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The influence of trematode parasite burden
on gene expression in a mammalian host
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Abstract

Background: Parasites can profoundly impact their hosts and are responsible for a plethora of debilitating diseases.
To identify global changes in host gene expression related to parasite infection, we sequenced, assembled, and
annotated the liver transcriptomes of Balb/cj mice infected with the trematode parasite Schistosoma mansoni and
compared the results to uninfected mice. We used two different methodologies (i.e. de novo and reference guided)
to evaluate the influence of parasite sequences on host transcriptome assembly.

Results: Our results demonstrate that the choice of assembly methodology significantly impacted the proportion
of parasitic reads detected from the host library, yet the presence of non-target (xenobiotic) sequences did not
create significant structural errors in the assembly. After removing parasite sequences from the mouse transcriptomes,
we analyzed host gene expression under different parasite infection levels and observed significant differences in the
associated immunologic and metabolic responses based on infection level. In particular, genes associated with
T–helper type 1 (Th–1) and T–helper type 2 (Th–2) were up-regulated in infected mice whereas genes related
to amino acid and carbohydrate metabolism were down-regulated in infected mice. These changes in gene
expression scale with infection status and likely impact the evolutionary fitness of hosts.

Conclusions: Overall, our data indicate that a) infected mice reduce the expression of key metabolic genes in
direct proportion to their infection level; b) infected mice similarly increase the expression of key immune
genes in response to infection; c) patterns of gene expression correspond to the pathological symptoms of
schistosomiasis; and d) identifying and filtering out non-target sequences (xenobiotics) improves differential
expression prediction. Our findings identify parasite targets for RNAi or other therapies and provide a better
understanding of the pathology and host immune repertoire involved in response to S. mansoni infections.

Keywords: Differential expression, Xenobiotics, RNAseq, Illumina HiSeq, Immune response, Schistosoma
mansoni, Non-target sequences

Background
Flatworm parasites of the genus Schistosoma are the
causative agents of schistosomiasis in humans and other
mammals. Schistosomiasis is a widespread tropical dis-
ease that affects over 200 million people in the tropics,
causing severe morbidity and mortality in infected indi-
viduals [1, 2]. S. mansoni is the most widespread schisto-
some, its distribution ranging from the old world to the
new world [3, 4]. S. mansoni is a blood parasite that
navigates through the viscera via the host circulatory
system. The S. mansoni life cycle involves a mammalian

definitive host, where sexual reproduction occurs, and a
snail intermediate host that provides a vehicle for asex-
ual propagation [5]. The free–swimming microscopic
larvae (cercariae) are released from freshwater snails and
infect the mammalian host by penetrating unbroken
skin. After several days, the parasites exit the cutaneous
tissue through blood vessels and travel first to the lungs
and then into the systemic vasculature and finally to the
hepatic portal system [6, 7]. Parasites mature, mate, and
lay eggs within 5–6 weeks of definitive host infection.
Parasite eggs that pass through the mammalian intes-
tinal wall are excreted with host feces and subsequently
infect the freshwater snail of the genus Biomphalaria,
thus completing the life cycle.
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Parasite eggs carried by the vascular system of the
mammalian host can become lodged in host tissues,
mainly liver. The parasite egg antigens can induce a se-
vere host immune response resulting in multi-cellular
granulomatous inflammations surrounding the eggs [5].
This inflammatory reaction destroys parasite eggs and
sequesters secreted toxins, but also causes host liver
damage. The pathology of schistosomiasis is a result of
severe fibrosis, caused by granuloma formation [8]. The
granulomatous response occurs through several patho-
logical stages that ultimately lead to vascular obstruc-
tions which increase portal blood pressure and foster the
development of portal–systemic venous shunts [9]. The
development of these granulomas is attributed to various
cytokines and chemokines associated with the T–helper
type 2 (Th–2) immune response [10]. Ultimately, the
parasite eggs are calcified and the granuloma develops
into a fibrous plaque [11].
Schistosomiasis pathology depends on the parasite

burden, ranging from a few scattered granuloma to sys-
temic portal fibrosis [12, 13]. No study (to our knowledge)
has comprehensively evaluated the immunogenetic re-
sponse of a mammalian host in response to schistosome
burden, yet such research could help combat schistosom-
iasis. Our primary objective was to compare global host
gene expression in uninfected and in S. mansoni–infected
mice to study parasite–induced changes in gene ex-
pression. We discovered significant differences in gene
expression among differentially infected hosts, and
these changes corresponded to the pathological re-
sponse of the hosts to the parasites.
Our secondary objective was to critically evaluate the

effect of non-target (xenobiotic) sequences on host tran-
scriptome assembly. Eukaryotic organisms are effectively
diverse ecosystems within themselves, as multiple spe-
cies are typically found in such close association that
physical separation may be impossible. For example,
extracts from a given human tissue could also contain
DNA from viral, bacterial, fungal, or invertebrate
(parasite) sources. Thus, it is no great surprise that se-
quenced libraries often contain DNA from non-target
sources such as parasites, pathogens, commensals and
prey items [14]. The overall influence of these contami-
nants on host gene reconstruction is not fully appreci-
ated [15], but non-target sequences can adversely affect
downstream analysis by leading to inaccurate assemblies
that ultimately produce false gene predictions [16]. We
tested the extent to which non-target (e.g., S. mansoni)
reads compromise estimates of host gene expression at
each stage of the RNAseq analysis procedure by sequen-
cing, assembling, and annotating transcriptomes of
experimental (infected) and control (uninfected) mice.
We used both reference–based (i.e. mapping of reads
against the genomic reference) and de novo transcriptome

assembly procedures and found that the latter retrieved
significantly more non-target sequences. The results from
the non-target analysis should be of interest to the broader
genomics community, as they are relevant to the study of
virtually all multicellular eukaryotes.

Methods
Experimental design, library construction, and sequencing
Our workflow is summarized in Fig. 1. Briefly, seven-
week old full–sib, BALB/cJ male mice were obtained
from the Jackson Laboratories (Bar Harbor, Maine). We
cultured S. mansoni of the NMRI strain (originally from
Puerto Rico) in Biomphalaria glabrata snails [17]. In-
fected snails were exposed to fluorescent light for ~2 hrs
to induce cercarial emergence [17]. Mice were then in-
fected with 50 cercariae (n = 6 mice designated L1–L6;
lower parasite burden); and 200 cercariae (n = 6 mice
designated H–H6; higher parasite burden). Six unin-
fected mice (U1 –U6) were used as controls. Mouse in-
fections were conducted by immersing their tails in
water containing cercariae for ~2 hrs [18]. Cercarial
numbers and viability were determined using light micros-
copy prior to infection. Cercariae water was examined
post–exposure to make sure that approximately the de-
sired number of cercariae passed into the mouse host.
Seven weeks post–infection, all mice were euthanized.
The parasite maintenance and mouse infections were car-
ried out following a protocol approved by Purdue Animal
Care and User Committee (protocol 1111000225).
Immediately after euthanization, mice were dissected

and the right lobe of the liver was used for standard RNA
extractions with Trizol reagent (Invitrogen). Dissections
and extractions were conducted using sterile techniques
in a laminar flow hood to help avoid potential human con-
tamination. RNA quality and quantity were assessed via
gel electrophoresis, spectrophotometry (Nanodrop 8000;
Thermo Scientific), and Agilent Bioanalyzer 2100. cDNA
library preparation and barcoding followed the Illumina
TruSeq RNA sample preparation kit protocol. Thereafter,
a subset of 6 samples (U1, U2, L1, L2, H1 and H2) was
sequenced using an Illumina HiSeq2000 (Illumina 1 lane;
six paired–end libraries; read length 100 bp) at the Purdue
genomics core facility.
After sequencing, we conducted a number of quality

control measures. Adaptors and low quality reads were
clipped using Trimmomatic [19]; poor quality bases
(< Phred–20) were removed from both the 5′ and 3′ ends
of the reads. All reads <30 nt in length were discarded.
The FastQC v0.11.2 [20] software v11.2 was used to assess
and visualize the quality of the remaining reads. To help
identify the parasite reads from among all the raw reads,
BLASTN (v2.2.3, %ID >90 %; E–value = 10-12) searches
were carried out against the S. mansoni transcriptome
([21, 22]; BLASTN %ID >90 %; E–value = 10-12).
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Transcriptome assembly, annotation, and characterization
Different computational approaches produce transcrip-
tomes that vary dramatically in quality, and there is no a
priori “best” assembler for a given data set [23]. Thus,
we employed four algorithms representing both de novo
(Trinity de novo r20140717 [24] and SOAPdenovo–
Trans 1.03 [25]) and reference guided (Genome guided
Trinity r20140717 [24] and Cufflinks v2.2.1 [26])
transcriptome assembly approaches (Additional file 1:
Table S1). We assembled trimmed reads into transcrip-
tomes as detailed in Fig. 2. To improve transcriptome
recovery, multiple k–mer SOAPdenovo–Trans libraries
(k–mers 21, 25, 29, 33, 37) were constructed and com-
bined using the Cd–hit program [25, 27]. Genome–guided
Trinity (with GSNAP aligner) and Cufflinks (with TopHat
2.0.13 aligner; [28]) were used to construct guided assem-
blies referenced to publicly available mouse genome data
(Ensembl: GCA_000001635.5_GRCm38.p3_genomic.fna).
To assemble and identify S. mansoni reads, a separate set
of transcriptomes was assembled with Genome–guided
Trinity using the S. mansoni genome as a reference.
The presence of xenobiotics may impact transcriptome

assembly statistics and accuracy by (inadvertently) com-
bining reads from multiple species. To help identify such
errors, the four relevant data partitions (i.e., U1U2,
L1L2, H1H2, and ALL; Fig. 2) were evaluated using four
assemblers and QUAST v.2.3 was used to calculate de-
scriptive statistics of each [29]. A metric of assembly

contiguity, N50, indicates the length of which half of all
nucleotides in the assembly are comprised of sequences
of equal or longer length. However, N50 values can be
misleading because transcript lengths are highly hetero-
geneous. Therefore, we compared our assembly N50
values to the N50 value of the Mus musculus mRNA
data set to obtain a N50 ratio (N50 assembly/N50 mouse
mRNA). Thus, a N50 ratio of 1 would indicate perfect
recovery of mouse transcripts [30]. To evaluate the as-
sembly completeness, each assembly was compared
against a set of core eukaryotic genes (CEGs) using
CEGMA v2.5 [31].
The Ortholog Hit Ratio (OHR) is an estimate of the

amount of a transcript contained in each unigene (i.e.
contig and scaffold), and it quantifies the completeness
of each transcript [32]. For each unigene, the OHR was
calculated by dividing the length of the putative coding
region of each unigene by the total length of the ortho-
log for that unigene. Orthologs were identified by com-
paring each unigene against the uniprot mouse and S.
mansoni proteins (BLASTX; E–value: 10–6; Alignment
length ≥90 %). The resulting best BLASTx hits were
considered orthologs and the hit region in the contig
was considered to be a putative coding region [32]. In
addition, scripts available through the MUMMer pack-
age [33] were used to find the presence of structural var-
iants such as inversions (part of a contig reversed with
respect to the reference gene), translocations, relocations

Fig. 1 The workflow. We followed the primary steps in NGS transcriptome analysis (1: Generating raw reads, 2: Assembling reads, 3: Differential
expression analysis and 4: characterization of differentially expressed genes) to understand the influence of non-target reads on transcriptome
analysis. First, Liver cDNA of mice infected with the parasite S. mansoni (High dose infection: H, low dose infection: L and uninfected: U; 2 mice
per group) were sequenced with Illumine HiSeq. Then, sixteen transcriptomes were assembled using both de novo (Trinity de novo and
SOAPdenovo–Trans) and reference based (Genome guided Trinity and Cufflinks) approaches at the different infection levels, to identify
the influence of parasite reads (i.e. xenobiotics) on transcriptome assembly. Subsequently, the transcriptomes were annotated and putative
non-target transcripts were identified. Then differential expression was calculated, before and after filtering the transcripts of non-target
origin, between infected and uninfected mice and between mice infected at different parasite loads. Finally after removing non-target
reads from the transcriptomes the host gene expression corresponding to S. mansoni infection was characterized
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(within a gene), duplications, and insertions and dele-
tions (indels) compared to the Ensemble Mus musculus
cDNA data set [30, 34].
All transcriptomes were annotated using BLASTX [21]

via the BLASTER tool [35] against the Swissprot
database with the E–value < 10–6 and percentage iden-
tity ≥90 % as the quality thresholds. Newly character-
ized transcriptomes may encode proteins that are
lacking detectable homologies to known proteins. To
capture those coding regions, TransdDecoder (http://
transdecoder.github.io/) was used to identify candidate
protein–coding regions based on nucleotide compos-
ition, open reading frame (ORF) length, and Pfam do-
main content.
To assess parasite contamination in the host assemblies,

the top BLASTX hits (n = 1000; E–value 10–6; [21]) were

collected for each transcript and the proportion of contigs
yielding only non–vertebrate hits were calculated. Fur-
thermore, each empirical transcriptome and ORF set
(TransdDecoder; http://transdecoder.github.io/) was
compared against host and parasite reference tran-
scriptomes to determine the origin of each contig
(Ensemble: Mus_musculus.GRCm38.cdna.all.fa, UCSC
refMrna.fa; [21, 22]). To validate the inferred presence
of xenobiotics (i.e., non-target organisms identified by
our bioinformatic analyses), we used PCR in an at-
tempt to amplify expressed non-target reads from
mouse liver cDNA samples (U1, U2, L1, L2, H1, H2;
primer sequences: Additional file 1: Table S1). We
used universal vertebrate [36] and Schistosoma species–
specific primers [37] as positive controls to confirm the
presence of high quality cDNA.

Fig. 2 The pipeline. Sixteen transcriptomes were assembled using both de novo (Trinity de novo and SOAPdenovo–Trans) and reference based
(Genome guided Trinity and Cufflinks) approaches, to reflect different infection levels (U1U2, L1L2, H1H2 and Master assembly: All U1U2L1L2H1H2).
Only the four master assemblies were used in Differential Expression (DE) analysis, comparing the three treatments (U vs. L, U vs. H and L vs. H). Shared
DE predictions of three DESeq2, EdgeR and EBSeq were identified for each transcriptome assembly. Before characterizing the DE genes using Gene
ontology analysis, DE genes were pooled across assemblies and duplicates were removed. *: Trinity de novo master assembly was used for hierarchical
clustering and qPCR validation
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Differential Expression (DE)
DE analysis was conducted using only the master assem-
blies (i.e. ALL reads) produced by each assembler as il-
lustrated in Fig. 2. Briefly, trimmed Illumina reads for
each individual library were mapped back to the appro-
priate master transcriptome assembly using Bowtie
within the program RSEM [38, 39] to estimate the num-
ber of reads mapped to each contig. Only transcripts
with at least 10 cumulative mapping counts were used
in this analysis. DESeq2 [40], EdgeR [41], and EBSeq
[42] were all used to evaluate differential expression
(DE). All three software packages use a negative bino-
mial distribution to account for overdispersion in tran-
scriptome data sets. DESeq2 is conservative and uses a
heuristic approach to detect outliers while avoiding false
positives [40]. EdgeR follows a similar hypothesis testing
approach, but uses a linear gene–wise dispersion estima-
tion method that results in higher sensitivity at the cost
of increased false positives [41, 43]. EBSeq uses a Baysian
framework to determine DE and exhibits moderate
sensitivity [42, 43]. Each DE analysis was composed
of three pairwise comparisons; U vs. L, U vs. H, and
L vs. H. Differentially expressed genes were identified
after a correction for false discovery rate (FDR 0.05;
[44]). By following a conservative approach (e.g., of
only selecting the genes predicted as differentially
expressed by all three DE analysis software packages),
we sought to minimize false positives and only iden-
tify host genes that were truly differentially expressed
in response to parasite infection (see “shared predictions”
in Fig. 2).

Characterization of differentially expressed genes
Each differentially expressed transcript was compared to
the S. mansoni genome and transcriptome (BLASTN,
E = 10–6; Percentage Identity ≥90 %; [21]) to identify
the origin of differentially expressed transcripts. The
transcripts that match with S. mansoni were com-
pared against mouse genome and transcriptome data-
bases (Ensemble: Mus_musculus.GRCm38.cdna.all.fa,
UCSC refMrna.fa) to differentiate possible xenobiotics
from transcripts that are similar (i.e., conserved) be-
tween species. Transcripts with no significant matches
to mouse were considered to be of parasite/non-target
origin. These transcripts were then further gauged by
conducting BLASTN and BLASTX searches against
Swissprot, Genbank EST, nucleotide, and reference se-
quences. The DE analyses were repeated after all pu-
tative non-target transcripts (i.e. the transcripts that
matched the S. mansoni transcriptome, but not the
mouse transcriptome) were filtered out from the as-
semblies and reads were remapped back to the tran-
scriptomes. The DE predictions were then compared
before and after removing xenobiotic–like sequences

to test the bioinformatics consequences of inadvertently
including parasite sequences in host transcriptomes.
Annotated genes (BLASTX, E–value: 10-6; Percentage

ID: ≥90 %) that were identified as differentially expressed
by all three DE software packages were selected separ-
ately for each assembly. After removing duplicates be-
tween assemblies, these genes were collectively used for
gene set enrichment analysis. The DAVID Bioinformatics
Resource [45] was used to assign GO terms and KEGG
pathway IDs [46] to all annotated contigs. Subsequently,
significantly overrepresented GO terms were identified
using Fisher’s exact test and after correcting for false dis-
covery rate (FDR; [44]).

Gene expression in uninfected vs. infected mice
Transcripts of mouse origin (i.e. after removing possible
S. mansoni–like reads) were used to identify host genes
responding to S. mansoni infections. REVIGO [47] was
used to summarize and visualize the lists of significantly
enriched GO terms. REVIGO condenses the GO terms
by finding a representative subset of the GO terms using
a clustering algorithm that removes functional redun-
dancies. This results in a smaller number of representa-
tive terms for ease of handling and interpretation. To
further characterize the mouse liver transcriptome, we
searched for the genes corresponding to immune
response, against differentially expressed genes and
compared their expression level between the treatments
(U vs. L, U vs. H, and L vs. H). To identify common pat-
terns of gene expression between all treatments, hier-
archical clustering was conducted using the Pearson
correlation coefficient (after normalizing transcript
counts using a variance stabilizing transformation) on
861 Trinity de novo transcripts over and under
expressed ≥ log2 2. Thereafter, the identified clusters
were annotated using GO terms [45]. All statistical ana-
lyses were implemented in the statistical analysis
programming language R (www.r-project.org). Unless
otherwise specified, default parameters of the software/
modules were used.
To validate a subset of the genes we inferred to be DE,

we performed real–time quantitative PCR (cDNA sam-
ples; 6 biological replicates per U, L, and H treatment).
Primers corresponding to 10 DE genes (4 up-regulated
and 6 down-regulated) were designed using Primer 3
software (http://bioinfo.ut.ee/primer3-0.4.0/; Additional
file 1: Table S2). Hypoxanthine phosphoribosyltranferase
(HPRT) was used as a housekeeping gene for relative
quantification [48]. Additionally, primers corresponding
to Mus musculus cytokines IL–1, IL–6, IL–13, IL–5,
IL–4 and IL–10 were sourced from the literature and
used in qPCR analysis to gauge cytokine response to
infection [49, 50]. The thermal profile for all genes
was 95 °C for 10 min, followed by 40 cycles of 95 °C
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for 15 s and 59 °C for 1 min. A melting curve ana-
lysis was conducted from 50 °C to 90 °C with 0.5 °C
increases per cycle for a total of 80 cycles to insure
there was no mis–annealing or contaminated cDNA
in the sample. Each reaction was performed in three
replicates and alongside a no–template negative con-
trol to rule out contamination. For each sample,
threshold cycle numbers required to reach a predeter-
mined fluorescence value were measured and com-
pared with that of the control gene, in an effort to
correct for PCR efficiencies. Subsequently, the expres-
sion ratios were tested for significance using the freely
available REST software and 10,000 randomizations [51].
Comparisons between the treatments (U vs. L, U vs. H,
and L vs. H) and methodology (qPCR and RNAseq gene
expression ratios of Trinity de novo DESeq2) were carried
out using Pearson’s correlation coefficient.

Results
Transcriptome assembly, annotation and characterization
Our sequencing effort produced ~60 million reads from
each of six mouse livers representing three biological
treatments (see Additional file 1: Tables S3–S4 for de-
scriptive statistics). After discarding 1–2 % of the
reads from each library due to poor quality sequence
(Additional file 1: Table S4), we aimed to differentiate
host reads from parasite reads (see Additional file 1:
Table S4; Fig. 3(a)). Across all libraries, fewer than
0.3 % the overall reads matched (BLASTN %ID >90 %;

E–value = 10-12) S. mansoni and, conversely, more than
99.7 % matched the mouse (Fig. 3a). The de novo assem-
blies contained significantly more parasite transcripts
than the reference-based assemblies, and the percentage
of non-host reads increased with increased infection in-
tensity (Fig. 3b).
To evaluate assembly quality we assessed CEG com-

plements, structural variants, the OHRs, and used
BLAST searches. All assemblies contained >89 % of
the known CEG genes (See Additional file 1, Results:
Assembly evaluation for further details), indicating
that our sequencing depth was sufficient for tran-
scriptome reconstruction. Neither assembly algorithm
(de novo vs. reference guided) nor infection level
seemed to overly influence the presence of structural
variants. We observed no difference in the OHRs be-
tween de novo and reference guided assemblies. How-
ever, the transcriptome assemblies of highly infected
mice (H1H2) generally contained unigenes with low
OHRs, suggesting the presence of incomplete tran-
scripts. As expected, the taxonomic distribution of
BLASTX hits indicated more non–chordate hits for
the H1H2 assembly than the U1U2 assembly (especially
in de novo assemblies). These findings suggest that de
novo approaches may more effectively identify non-
target transcripts, but the de novo assemblies also
included more contigs that matched both mouse and
S. mansoni transcripts (i.e., potential synthetic chimeras;
Fig. 3(b)).

Fig. 3 Percentage of parasite reads in mouse raw read libraries and assemblies a Percentage of raw reads matching S. mansoni. Concordant
matches are represented (BLASTN %ID >90 %; E–value = 10–12) b Possible non-target reads in assemblies. Assemblies were compared against
mouse and S. mansoni transcriptomes to identify non-targets (BLASTN E–value: 10–6; Percentage identity ≥90 %). de novo assemblies (Trinity de
novo, SOAPdenovo–Trans) contained more non-target reads compared to reference guided assemblies (Reference guided trinity, Cufflinks)

Wijayawardena et al. BMC Genomics  (2016) 17:600 Page 6 of 14



In an attempt to reconstruct portions of the S. man-
soni transcriptome using the non-target hits, we per-
formed a guided assembly using the S. mansoni genome
as a reference. The overall number of transcripts, the
number of transcripts matching S. mansoni mRNA, and
the number of transcripts with non–chordate BLASTX
hits increased with increasing parasite burden (Additional
file 1: Tables S11–S12). Most of the non–chordate hits
were to S. mansoni proteins curated in Swissprot. Collect-
ively, these data indicate that we captured parasite tran-
scripts directly from host tissue.

Differentially expressed (DE) genes
Differentially expressed transcripts identified in both de
novo and reference–guided assemblies showed significant
matches to both the S. mansoni genome and transcrip-
tome (see Additional file 1: Figure S1). All S. mansoni–like
DE transcripts in reference–guided libraries also
yielded significant matches to the mouse genome and
transcriptome, suggesting that these sequences repre-
sent highly conserved regions. Some S. mansoni–like
DE transcripts in de novo assemblies did not show signifi-
cant matches to the mouse (Table 1; 171 unique tran-
scripts in total, 93 Trinity de novo and 78 SOAPdenovo–
Trans transcripts). All of the S. mansoni-like tran-
scripts were identified in infected mice but never
identified in uninfected mice, suggesting the tran-
scripts were from the parasite or from associated
non-target organisms. The percentage of these xeno-
biotic contigs in DE transcripts varied from 0–2.5 %
(Table 1). The highest number of non-targets was
identified by edgeR. Approximately 15 % of the non-
targets contigs were differentially expressed as gauged
by all three DE programs.

To further characterize these DE non-targets tran-
scripts, we analyzed their alignment lengths (i.e., the
length of the match with a corresponding S. mansoni
transcript), their shared identity with S. mansoni
transcripts, and their expression level (log2 fold change).
On average, ~500 bases of non-target reads matched
S. mansoni transcripts and identity exceeded 90 %
(Additional file 1: Figures S2–S3). The inferred ex-
pression level of non-target transcripts varied, but
many of them were highly expressed (mean fold
change of 6.6; Additional file 1: Figure S4). When we
compared the GC content of the parasite and host
transcriptomes, we found 36 and 50 % for S. mansoni
and mouse, respectively (Additional file 1: Figure S6).
The mean GC content of our putative xenobiotic tran-
scripts was 41 % and hence more similar to S. mansoni.
Based on these collective attributes, most of these reads
are probably not derived from mouse cells but more likely
represent true biological contaminants associated with
S. mansoni. These sequences could be derived from
the parasite or its symbionts, so we refer to them as
non-target (i.e. xenobiotic) transcripts because they
do not appear to be of mouse origin.
Approximately 81 % of the differentially expressed

non-target transcripts had significant BLASTX matches
(E–value: 10–6; 100 hits per query sequence; Additional
file 1: Figure S5). BLAST searches against Genbank and
Swissprot yielded S. mansoni sequences as the best hit
for over 50 % of the non-target transcripts (Genbank nr
and est: 99 %, refseq: 70 %, Swissprot: 55 %). Most of
these xenobiotic transcripts represented S. mansoni 40S
ribosomal proteins and egg antigen sequences.
To confirm that xenobiotic contigs were present due

to the actual presence of parasite cDNA in our libraries

Table 1 Number and percentage (xenobiotic reads/DE transcripts) of non-target reads predicted to be differentially expressed (DE).
Non-targets were identified in the differentially expressed transcripts assembled using de novo methods (Trinity de novo and
SOAPdenovo–Trans). These were represented only in the cDNA libraries of infected or highly infected hosts

Software Number of S. mansoni sequences in DE genes (Percentage)

UH Down UH Up UL Down UL Up LH Down LH Up

DESeq2

Trinity de novo 0 28 (1 %) 0 0 0 0

SOAPdenovo–Trans 0 43 (1.2 %) 0 5 (0.3 %) 1 (0.1 %) 3 (0.6 %)

edgeR

Trinity de novo 0 92 (2.5 %) 0 8 (0.5 %) 0 2 (0.7 %)

SOAPdenovo–Trans 0 77 (1.8 %) 0 14 (0.6 %) 0 1 (0.2 %)

EBSeq

Trinity de novo 0 7 (0.3 %) 0 0 0 3 (0.3 %)

SOAPdenovo–Trans 0 12 (0.3 %) 0 4 (0.2 %) 1 (0.06 %) 9 (0.9 %)

UH: U vs H; UL: U vs L; LH: L vs H
U: Uninfected; L: Low–infected; H: High–infected
Up: Up regulated; Down: Down regulated

Wijayawardena et al. BMC Genomics  (2016) 17:600 Page 7 of 14



(as opposed to bioinformatics assembly errors), we con-
ducted PCR on mouse liver cDNA samples using univer-
sal primers. Amplification efficiency (as gauged by band
intensity) increased with increasing infection level of the
hosts, suggesting the presence of more non-target
transcripts in highly infected hosts (Additional file 1:
Figure S7). No xenobiotic amplification was observed in
uninfected mouse samples.
We conducted DE analysis and characterization of dif-

ferentially expressed reads before and after filtering out
xenobiotic transcripts (i.e., 1208 non-target transcripts
from Trinity de novo, 868 from SOAPdenovo–Trans and
35 from Genome–guided Trinity) from the assemblies
(Figs. 1 and 2). This analysis revealed that non-target
transcripts influence global DE predictions, mostly by in-
creasing the number of DE transcripts (Additional file 1:
Figure S8). Global GO and KEGG IDs were not signifi-
cantly affected by the presence of xenobiotic–like se-
quences in the assemblies (Additional file 1: Table S13).

Host immune response to S. mansoni infection
For our characterization of the host response to infec-
tion, we relied on the DE results from the mouse assem-
blies minus the non-target transcripts (see Fig. 4). The
sample–to–sample distance calculated from the log–
transformed gene–count matrix showed replicates clus-
tering together, indicating low within–treatment variabil-
ity in gene expression (Additional file 1: Figure S9;
corresponds to Trinity de novo). Furthermore, the qPCR

expression ratios were consistent with the RNAseq data
(correlation coefficient =0.9; Additional file 1: Figure S10;
corresponds to Trinity de novo). Together, these data pro-
vide confidence that our inferences regarding DE of host
genes are robust.
These expression data show that the greatest number

of DE transcripts were identified between U and H mice
but significant differences in DE were also identified be-
tween L and H mice, illustrating that the infection level
influences host gene expression (Figs. 5 and 6). GO
enrichment analysis revealed that the GO terms cor-
responding to the “biological process category (e.g.
“immune system process)” are highly represented in
host DE gene sets (Additional file 1: Table S14).
We used REVIGO to summarize and visualize the

significant expressed GO terms (Additional file 1:
Figure S11–S15). Gene products of functional cat-
egories such as immune response, regulation of cytokine
production, endocytosis, and immune system processes
were significantly enriched due to the parasite infection
(Additional file 1: Figure S11–S12; Additional file 1:
Tables S15–S16). We identified significant differences
in gene expression between mice that were infected
with high and low parasite loads (Additional file 1:
Figure S13; Additional file 1: Table S17). Specifically,
the GO categories of cellular matrix organization,
regulation of cell adhesion, and organ development were
significantly up-regulated in H compared to L mice. In all
three comparisons (U vs. H; U vs. L; and L vs. H)

Fig. 4 The number of DE genes used in characterization of mouse immune response against S. mansoni infection (High dose infection: H, low
dose infection: L and uninfected: U; 2 mice per group). Four separate master transcriptomes were assembled using de novo (Trinity de novo and
SOAPdenovo–Trans) and reference based (Genome guided Trinity and Cufflinks) approaches. Thereafter the non-target transcripts were identified
and removed. Differential expression was calculated using DESeq2, EdgeR, and EBSeq and for each assembly shared predictions were extracted.
The figure represents the resulting differentially expressed genes corresponding to the four assembly approaches, after removing the duplicates
between assemblies
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metabolism–related GO terms were significantly under–
expressed (Additional file 1: Figure S14–S16; Additional
file 1: Tables S18–S19). KEGG pathway analysis showed
similar patterns; infected mice had increased expression of
immune–related pathway IDs and decreased expression of

metabolic pathway related KEGG IDs (Additional file 1:
Tables S20–S25).
Hierarchical clustering identified the gene sets differ-

entially expressed in infected mice compared to the
uninfected. We identified seven different clusters that

Fig. 5 Gene expression patterns in S. mansoni infected mice. Hierarchical clustering identified two major expression patterns (up-regulation and
down-regulation in infected mice compared to control uninfected mice), containing 9 different clusters. Gene expression patterns are observed
between high infected (H1, H2) and low infected (L1, L2) mice. Gene expression patterns are represented as a heat map with relatively unchanged
genes in black, down regulated genes in light blue and up regulated genes in dark blue. Clusters were annotated using DAVID and REVIGO functional
annotation tools [45, 47]. U1U2: uninfected controls, L1L2: infected, low parasite burden, H1H2: infected, high parasite burden. Trinity de novo assembly
was used

Fig. 6 qPCR expression profiles of cytokines (IL–1, IL–6, IL–13, IL–5, IL–4, IL–10) and DE genes. Log 2 of expression ratios were calculated compared to
control (LH: H compared to U; UL: L compared to U; UH: H compared to U; [51]). a Cytokines and up–regulated genes. b Down–regulated genes. U:
Uninfected; L: Low–infected; H: High–infected
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corresponded to different functional annotations (Fig. 5).
Overall, genes corresponding to many metabolic path-
ways were down-regulated in infected mice whereas
immune–related genes were up-regulated in infected
mice. For example, genes associated with the extracellu-
lar matrix and immune system process were differen-
tially expressed between L and H mice (Fig. 5). To
identify the changes in gene expression corresponding to
the infection status, we plotted the qPCR gene expres-
sion ratios of the three comparisons (U vs. H; U vs. L;
and L vs. H; Fig. 6). The change in gene expression of
many immune related genes (IL-1, IL-6, IL-13, IL-5, IL-
4, IL-10, CO6A5, CCL11, IGHG1, LY6D, INMT, AT2L1,
LRIT2, SPA12, ACSS3, ELOU3) corresponds to the
parasite burden of the host, whereby highly infected
hosts (i.e. H vs U) have a larger fold-change in gene
expression than low-infected hosts (i.e. L vs U; Fig. 6).
The same trend was observed when comparing the
RNAseq gene expression ratios (Additional file 1:
Table S26). Furthermore, the change in gene expres-
sion ratios corresponds to the parasite burden of the host
(Additional file 1: Table S26, Fig. 6).

Discussion
Our study documents key changes in host gene expres-
sion in response to parasite burden. Our data also
indicate that transcripts from parasites and/or their sym-
bionts can obfuscate host gene expression, and that due
diligence is required to discriminate between host and
xenobiotic, non-target transcripts. We first address the
transcriptomic response of a mammalian host to trema-
tode parasite burden, then briefly discuss issues associ-
ated with measuring gene expression in the context of
xenobiotics.

Host immune response to S. mansoni infection
After removing contigs of inferred non-target origin, we
characterized the liver transcriptome of S. mansoni in-
fected mice. Schistosomes are known to elicit both T–
helper type 1 (Th–1) and T–helper type 2 (Th–2) im-
mune responses [11, 52, 53]. During the first 4–6 weeks
after infection, the Th–1 response is stimulated by the
migration of immature adult worms [11] as character-
ized by increased levels of pro–inflammatory cytokines,
including TNF–α, IL–1, IL–6 and IFN–γ. The inflam-
mation caused by these cytokines can lead to the devel-
opment of chronic infection and tissue scarring [54].
With the onset of egg-laying, Th–2 cytokines such as
IL–4, IL–5, IL–10 and IL–13 begin to be expressed [11].
The Th–2 response peaks at ~8 weeks post–infection
and subsequently decreases with progression of chronic
infection (>12 weeks). We sacrificed mice 7 weeks after
infection, and our expression profile includes both Th–1
and Th–2 cytokines (Additional file 1: Table S26; Fig. 6).

One such cytokine, significantly up-regulated in our in-
fected mice, is IL–10 (Additional file 1: Table S26; Fig. 6).
IL–10 plays a key regulatory role in facilitating the shift
from a Th–1 to Th–2 response and preventing the
development of severe pathology due to excessive Th–1
response [53].
Much of the pathology of schistosomiasis is ascribed

to the host granulomatous response induced by parasite
eggs in the host liver [12]. Therefore, by sequencing the
liver transcriptome we were able to characterize host
genes expressed in response to parasite infection and the
relative changes in their expression levels. Our results
indicate that several GO categories (i.e., immune re-
sponse, regulation of cytokine production endocytosis
and immune system processes) are significantly enriched
in infected hosts and these terms represent the diverse
host responses to S. mansoni infection (Additional file 1:
Figures S13–S16). Infected mouse livers show elevated
expression of lymphocyte-associated proteins such as
cell surface antigens (CDs; T cell, B cell, monocytes) and
lymphocyte developmental factors (transforming growth
factor, caspase recruitment domain family, SFFV proviral
integration 1, IKAROS family zinc finger proteins) that
mediate the innate immune response (Additional file 1:
Tables S15–S17). The activation of B lymphocytes in
infected mice may lead to the up-regulation of immuno-
globulins (e.g., IgG and IgM), and the increased expres-
sion of toll–like receptors (TLRs) that we observed in
infected mice may enable the development of hepatic fi-
brosis (Additional file 1: Tables S15–S17; [11, 55]. Be-
yond an innate response, the increased expression of
major histocompatibility complex (MHC) class II genes
that we observed in infected mice suggests the adaptive
immune system stimulates antigen presentation to T–
cells ([54]; Additional file 1: Tables S15–S17). Additional
immunological enzymes (e.g. oligoadenylate synthetase,
defensin), platelet receptors (p–selectin), and structural
proteins of extracellular matrix (collagen, elastin, fibrillin)
are also upregulated in infected hosts (Additional file 1:
Tables S15–S17).
Schistosomiasis is known to cause significant damage

to host liver function through hepatic fibrosis, in part by
altering liver metabolism [56–59]. We observed that
the enzymes involved in the production of acyl–CoA
(acyl–CoA synthetase, acetyl–Coenzyme A acyltrans-
ferase), a key product of TCA cycle, were significantly
under-expressed in infected mice (Additional file 1:
Tables S18–S19). Our gene expression data from the
mouse reinforce proteomic data and indicate a paucity of
TCA cycle intermediates in infected hosts [59, 60]. Our
gene expression data also suggest the parasite influences
host amino acid metabolism by down–regulating en-
zymes involved in amino acid synthesis and catabol-
ism (Additional file 1: Tables S18–S19). In addition,
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enzymes associated with the urea cycle (e.g., carbamoyl–
phosphate synthetase), breakdown of toxin metabolites
(e.g. UDP glycosyltransferase) and ion transport (3–
hydroxybutyrate dehydrogenase) were also signifi-
cantly downregulated in infected mice (Additional file 1:
Tables S18–S19). Ultimately, such changes in gene regu-
lation may impede host metabolism.
The severity of S. mansoni infection depends on

parasite burden, the infection level affecting morpho-
logical behavioral, and physiological changes in the host
[12, 13]. Mild infections often result in less severe clin-
ical manifestations [12]. We infected mice with low (to
mimic natural infections) and high parasite loads to
identify differences in immune response associated with
infection level. In terms of DE, transcriptomes of our H
mice were significantly enriched with GO terms corre-
sponding to extracellular matrix organization, regulation
of cell adhesion, and organ development compared to L
mice (Additional file 1: Figure S13). These processes rep-
resent tissue repair resulting from the Th–2 response.
For instance, S. mansoni infected mice contain more col-
lagen and enlarged livers (due to hepatosplenomegaly)
than uninfected mice [8]. In addition, increasing parasite
burden appears to increase metabolic costs as gauged by
the relative expression of genes associated with metabol-
ism (Fig. 5); such costs may impair host fitness and/or
life span. Thus, our results confirm and quantify the re-
lationship between parasite burden and host immunoge-
netic response [61, 62].
We observed the increased expression of type I and

type II immune responses in highly infected hosts (Figs. 5
and 6; Additional file 1: Table S26). Specifically, compo-
nents of the Th–2 response (IL–10, immunoglobulins)
were significantly up-regulated in highly infected mice
compared to low infected mice. Similar immunological
changes have been observed in nematode–host systems,
where an increased parasite burden results in the greater
polarization of immune response from Th–1 to Th–2
[62, 63]. These response dynamics seem to be dosage
dependent, triggered by parasite antigens. For instance,
in the tapeworm Echinococcus granulosus, mild infec-
tions elicit both Th–1 and Th–2 responses whereas
more intense infections result in Th–2 response. As Th–
1 and Th–2 cells cross–regulate one another [54], the
change in parasite dosage could alter both the nature
and timing of the subsequent immune response. Our
study was conducted at 7 week post-exposure when the
parasite was beginning to lay eggs and the host was
switching from a Th-1 to a Th-2 immune response. If
this experiment was run earlier in the infection cycle, we
predict that we would have only observed the up-
regulation of genes associated with Th-1 response,
whereas an experiment run later in the infection cycle
would have yielded over-expression of genes associated

with Th-2. Our results suggest that the immunological
dynamics associated with schistosome infections may be
characterized by a nonlinear dose–response function
whereby low–dose infections elicit a much different
host response than typical high–intensity laboratory
infections.

Characterization of parasite transcripts from host tissue
Our results indicate that non-target organisms can con-
found gene expression studies conducted at the tran-
scriptome level, but heretofore the effects of such
xenobiotics have not been evaluated [15, 16]. Presence
of non-target transcripts (e.g., from the trematode
parasite) constitute a very small fraction of the overall
transcriptome, but can still significantly impact assem-
bly, annotation, and gene expression assays.
Quality filtering is a crucial step in the analyses of

massively parallel short–read sequence data, as filtering
removes low quality reads, duplicate reads, and tag se-
quences to the benefit of the overall assembly [64].
Nevertheless, many non-target sequences pass such qual-
ity control measures (Additional file 1: Tables S3–S4). To
identify S. mansoni–like sequences in our mouse liver
datasets, we used both de novo and reference–based tran-
scriptome assembly approaches. The de novo approach
utilized sequencing redundancy to identify overlaps be-
tween the reads and subsequently assembles them into
transcripts [23]. Despite its computational challenges, de
novo assembly is usually most appropriate for non–model
organisms because it does not rely on a reference genome.
Nevertheless, de novo assembly is highly prone to tem-
plate contaminations that occur in the presence of non-
targets (Additional file 1: Tables S9–S10). Conversely, ref-
erence–based assemblies are sensitive, accurate (given the
use of a high quality genome), and faster than de novo as-
sembly [23]. Genome assemblies of model organisms such
as the mouse are generally of high quality and therefore
expected to facilitate a high quality transcriptome assem-
bly. The presence of xenobiotics is less of a concern for
reference–based libraries compared to de novo libraries,
since non-target sequences are not expected to align with
reference data and should end up on the “cutting room
floor” as these assemblies discarded nearly a quarter of all
high–quality reads [14]. Indeed, we identified DE non-
target reads only in de novo assemblies (Table 1;
Additional file 1: Tables S9–S10). Both Trinity de novo
and SOAPdenovo–Trans captured non-target reads, pos-
sibly due to the high sensitivity of the multiple k–mer ap-
proach [24].
We tested for signatures of xenobiotic contamination

in our RNAseq assemblies by estimating assembly cor-
rectness and evaluating completeness statistics. We
found differences in GC content between putative
mouse reads and putative non-target reads, and that the
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GC content in presumptive non-target reads was con-
sistent with their derivation from S. mansoni (Additional
file 1: Figure S6). Our results also indicate that datasets
derived from a parasite–infected source tissue may con-
tain less complete reads than more pure source tissue
(Additional file 1: Table S9–S10). For instance, our
H1H2 assemblies contained many more reads with an
OHR ratio <0.8, indicating incomplete/truncated reads
and/or novel transcripts (Additional file 1: Table S9).
However, there were no apparent differences in the num-
ber of structural errors between assemblies (Additional
file 1: Table S6).
Many putative S. mansoni reads that were DE were

from long transcripts present in high copy numbers.
Given that each mature female parasite produces ~300
eggs per day [5], we suggest these reads likely originated
from S. mansoni eggs present in the livers of infected
mice. This idea is buttressed by the fact that most of
the putative non-target reads significantly matched to
S. mansoni egg antigen sequences. In the presence of
non-target sequences, DE analysis predicted more DE
transcripts in infected hosts than in uninfected hosts
(Additional file 1: Figure S8) but non-targets did not
significantly change the outcome of GO and KEGG
enrichment analysis.
Overall, the presence of non-target reads did not im-

pact the host transcriptome assembly, but they did con-
found the analyses of DE (i.e. de novo assemblies,
Table 1). We recommend removing all possible non-
target reads from genome/transcriptome assemblies
prior to DE analysis because an abundance of non-target
sequences may negatively influence downstream analyses
and lead to erroneous inferences [14]. We suggest filter-
ing out such sequences using metagenomics databases,
contaminant removal software (DeconSeq, QC-chain,
[15, 16]), and genomic features such as GC content
and codon usage bias to identify potential non-target
sequences.

Conclusions
Our data reveal general patterns of gene expression ex-
hibited by mammalian hosts in response to parasite
infection, and they highlight specific host biological pro-
cesses most likely to be impacted by S. mansoni. After
filtering parasites from the host transcriptomes, we iden-
tified and characterized genes that were differentially
expressed among mice that varied in parasite burden.
We determined that the up–regulation of genes related
to the immune response and the down–regulation genes
related to metabolism is proportional to the parasite
burden of the host, whereby highly infected hosts exhibit
more pronounced changes in gene expression relative
to less infected hosts. These differences in gene ex-
pression reflect the pathological changes associated with

S. mansoni infections and provide a better understanding
of host–parasite interplay at the transcriptome level. Fur-
thermore, our data highlight potential avenues for thera-
peutic intervention in the treatment of schistosomiasis
(e.g., RNAi targets), and our experimental approach has
broad utility for other host-parasite systems.

Additional file

Additional file 1: Tables S1-S26 and Figures S1-S16. Contains
additional results, primer sequences, RNA quality parameters,
descriptive statistics and annotation details of assemblies, GO terms
(lists and figures), significantly enriched KEGG IDs, xenobiotic
characterizations, PCR results and qPCR validations. (PDF 2247 kb)
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