.pone.0188428.g005
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whereas the IPC of the application is hardly affected. This explains the discrepancy between

energy efficiency and energy consumption results in Fig 5(a) and 5(d).

To ease the understanding of the energy efficiency results, we propose to utilize the metric

of Instructions Per Second (IPS) as the performance indicator for evaluating the energy effi-

ciency of Turbo Boost. IPS can be calculated by multiplying IPC with CPU frequency, and the

energy efficiency is eventually described by Eq 1. The energy efficiency results of SPECCPU

workloads with Turbo Boost enabled are regenerated in Fig 6, which are now in consistent

with the energy savings revealed in Fig 5(d). As shown in Fig 6, the energy efficiency for most

of the SPECCPU workloads has been improved by 4.3% on average with Turbo Boost enabled.

The most energy efficiency improvement is achieved by 13% with omnetpp, whereas for the

worst cases (e.g., GemsFDTD andmilc) the energy efficiency dose not degrade if not at all

Fig 6. Energy efficiency of Turbo Boost with SPECCPU workloads using IPS as performance metric.

https://doi.org/10.1371/journal.pone.0188428.g006
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compared to Turbo Boost turned off.

EnergyEfficiency ¼
IPS
Power

¼
Instructions � Frequency

Cycles � Power ð1Þ

Insight-3 (Turbo Boost) Turbo Boost is effective to boost the execution and further preserve
the energy for workloads from system perspective. With Turbo Boost enabled, the reduction in
execution time offsets the increase in power consumption, thus the energy efficiency of the work-
loads is improved uniformly. For a long term goal of energy saving, it is always recommended to
leave Turbo Boost turned on. However, for instantaneous power consumption, enabling Turbo
Boost generates significant power surge (e.g., 20.6% for SPECCPUworkloads), which may con-
strain its adoption on systems with tight power budget. It is worth mention that since Turbo Boost
adjusts the CPU frequency when effective, the evaluation metric (e.g., IPS) should take into
account the frequency adjustment in order to accurately measure the energy efficiency.

Conclusion and future work

In this paper, we first highlighted the motivation to evaluate the architecture designs from

energy efficiency perspective. We illustrated the energy proportionality gap of current server

system with quantitive analysis in order to justify the necessity of our study. We also described

the energy measurement capability of RAPL interfaces which were applied in our evaluation.

The deviation of the time interval between each RAPL energy update was as well identified

through statistical analysis. With representative benchmark suites ranging from serial to paral-

lel workloads, we characterized the architecture designs such as NUMA, SMT and Turbo

Boost in terms of power consumption, energy consumption as well as energy efficiency.

Accompanied with the results, we presented comprehensive analysis with insights to guide

energy efficient system designs in the future.

Since service based application gradually becomes dominant, especially in cloud computing

environment, and stands for the future trend of application ecosystem, we would like to extend

our evaluation to incorporate cloud style benchmarks such as cloudsuite [39] for the future

work. And we are eager to find out more interesting results on how the existing architecture

designs interact with these emerging applications.
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27. Schöne R, Hackenberg D, Molka D. Simultaneous multithreading on x86_64 systems: an energy effi-

ciency evaluation. In: Proceedings of the 4th Workshop on Power-Aware Computing and Systems.

ACM; 2011. p. 10.
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