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Abstract
Social network analyses allow studying the processes underlying the associations 
between individuals and the consequences of those associations. Constructing and 
analyzing social networks can be challenging, especially when designing new studies 
as researchers are confronted with decisions about how to collect data and construct 
networks, and the answers are not always straightforward. The current lack of guid-
ance on building a social network for a new study system might lead researchers to 
try several different methods and risk generating false results arising from multiple 
hypotheses testing. Here, we suggest an approach for making decisions when start-
ing social network research in a new study system that avoids the pitfall of multiple 
hypotheses testing. We argue that best edge definition for a network is a decision 
that can be made using a priori knowledge about the species and that is independ-
ent from the hypotheses that the network will ultimately be used to evaluate. We 
illustrate this approach with a study conducted on a colonial cooperatively breeding 
bird, the sociable weaver. We first identified two ways of collecting data using differ-
ent numbers of feeders and three ways to define associations among birds. We then 
evaluated which combination of data collection and association definition maximized 
(a) the assortment of individuals into previously known “breeding groups” (birds that 
contribute toward the same nest and maintain cohesion when foraging) and (b) so-
cially differentiated relationships (more strong and weak relationships than expected 
by chance). This evaluation of different methods based on a priori knowledge of the 
study species can be implemented in a diverse array of study systems and makes the 
case for using existing, biologically meaningful knowledge about a system to help 
navigate the myriad of methodological decisions about data collection and network 
inference.
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1  | INTRODUC TION

Social network analysis (SNA) has gained popularity in behavior 
ecology as a tool to study the processes underlying the associations 
between individuals and the consequences of those associations 
(Cantor et al., 2019). It allows biologists to characterize not only the 
social environment experienced by a single individual in the pop-
ulation, but also the broader social characteristics of a population 
(Newman, 2010). However, while the methods involved in analyzing 
a network are reasonably well-explained (e.g., Whitehead, 2008), 
there are many decisions involved with the design of data collection 
and creating the network itself (Farine & Whitehead, 2015).

Decisions about the design of a study can have consequences on 
the inferred network structure (James, Croft, & Krause, 2009). How 
can we know that our design decisions produce a suitable network 
for the species and the type of hypotheses we are studying? There is 
generally little discussion of the considerations made when design-
ing a network-based study, with most published papers presenting 
their design as a “fait accompli.”

When analyzing a social network, the key decision that needs to 
be made is how to define the relationships (edges) connecting the in-
dividuals (nodes). This definition can include two main components. 
The first is the set of considerations relating to how data are col-
lected (e.g., direct observations versus. video recordings), and the 
second is the decisions that relate to how observations are turned 
into edge weights (e.g., rate of interactions versus. time spent to-
gether). In most systems, the scope of decisions about data collec-
tion appears constrained by methodological limitations, but often 
there are choices that reflect some trade-offs. For example, is it 
better to collect fewer data across more individuals at once or to 
collect more detailed data on fewer individuals? These decisions in 
turn have consequences for hypotheses testing. Davis, Crofoot, and 
Farine (2018) provided a useful general discussion on the impact of 
these trade-offs. However, there is no general guidance on how to 
quantify the relative value of different approaches when faced with 
designing methods for real data collection.

Once data are collected, the second set of considerations that 
arise reflect decisions about how to calculate the strength of the 
relationships among individuals. While one aspect determining the 
accuracy of a network to ensure that sufficient data are collected 
(see Farine & Strandburg-Peshkin, 2015), how data are used to gen-
erate quantitative measures of connection strength (edge weights) 
can also have a large impact on the resulting network. For example, 
different association indices (Cairns & Schwager, 1987; Hoppitt & 
Farine, 2018) or different types of data resolution (e.g., the number 
of grooming bouts versus the amount of time spent grooming) can 
be used to estimate the strength of a given relationship.

The lack of guidance on how to evaluate different approaches 
to data collection and network inference might lead researchers to 
try several different methods and to select the one that best cor-
relates with the predictions of the study (e.g., a positive relationship 
between a given network metric and survival). Such a correlation 
could give a false impression that the method chosen produces a 

network that is successfully capturing the species' or population so-
cial structure. At worse, this approach could constitute a multiple 
hypotheses testing scenario, elevating rates of type I errors because 
the design decisions are made based on producing a result. This risk 
is elevated when combined with opportunities to calculate multiple 
network metrics (e.g., degree and betweenness). For example, a re-
searcher might be interested in understanding whether specific indi-
vidual attributes, such as personality, correlate with one or multiple 
network centrality metrics (e.g., Aplin et al., 2013; Boogert, Farine, 
& Spencer, 2014; Chock, Wey, Ebensperger, & Hayes, 2017; Johnson 
et al., 2017; Moyers, Adelman, Farine, Moore, & Hawley, 2018; 
Wilson, Krause, Dingemanse, & Krause, 2013). In the absence of 
significant results, it could be tempting to change a posteriori the 
methods by which the network is generated from the data, such as 
changing the time window or the proximity criterion used to con-
sider that two individuals are associated. While such an example is 
extreme, there is an important challenge arising from not knowing 
whether failing to reject a given null hypothesis is a consequence of 
the expected pattern not being present or the researchers' failure 
to correctly construct the network. We therefore need an approach 
that avoids creating circularity, that is, using the same data tested 
in different ways to corroborate a given hypothesis, as well as using 
the significant result to corroborate the quality of the information 
contained in the network. This problem is exacerbated by the lack of 
information, in most published studies, about how design decisions 
were made, that is, whether they were made arbitrarily (or based 
on a published study), based on pilot studies, or if explored in the 
way described above (but see Boogert, Farine, et al., 2014; Castles 
et al., 2014; Mourier, Bass, Guttridge, Day, & Brown, 2017, for some 
exceptions).

Two complementary approaches can help with making decisions 
about the design of a network study. The first is to collect pilot data, 
testing different data collection setups (e.g., varying the number of 
simultaneous observers collecting data). Unfortunately, this is often 
not possible, not done, or not reported. The second is to run ex-
ploratory a priori analyses aimed at comparing different competing 
networks resulting from different network generation methods and 
in networks with different edge definition. For both approaches, we 
propose (and show) here that comparison of the different methods 
is made possible by testing and interpreting simple hypotheses that 
we generally consider a network from that study species should sup-
port, before testing the hypothesis of central interest.

Capturing structure in a given species' network that aligns with 
a priori knowledge on the species can be interpreted as an approx-
imation of hypothetical ground-truthed network (which is some-
thing that is unlikely to be available when working with nonhuman 
animals). For example, in a species where mother and offspring or 
breeding pairs create strong social bonds, we expect that the im-
plemented method would result in a network that would be able to 
capture these preferred associations (i.e., estimate the edge weight 
within a family/breeding pair as being significantly greater than 
those between other sets of individuals, see Boogert, Farine, et al., 
2014 and Hobson, Avery, & Wright, 2014). Such an analysis would 
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then provide information about whether a network is capable of 
differentiating, and therefore capturing, one or more important as-
pects of the biology of the system.

In this paper, we provide an empirical example of how to make 
decisions about the design of a network study using exploratory a 
priori test. We start by formulating simple tests of hypotheses to 
help guide the design of data collection and network inference. We 
conducted this study in a population of a colonial and cooperatively 
breeding bird, the sociable weaver (Philetairus socius). In this popu-
lation, individuals are marked with PIT tags allowing automatic data 
collection at feeders containing supplemental food. We decided to 
collect associations in a feeding context not only because this has 
been shown to be important and meaningful in other bird studies 
(e.g., Aplin, Farine, et al., 2015), but also as a result of the general in-
sights on the social foraging behavior of this species that have been 
reported in previous studies on this population (Lloyd, Altwegg, 
Doutrelant, & Covas, 2017; Rat, van Dijk, Covas, & Doutrelant, 2015; 
Silva et al., 2018). Therefore, it seems reasonable to assume that 
information about social relationships within a colony could be ob-
tained from foraging associations (see Farine, 2015), if the study is 
well designed.

We evaluate the performance of different study designs at ex-
tracting two fundamental structural aspects of the social system 
in our study species (herein our test statistics). The first metric is 
social differentiation, which we calculate using the coefficient of 
variation (CV). Because sociable weavers' colonies are large, we 
do not expect birds to have the same relationship strength with 
all colony members (i.e., low values of CV). Thus, an informative 
network should be one that features large differences in the con-
nection strengths that individuals have in their social network (i.e., 
having many small and large values, rather than many intermediate 
values). However, solely relying on social differentiation can be 
misleading as high values can be obtained as a result of nonsocial 
factors (e.g., low sampling or spatially distributed individuals), nor 
should maximizing social differentiation necessarily result in the 
most biologically accurate network. Thus, our second metric for 
testing if the edges in the foraging network reflect social bonds is 
one that aims to capture something more specific about sociable 
weaver biology, assortment by breeding group. Sociable weaver 
colonies contain several breeding groups composed of breeders 
with their helpers (usually a breeding pairs plus one to four help-
ers; Covas, Dalecky, Caizergues, & Doutrelant, 2006). Assortment 
is a measure of the tendency for connections in a network to be 
more common among similar than among dissimilar types of nodes 
(Farine, 2014; Newman, 2003). Thus, assortment by breeding group 
is a metric that would capture the tendency of individuals from 
the same breeding group to be more strongly connected to one 
another in the network. We expect this because while aggression 
between individuals at food patches is common (sociable weavers 
typically forage in large groups containing many colony members), 
aggression between members of the same breeding groups is rare 
(suggesting higher tolerance for other breeding group members, 
Rat, 2015). Thus, we expect members of the same breeding group 

to be disproportionately detected together, resulting in a real so-
cial network that is assorted by breeding group membership.

First, we quantify the effects of data collection decisions on the 
resulting values of social differentiation and assortment by breed-
ing group. Specifically, we test how allowing different numbers of 
individuals to feed simultaneously impacts our two test statistics. 
As data collection decisions are challenging to make when starting 
a new study, but are critical because they can have a major impact 
on the robustness of the resulting network(s) (i.e., the network, are 
sufficient to reliably estimate properties of the real social struc-
ture; Davis et al., 2018). In our case, it is not clear whether sociable 
weavers with stronger social relationships feed more synchronously 
across repeated foraging visits than birds with weaker relationships, 
or whether the differences in behavior are better defined as the pat-
terns of foraging within a foraging visit (i.e., with who within the flock 
the individuals prefer to associate in close proximity). The former 
requires more widespread effort (i.e., determining only the foraging 
flock composition), while the latter requires more refined data to be 
collected within foraging flocks (i.e., more opportunities to record 
individuals simultaneously at the same site). These two approaches 
represent a clear cost trade-off as the former can be achieved with 
fewer resources compared to the latter. For example, when collect-
ing data using RFID technology, having one feeder fitted with an 
RFID antenna can be enough to obtain the identity of all individuals 
in a foraging flock (e.g., Jones, Evans, & Morand-Ferron, 2019), multi-
ple RFID antennas working simultaneously are needed to determine 
if two birds present in the same flock feed in close proximity. We 
therefore compare different setups for collecting associations that 
differ in the number of birds that can be detected in an automated 
RFID system at the same time.

Second, we focus on how to define associations from within a 
given dataset. Specifically, we compare three different approaches 
to generate quantitative measures of edge weights in the network, 
and test how these subsequently impact our test statistics. Two 
approaches are based on number of co-occurrences in “foraging 
events.” These are akin to using the “gambit-of-the-group” approach 
(Franks, Ruxton, & James, 2010; Whitehead & Dufault, 1999), where 
all birds that are detected (i.e., observed) in a flock together are con-
sidered to be associated. However, this approach discards more de-
tailed data that could be available about within-flock structure and 
instead assumes that birds with strong relationships will tend to be 
co-observed in the same flock more often than those with weak re-
lationships. The third approach is a more direct measure of the pro-
portion of time that two individuals spend in close proximity within 
the flocks. That is, because we collected data at multiple readers in 
close proximity, we could estimate how much time two individuals 
spent on neighboring feeders.

Our aim is to provide guidance on how to make decisions 
when dealing with choices in the design of data collection and/
or network inference. We achieve this by drawing from an em-
pirical example in which we use existing knowledge of our study 
species guide decisions for designing a network study. In doing 
so, our study highlights how relatively simple approaches, using 
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short periods of pilot data collection and evaluating network data 
against basic knowledge about the study species, can facilitate 
making methodological decisions that could have long-term im-
pact on the success of a study. While our focus is on collecting and 
analyzing network data, such an approach goes beyond studies of 
animal social networks.

2  | METHODS

2.1 | Study scope and model species

We studied a population of sociable weavers at Benfontein Nature 
Reserve, situated ca. 6 km southeast of Kimberley, in the Northern 
Cape Province, South Africa. The sociable weaver is endemic to the 
semiarid savannahs of southern Africa (Maclean, 1973a) and feeds 
mainly on insects and seeds (Maclean, 1973c). Sociable weavers 
build large nests, usually on Acacia (Vachellia) trees, with several in-
dependent chambers where the birds roost throughout the year and 
where breeding takes place (Maclean, 1973b). This species exhibits 
three noticeable cooperative behaviors: building the communal nest, 
feeding nestlings of others, and communal nest defense from preda-
tors such as snakes (e.g., Boomslang, Dyspholidus typus and Cape 
cobra, Naja nivea). The size of a colony can range from less than ten 
to several hundred individuals. The breeding pairs can either breed 
with or without helpers (30%–80% of breeding attempts have help-
ers; Covas, Du Plessis, & Doutrelant, 2008).

This study is part of a long-term research program which involves 
the annual capture of 14 colonies to maintain an individually marked 
population (all individuals are marked with a unique metal ring and 
color combination: Covas et al., 2008; Paquet, Doutrelant, Hatchwell, 
Spottiswoode, & Covas, 2015). At five colonies, all birds are also 
marked with a passive integrated transponder (PIT tag, enclosed in a 
plastic leg ring). These colonies ranged in size from 43 to 82 individuals 
(colony size estimated from the annual captures in September 2017).

2.2 | Breeding groups' identification

Breeding groups were determined using video recordings of the cham-
bers during the reproductive season of October 2017 to January 2018. 
We routinely inspected all colonies every 3 days to identify initiation 

of new clutches. We visited chambers in the days around the expected 
hatching date to determine the age of the nestlings and then recorded 
each breeding group for at least 2 hr when the chicks were between 
8 and 20 days old. We considered an individual as part of the group if 
it was seen feeding the chicks at least 3 times, as occasionally some 
individuals try to feed but are expelled by the breeding group.

2.3 | SNA data collection

During December 2017 and April 2018, we collected two rounds of 
association data in a feeding context using artificial feeders at the 5 
PIT-tagged colonies. For all the 5 colonies, the feeding location was 
80–205 m away from the colony.

Data from three of the five colonies were collected using a setup 
containing 2 feeding boxes (high competition setup), each with 4 
perches and 4 small standard plastic bird feeders. Each small feeder 
allowed for only one bird to feed at a time and was fitted with a RIFD 
antenna (Priority1rfid, Melbourne, Australia) connected to a data 
logger (Figure 1a). Data from these three colonies were collected for 
14 days (sampled continuously).

At two of the five colonies (of similar sizes, 43 and 44 individuals), 
we evaluated alternative methods for collecting feeding association 
by varying the number of birds that could feed at the same time. We 
introduced an alternative setup comprising 4 feeding boxes instead 
of 2 (low competition setup; Figure 1b), allowing birds to spread out 
more when visiting the feeding station and, therefore, for us to col-
lect more observations of cofeeding. Data for each setup (high and 
low competition) were collected within the same study period, alter-
nating between the setup each day. This design allowed us to make 
direct comparisons of the two setups without a cofounding factor 
of time period in which the data were collected, the number of days 
that each setup was used to collect data, or which colony data were 
collected from. We collected 10 days of data for each setup.

2.4 | Edge weight calculations

The stream of data collected in the field comprised of temporal se-
quences of PIT tag codes detected at each of the feeder perches. 
From these data, we calculated associations from our observation 
data in two different ways:

F I G U R E  1   Setup for collecting 
associations (a) A feeding box with birds 
feeding at the four plastic feeders and the 
RFID antennas (b) the low competition 
setup with four feeding boxes. 
Photographs by Cecile Vansteenberghe

(a) (b)
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1. Co-occurrence method. We first used the gambit of the group, 
where all individuals that are observed together are considered 
to be equally connected to each other (i.e., a flock) and the 
strength of connections is estimated based on the repeated 
patterns of co-occurrences of individuals in the same observa-
tion. However, there are several ways a flock can be defined 
(see Farine & Whitehead, 2015). Here, we used an established 
method of inferring flocks based on the time differences be-
tween two detections. The start and end times of a “wave” 
of individuals considered to be forming a flock are determined 
by a Gaussian mixture model (GMM; using R package “as-
nipe” Farine, 2013; following Psorakis et al., 2015), which is 
an automated clustering algorithm designed to detect peaks, 
or clusters of detections, in the temporal profile of activities 
at the artificial feeders. This approach uses data from the 
feeding behavior of the entire set of individuals as part of 
determining the associations between any two individuals.

2. Time overlap method. We estimated association strengths di-
rectly from the data by calculating the total time that two indi-
viduals overlapped while feeding at the same feeding box. This 
approach does not use any data from other individuals when de-
termining the associations between two individuals.

These two methods are described in more detail below. For the 
co-occurrence method, we used two variants (see Figure 2): one fo-
cused on the association at the broad flock level (single GMM) and 
the other added a second step of estimating association within each 
flock (double GMM). Therefore, three different network types were 
compared for each combination of colony (see Figure 3 for an illus-
tration of the different comparisons done in this work).

2.4.1 | Co-occurrence networks

Single GMM (broad flock): We built networks using the rates of co-oc-
currence on the same so-called “foraging events” as commonly done 
in other studies (e.g., Aplin et al., 2013). Foraging events were defined 
using a single run of the GMM (single GMM network) directly on the 

raw daily RFID feeder data, which splits the temporal data in different 
foraging events based on peaks of activity on the feeding boxes for 
that day (following Psorakis et al., 2015). We considered each feed-
ing box as a different location to allow us to split the flock spatially 
in order to archive a greater resolution in detecting preferred asso-
ciations. We inferred the association strengths (edge weights) among 
colony members from their copresence across all foraging events. We 
used the simple ratio index: the number of times that two individuals 
were in the same foraging event divided by the number of foraging 
events that contained at least one of the two individuals.

Double GMM (within flock): Since our study species is colonial 
and highly gregarious, we believed that to differentiate the rela-
tionships among colony members we would need edges based on 
co-occurrences at a finer scale than what has traditionally been used 
for other species (i.e.,. using the single GMM). Therefore, we used 
the Gaussian mixture model approach to define associations among 
individuals using a two-step procedure. Because the data from the 
feeders are quite discontinuous in this population (i.e., all individuals 
tend to visit foraging patches together and then all depart together 
in a very synchronized manner), we first detected the broader ac-
tivity profile at the set of feeder boxes. We did this by grouping the 
individuals' detections across all feeder boxes at a location in a given 
day into 1 min blocks and used the GMM to extract the arrival and 
departure times of broad foraging events (see Figure 2a). After this 
first step, we used the GMM again, but this time to detect waves 
of activity within each of the foraging events determined by the 
first GMM run. In the second run, we considered each feeder box 
(containing 4 RFID perches each) as a different location and used 
detections at a 1-s resolution. Considering each feeding box as a 
different location allowed us to split the data on the flock spatially, 
while running the GMMs within each foraging event allowed us to 
decrease the time scale and forced the GMM to split into shorter 
feeding bouts (Figure 2b), thereby allowing the detection of with-
in-flock spatial and social preferences. We inferred the association 
strengths among colony members from their copresence across all 
feeding bouts generated from the second runs of the GMM (dou-
ble GMM network). As with the single GMM approach, we used the 
simple ratio index.

F I G U R E  2   Example of applying the GMM algorithm method. (a) Sociable weaver visits to a feeding location during one morning. The 
top straight lines represent the foraging events resulting from the first GMM. (b) The foraging events resulting from the second GMM, 
discriminating between the two feeding boxes and using only visits from the first event determined by the first GMM (corresponding to the 
first horizontal line segment on Figure 2a)



     |  9137FERREIRA Et Al.

2.4.2 | Time overlap networks

For the time overlap networks, we directly calculated the proportion 
of total feeding time during which two individuals were feeding si-
multaneously in the same feeding box (i.e., the time that birds spent 
feeding side-by-side). Here, edges were calculated by taking the sum 
of time that two individuals spent feeding at the same time at the 
feeding box divided by the sum of the total time that at least one 
of these two individuals were present at the feeder (which is also 
the simple ratio index, but more explicitly time-based rather than 
occurrence-based). This method aimed to define a stricter scale at 
which we consider that two individuals were associated and rep-
resents the degree of tolerance to feed together. This method can 
be more relevant for colonial and very gregarious species such as 
sociable weavers, since all members of the colony are often found 
foraging together and are already connected by colony membership, 
and since our interest is to find a sublevel of sociality within this 
colony structure.

2.5 | Hypothesis testing

We evaluated each network we produced by testing if they were sig-
nificantly different from networks generated from randomizations 
of our data and if they generated patterns that reflect a biologically 
meaningful social aspect of this species. Specifically, we evaluated 
the utility of each network we generated (3 variants times 2 data 
collection methods) according to two test statistics:

1. The coefficient of variation in edge weights, to test which 
method would result in more differentiated networks. Low CV 
values represent a network in which individuals are equally 
connected, whereas a high CV value means that there are 
both strong and weak relationships detected. We do not expect 
sociable weavers to associate equally with all members of their 
colony, but they should have equal opportunity to associate 
with all others (i.e., they are co-occurring in the same space). 
Thus, CV is a suitable test statistic of general patterns of 
social differentiation in our species.

2. The weighted assortment coefficient (following Farine, 2014) 
using breeding group membership as the individual trait. High 

values of assortment coefficients represent disproportionately 
strong associations among individuals with the same trait (here 
between members of the same breeding group), while low val-
ues represent no such structure. Thus, our second statistic is a 
more explicit test of an a priori hypothesis about who individuals 
should be connected to in the network. Because not all individu-
als of the colony could be attributed to a breeding group, since 
not all breeding pairs managed to successfully reproduce during 
this breeding season, we restricted the network to the subset of 
individuals known to belong to a breeding group.

We tested the statistical significance of the CV and the assort-
ment coefficients by comparing the test statistics calculated from 
the observed networks with the same statistics calculated from 
1,000 random networks generated using permutations of the ob-
served data (see Farine, 2017). For the co-occurrence method, we 
generated random networks following the method first described 
by Bejder, Fletcher, and Brager (1998), using the R package asnipe 
(Farine, 2013). Briefly, for the single GMM networks, we selected 
pairs of observations of individuals from different foraging events 
and then swapped these individuals. For the double GMM network, 
the approach is similar; however, pairs of observations of individuals 
were selected from the same foraging events (from the first run of 
the GMM) and at the same feeder, but from different feeding bouts 
(from the second run of the GMM). For the overlaps of time net-
works, we split the observed data by the foraging events defined by 
the first run of the GMM in the double GMM method and swapped 
the identity of the individuals within each foraging event. That is, 
we performed restricted node permutations (following Aplin, Firth, 
et al., 2015, but restricted by time and space, rather than by space 
only). By randomizing individuals' detections events within each for-
aging event, we aimed to keep constant, as much as possible, other 
factors besides social preferences that might contribute to the struc-
ture of the network (such as variation in individuals' propensities to 
join flocks visiting feeders).

For all the 5 colonies, we compared the CV and the assortment 
coefficients from the 3 different types of networks (singles GMM, 
double GMM, and overlap of time). Additionally, for 2 of those 5 col-
onies, we also compared each of the network types resulting from 
data collected using high and low competition setups. This allowed 
us to test whether we could improve our networks not just in terms 

F I G U R E  3   Flow diagram illustrating 
the steps for the two different 
comparisons of the study: comparing 
different methods for calculating edge 
weights and comparing different data 
collection setups
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of edge definition but also regarding the design of data collection by 
changing the number of birds that can access food simultaneously. 
As illustrated in the diagram of Figure 3, the decisions about our 
method for constructing a suitable network for the sociable weav-
ers were guided by both the setup design and the edge definition. 
Addressing these two questions might appear to be a sequential 
scheme, that is, first looking at feeder saturation and after deciding 
if there was or not a significant improvement in using the 4 feed-
ing boxes, addressing the scale problem (by comparing the different 
types of networks) or the other way (first the scale and then the 
feeder saturation). However, we did not address this as a sequential 
problem, since the two types of comparisons (comparisons of scale 
and comparisons of feeder saturation) are not easy to disentangle. 
In order to compare the high competition with the low competition 
setup, we need a reliable edge definition which can only be obtained 
by comparing the 3 types of networks. However, the best edge defi-
nition might differ when using different methods for collecting data.

3  | RESULTS

We found that our methodological approach for evaluating different 
methods for data collection and network inference yielded informa-
tive results that could be directly applied when making decisions 
about study design. All of the methods we used generated networks 
that were significantly different from random. From an edge defini-
tion perspective, the overlap of time method consistently generated 
networks with higher CV (Table 1) and higher values of assortment 
(Table 2). While the co-occurrence methods were able to detect 

the predicted positive assortment by breeding group in most colo-
nies, the overlap of time method consistently produced consider-
ably higher assortment coefficients. The single GMM co-occurrence 
method was able to generate well-differentiated networks, but per-
formed worse with the assortment coefficients being closer to zero 
(Table 2). These results suggest that the networks produced by the 
overlap of time method performed better at capturing a sublevel of 
sociality within the colony that we expected to be captured in a net-
work of sociable weaver with an appropriate edge definition.

From a data collection methods perspective, using four boxes 
instead of two resulted in higher CVs and in higher assortment coef-
ficients in both colonies (Tables 1 and 2). In other words, using more 
feeding boxes at a given site resulted in greater power to discriminate 
between same breeding group associations within a colony across all 
the three types of networks. This effect was more pronounced in the 
co-occurrence method than in the overlap of time method.

Together these results show that using more feeders and an 
edge definition based on overlap of time produced networks that 
are able to capture the expected assortment by breeding group and 
performed better than other methods. We can now use this method 
to construct networks to test our hypotheses of interest in future 
research such as testing if specific individual attributes (e.g., person-
ality traits) influence social relationships among the individuals.

4  | DISCUSSION

Using our empirical example, we have shown how knowledge about 
the study population can be used to help making decisions about 

Network type
Colony 
ID

Detected 
individuals

Two feeding 
boxes

Four feeding 
boxes

CV p CV p

Co-occurrence single GMM 11 34 0.548 <.001 0.414 <.001

20 27 0.516 <.001 0.556 <.001

27 38 0.738 .026 – –

43 27 0.646 .002 – –

71 59 0.608 .02 – –

Co-occurrence double GMM 11 34 0.646 .004 0.804 <.001

20 27 0.530 <.001 0.752 <.001

27 38 0.877 <.001 – –

43 27 0.770 <.001 – –

71 59 0.700 .05 – –

Overlap of time 11 34 2.143 <.001 2.500 <.001

20 27 1.414 <.001 1.872 <.001

27 38 1.770 <.001 – –

43 27 1.351 <.001 – –

71 59 1.731 <.001 – –

Note: Number of individuals per colony: colony 11:34; colony 20:27; colony 27:38; colony 43:27; 
colony 71:59.

TA B L E  1   Comparison between the 
CVs of the three different types of 
networks obtained using a setup with two 
and four feeding boxes
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the data collection design and determining how to calculate the 
strengths of social relationships. We have also shown that, as ex-
pected, different edge definition and experimental designs in the 
same context can result in different networks: some presenting a 
low coefficient of variation and thus a network in which individuals 
are more equally connected, and others with a higher CV, and thus 
a network containing a higher number of both stronger and weaker 
relationships. Importantly, we found that the methods that appear 
best suited to our study system differ from those that have been 
widely used in studies of PIT-tagged songbird populations, highlight-
ing the need to ensure that methods are tailored to the specific sys-
tems under investigation.

In the case of the sociable weaver, we showed that using the time 
that individuals spent together, rather than data on simpler co-oc-
currences, generates networks that best captured network features 
that we a priori identified as being important. For example, the as-
sortment coefficients by breeding group were more than ten times 
higher in the time-based networks than in the networks generated 
from co-occurrences. While using a more time resolved co-occur-
rence method (double GMM) resulted in a better network to cap-
ture assortment by breeding group relative to the standard GMM 
method, it still performed worse than a network based on the time 
that individuals spend in close proximity. This would be expected 
for a species such as the sociable weaver, in which colonies can for-
ages in flocks always containing the same individuals. Thus, while 
we found that a network definition based on the overlap in time 
provided the networks that best captured a priori knowledge of the 
study species' social structure (i.e., the breeding group), it might not 
necessarily be the best method for all questions or study systems. 
For example, tits (Paridae) spend the winter in flocks with highly 

dynamic membership with membership changing over the course of 
minutes (Farine et al., 2015) and pairs of blue tits (Cyanistes caeru-
leus) can be detected forming through their increased comembership 
in the same flocks (Beck, Farine, & Kempenaers, 2020). Thus, using a 
single GMM can extract the social signal from tit flocks because this 
signal is contained in broader patterns of flocking rather than fine-
scale patterns of social proximity. Hence, for each study system, and 
for each purpose, researchers should carefully consider what is the 
best way to construct their networks, potentially requiring experi-
menting while avoiding trying the different methods on a given hy-
potheses of interest.

We also generated new insights into how to design data collec-
tion protocols. For the sociable weaver, we found that networks 
generated using more sampling opportunities (in this case a higher 
number of feeder boxes available simultaneously) produced net-
works with higher assortment by breeding unit. Our finding is in line 
with the suggestions made in a recent methodological paper that 
simultaneous sampling data can result in more robust networks 
(Davis et al., 2018). Even though our analyses are based on only two 
colonies, the reason for this improvement is easy to explain. Having 
fewer feeders available increases competition for access to feeders, 
which, in turn, might reduce the ability for groups of preferred asso-
ciates within a colony to forage at the same time, and force them to 
forage with less preferred conspecifics. Alternatively, competition 
for access to the resource could go as far as causing only the more 
dominant individuals of each group to have access to the resource, 
meaning that we would fail to sample subordinates. In either case, 
having fewer feeders means that birds could not clearly express the 
social preferences we would expect them to have in more dispersed 
and more natural resources.

TA B L E  2   Comparison between the assortment by breeding groups for the three different types of networks obtained using a setup with 
two and four feeding boxes

Network type Colony ID
Individuals in 
groups

Number of 
groups

Two feeding boxes Four feeding boxes

Assortment (SE) p Assortment (SE) p

Co-occurrence single GMM 11 20 8 −0.005 (0.026) <.001 −0.020 (0.027) <.001

20 10 3 −0.063 (0.086) .14 0.053 (0.094) <.001

27 20 6 −0.017 (0.028) .002 – –

43 17 5 −0.013 (0.013) <.001 – –

71 19 4 −0.005 (0.039) .018 – –

Co-occurrence double GMM 11 20 8 0.018 (0.029) .004 0.092 (0.045) <.001

20 10 3 −0.022 (0.088) .12 0.232 (0.105) <.001

27 20 6 0.009 (0.032) .052 – –

43 17 5 0.049 (0.041) .012 – –

71 19 4 0.012 (0.042) .002 – –

Overlap of time 11 20 8 0.297 (0.074) <.001 0.389 (0.088) <.001

20 10 3 0.160 (0.175) <.001 0.637 (0.087) <.001

27 20 6 0.141 (0.066) <.001 – –

43 17 5 0.094 (0.055) <.001 – –

71 19 4 0.190 (0.070) <.001 – –

Note: Number of individuals (number of groups) per colony: colony 11:19 (6); colony 20:10 (3); colony 27:20 (6); colony 43:17 (5); colony 71:19 (4).
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In social network studies, the number of individuals that can 
be detected at the same time (or in a given time window) is rarely 
considered or reported. In our study, 8 or 16 individuals could be 
detected simultaneously, contrasting with studies on tits and 
other songbirds that use feeders which typically detect one (Jones 
et al., 2019) or two (e.g., Aplin, Farine, et al., 2015; Beck et al., 2020) 
birds simultaneously. Other field studies, such as recent work on 
wild zebra finches (Taeniopygia guttata) (Brandl, Farine, Funghi, 
Schuett, & Griffith, 2019) used feeders with a restricted entrance 
allowing multiple flock members to enter and exit feeders together. 
Reporting the proportion of birds detected feeding together could 
allow assessing whether restricting data collection to fewer simulta-
neous observations dilutes true social bonds, causing lower network 
resolution and potentially leading to less accurate associations, as it 
appears to be the case in the sociable weaver. This issue becomes 
an important consideration for studies with limited budgets or re-
searcher time as field studies often face the trade-off between max-
imizing replication across individuals (i.e., sampling more individuals 
in total) versus maximizing the precision of the data collected (i.e., 
sampling individuals simultaneously). In our study, one setup re-
quires twice as much equipment, meaning that we could only sample 
at half the locations or revisit each location half as often. Simulation 
studies suggest that collecting more simultaneous data is generally 
preferable (Davis et al., 2018), because networks require many repli-
cated observations of each possible pair of individuals in order to be 
robust (see Farine & Strandburg-Peshkin, 2015). Such improvement 
in the resulting networks might well justify the additional economic 
cost associated with having more feeders or having technology ca-
pable of detecting multiple individuals in close proximity.

Our study also illustrates how different data collection methods 
and algorithms for estimating association strengths can generate dif-
ferent networks (see also Castles et al., 2014). While the different 
networks that are collected may be correlated (see Farine, 2015), this 
does not mean they are all equally powerful at testing a hypothesis. 
However, when testing network quality, the choice of which a priori 
knowledge to use is also critical. For instance, while a method that 
was guided using the assumption that individuals prefer to associate 
with other members of the same breeding group might be appropri-
ate to study phenomena that potentially involve a social preference 
(e.g., testing if individuals assort by their propensity to cooperate), it 
might not be feasible to study phenomena where casual or random 
interactions play an important role such as the spread of contagious 
disease. For example, in the European starlings (Sturnus vulgaris), the 
spread of a novel foraging task in a social group was predicted by a 
perching network but not by a foraging network, possibly as a re-
sult of a perching network better capturing social preferences than a 
foraging network in a captive setting (Boogert, Nightingale, Hoppitt, 
& Laland, 2014), while Hoyt et al. (2018) tested multiple ways of 
characterizing social connections among individuals but these failed 
to map on to the observed spread of an experimentally introduced 
pathogen mimic (UVF dust). Advanced analytical techniques can also 
help to discriminate which network is the most informative at pre-
diction the spread of information. For example, Firth, Sheldon, and 

Farine (2016) found that the social network collected after experi-
mentally segregating flocks of tits better predicted the discovery of 
new resources than the social network collected prior to the exper-
imental manipulation. Such techniques could form the basis for pilot 
studies aimed at investigating how best to map the global structure 
of wild populations.

Previous studies used simulation-based approaches (Bonnell & 
Vilette, 2020; Psorakis et al., 2015) to identify the best method to 
discriminate patterns of social connections, or video data to con-
firm that the detection data match reality (Evans, Devost, Jones, & 
Morand-Ferron, 2018; Nomano, Browning, Nakagawa, Griffith, & 
Russell, 2014). Here, we demonstrated that using a priori knowledge 
about the study species or population can be helpful in making de-
cisions about which network to use—which we believe is a stronger 
approach as collecting pilot data captures many of the nuances that 
come with collecting field data. Anticipating the potential limitations 
of the method used for data collection provide researchers with the 
opportunity to make the necessary adjustments before collecting 
the actual data, avoiding revisiting their methods and even hypoth-
eses a posteriori. The crucial point to keep in mind, however, is that 
researchers should aim to make a priori decisions (even if some are 
inevitably arbitrary) about methods for collecting data and building 
networks and ensuring that these are independent of any later tests 
of hypotheses. Failing to do so would decrease the rates of type I 
errors in social network studies. Researchers could also make use of 
preregistration services (Nosek, Ebersole, DeHaven, & Mellor, 2018) 
to publish the research questions, discuss different methods, plan 
analyses and pilot studies before collecting the data and observing 
the research outcomes. This would not only greatly improve the 
credibility of research findings but it would be also useful informa-
tion to other researchers that are planning their studies.

We have tried to draw attention to the decisions that underlie 
social network analyses. Many recent papers provide guidance on 
how to construct networks (reviewed in Farine & Whitehead, 2015). 
However, to our knowledge, little guidance is available about how to 
make system-specific decisions about data collection (e.g., number 
of individuals detected simultaneously) that can be critical to the re-
sults obtained. We show that integrating existing knowledge about 
the species' social behavior in making decisions can be a simple and 
very powerful way of informing which approach is the best one. The 
concepts we present, involving forming and using simple hypothesis 
testing to evaluate competing networks and help guide the process 
of building a network, are easily generalized to other system. They 
go beyond breeding group membership (which is specific to cooper-
ative breeders), bird studies, foraging associations, RFID setups, or 
questions of co-occurrence versus time overlap, which we merely 
used here as empirical examples to illustrate the advantages of the 
proposed approach. Any set of networks can be compared with a 
relevant biological metric, regardless of the methods used. For ex-
ample, when studying a group of primates using direct observations 
one has to decide for how many hours per day to observe each group 
and each individual, how many observers to hire to collect the data 
(similar to our question of how many feeders to use), or even choose 
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between different sampling approaches (Altmann, 1974). As the 
comparison of co-occurrence versus the overlap of time done here, 
decisions on how to define the edges of the network also have to 
be made: are edges defined by spatial proximity more meaningful 
for a given species and for specific question of interest than edges 
defined by other social interactions? These decisions are easier to 
make if we know what patterns to expect in a social network of for 
a given study species. Basing methodological decisions on tests of a 
priori known biological properties of the study system, ideally while 
simultaneously collecting pilot data, will result in more robust net-
work data than copying studies from other systems. This should also 
avoid the pitfalls of combining exploration of network inference with 
testing new hypotheses.

In this paper, we provide a structured approach that can be 
used to make design decisions in network, or other, studies. In ad-
dition, we also call for researchers to provide more information 
about the rationale leading to their decisions. In our case, we took 
advantage of the information obtained as a result of a long-term 
project on a cooperatively breeding species, which provided infor-
mation on composition of breeding groups. In other projects, this 
type of information might not be available or relevant, but other 
types of information, such as the importance of mated pairs which 
are expected to share strong social bonds (see Beck et al., 2020; 
Boogert, Farine, et al., 2014; Brandl et al., 2019; Firth, Voelkl, 
Farine, & Sheldon, 2015) could be used. Further, we reiterate 
that our study clearly highlights the need for data collection and 
analysis methods to be tailored to each study system, as different 
approaches (all of which are valid and exist in the literature) can 
produce quite different outcomes. We hope that once sufficient 
studies report their design process, as we have here, we will be 
able to identify some general guidelines for animal social network 
data collection and analysis.
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