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Early Metabolic Features of
Genetic Liability to Type 2
Diabetes: Cohort Study With
Repeated Metabolomics Across
Early Life
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OBJECTIVE

Type 2 diabetes develops for many years before diagnosis. We aimed to reveal early
metabolic features characterizing liability to adult disease by examining genetic
liability to adult type 2 diabetes in relation to metabolomic traits across early life.

RESEARCH DESIGN AND METHODS

Up to 4,761 offspring from the Avon Longitudinal Study of Parents and Children were
studied. Linear models were used to examine effects of a genetic risk score
(162 variants) for adult type 2 diabetes on 229 metabolomic traits (lipoprotein
subclass—specific cholesterol and triglycerides, amino acids, glycoprotein acetyls,
and others) measured at age 8 years, 16 years, 18 years, and 25 years. Two-sample
Mendelian randomization (MR) was also conducted using genome-wide association
study data on metabolomic traits in an independent sample of 24,925 adults.

RESULTS

At age 8 years, associations were most evident for type 2 diabetes liability (per SD
higher) with lower lipids in HDL subtypes (e.g., —0.03 SD [95% Cl —0.06, —0.003] for
total lipids in very large HDL). At 16 years, associations were stronger with
preglycemic traits, including citrate and with glycoprotein acetyls (0.05 SD; 95%
C10.01, 0.08), and at 18 years, associations were stronger with branched-chain amino
acids. At 25 years, associations had strengthened with VLDL lipids and remained
consistent with previously altered traits, including HDL lipids. Two-sample MR
estimates among adults indicated persistent patterns of effect of disease liability.

CONCLUSIONS

Our results support perturbed HDL lipid metabolism as one of the earliest features
of type 2 diabetes liability, alongside higher branched-chain amino acid and
inflammatory levels. Several features are apparent in childhood as early as age
8 years, decades before the clinical onset of disease.

Type 2 diabetes is a metabolic disease affecting >400 million people globally (1). Its
incidence is driven largely by increased adiposity (2), a strong causal risk factor (3,4);
yet, the difficulty of achieving and maintaining weight loss makes disease management
a lifelong and expensive task (5). This is particularly problematic considering that
potentially half of those living with type 2 diabetes are undiagnosed and that the
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Early Features of Type 2 Diabetes Liability

future burden is expected to be great-
estin lower-income countries (1). There is
therefore a clear need to minimize the
impact of type 2 diabetes, and this requires
biological understanding of the disease at
its very earliest stages.

Type 2 diabetes is typically diagnosed
when blood glucose levels are =7 mmol/L
in the fasting state or 11.1 mmol/L in the
post-challenge state, or when glycated
hemoglobin levels are =6.5% (6); yet,
glucose spikes relatively late in the disease
process. Repeat clinical measures from the
Whitehall 1l cohort study suggest that
insulin sensitivity starts declining a de-
cade before glucose changes are detect-
able (7). Cohort studies with metabolomic
measurements also observe associations
of numerous subclinical traits with lower
insulin sensitivity, including higher
branched-chain amino acid (BCAA) con-
centrations, higher fatty acid and inflam-
matory glycoprotein concentrations, and
elevated lactate and pyruvate (8-11).
Relations with ketone bodies are less
clear, with higher levels associated with
both higher insulin sensitivity (9) and
higher type 2 diabetes risk (12). Hyper-
glycemia also associates strongly with
lipoprotein cholesterol and triglycerides
(13). Whether such trait alterations
reflect developmental stages of type 2
diabetes is unclear because of inherent
confounding by other disease processes.

Another approach to causal inference
is to examine genetic liability to type 2
diabetes in relation to metabolic traits to
identify perturbations specific to the de-
velopment of type 2 diabetes itself (i.e.,
its early metabolic features) (14). The few
studies that have investigated this suggest
effects of type 2 diabetes liability on cho-
lesterol and triglycerides in HDL and VLDL
particles (15), BCAAs (16,17), and ketone
bodies (12). Most used a small set of genetic
variants from early genome-wide associa-
tion studies (GWAS), and all relied on one-
off measures of metabolic traits among
middle- to older-aged adults, which gives
little insight about when in life metabolic
alterations first occur. Examining genetic
liability to type 2 diabetes in relation to
repeated measures of metabolic traits
starting in childhood could reveal the
existence and timing of subclinical trait
perturbations most central to type 2
diabetes development.

We aimed in this study to reveal early
metabolic features characterizing liability
to type 2 diabetes. Using birth cohort

study data, we examined genetic liability
to adult type 2 diabetes in relation to
detailed traits from targeted metabolo-
mics among the same individuals at four key
stages of early life—childhood (age 8 years),
adolescence (16 years), young adulthood
(18 years), and adulthood (25 years). For
replication, two-sample Mendelian ran-
domization (MR) (18) was conducted inan
independent sample of adults to confirm
the persistence of any metabolic features
of disease liability observed in early life.

RESEARCH DESIGN AND METHODS

Study Population

Data were from offspring participants of
the Avon Longitudinal Study of Parents
and Children (ALSPAC), a population-based
birth cohort study in which 14,541 preg-
nant women with an expected delivery
date between 1 April 1991 and 31 Decem-
ber 1992 were recruited from the former
Avon County of southwest England (19).
Since then, 13,988 offspring alive at 1 year
have been monitored repeatedly with
questionnaire- and clinic-based assess-
ments (20), with an additional 811 chil-
dren enrolled over the course of the
study. Offspring were considered for the
current analyses if they had no older
siblings in ALSPAC (202 excluded) and
were of white European ethnicity (604 ex-
cluded) to reduce confounding of associ-
ations by high relatedness and ancestral
population structure.

Writteninformed consent was provided,
and ethical approval was obtained from the
ALSPAC Law and Ethics Committee and the
local research ethics committee. The study
website contains details of all available
data through a fully searchable data dic-
tionary and variable search tool (https://
www.bristol.ac.uk/alspac/researchers/our-
data/).

Assessment of Genetic Liability to
Adult Type 2 Diabetes

Genotype was assessed using the lllumina
HumanHap550 quad chip platform. Quality
control measures included exclusion of par-
ticipants with sex mismatch, minimal or
excessive heterozygosity, disproportion-
ately missing data, insufficient sample
replication, cryptic relatedness, and non-
European ancestry. Imputation was per-
formed using the Haplotype Reference
Consortium panel. Because this study
aimed to address causation, not pre-
diction, genetic liability to type 2 di-
abetes was based on genetic variants
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associated with type 2 diabetes case
status at genome-wide significance in
the largest GWAS to date, which iden-
tified up to 403 independent polymor-
phisms among adults (74,124 case subjects
and 824,006 control subjects) of white
European ethnicity, explaining 17.4% of
variance (21). This set of variants was
refined by excluding 105 variants with P
values =5.00 X 108, 12 additional var-
iants identified only when adjusting for
BMI, and variants that were in linkage
disequilibrium based on R? > 0.001 (re-
taining those single nucleotide polymor-
phisms [SNPs] with the lowest P values)
using the TwoSampleMR package (22).
This left 167 variants highly independently
associated with adult type 2 diabetes
(explaining 7.1% of variance in the UK
Biobank study, using phenotyping as pre-
viously reported [21]) (Supplementary
Table 1), 162 of which were available in
imputed ALSPAC genotype data post-
quality control. This set was combined
into a genetic risk score (GRS) using PLINK
1.9 (www.cog-genomics.org/plink/1.9/),
specifying the effect (type 2 diabetes
raising) allele and coefficient (odds ratio)
from the GWAS as external weights. Scoring
was done by multiplying the number of effect
alleles (or probabilities of effect alleles if
imputed) at each SNP (0, 1, or 2) by its
weighting, summing these, and dividing
by the total number of SNPs used. The
score therefore reflects the average per-
SNP effect on type 2 diabetes (Fig. 1).

Assessment of Metabolic Traits
Participants provided nonfasting blood
samples during a clinic visit while aged
~8years and fasting blood samples from
clinicvisits while aged ~16 years, 18 years,
and 25 years. Proton nuclear magnetic
resonance (*H-NMR) spectroscopy from a
targeted metabolomics platform (23) was
performed using EDTA plasma (stored at
or below —70°C preprocessing) to quantify
229 traits (149 concentrations plus 80 ra-
tios). These included the concentration and
size of lipoprotein subclass particles and
their cholesterol and triglyceride con-
tent, apolipoproteins, fatty acids, pre-
glycemic factors including lactate and
glucose, amino acids, ketone bodies, and
inflammatory glycoprotein acetyls.

Assessment of Adiposity and Type 2
Diabetes Status

For descriptive purposes, BMI was cal-
culated at each time point as weight (kg)
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| Figure 1—Distribution of the GRS for adult type 2 diabetes among ALSPAC offspring.

divided by height squared (m?) based on
clinic measures of weight to the nearest
0.1 kg using a Tanita scale and height
measured in light clothing without shoes
to the nearest 0.1 cm using a Harpenden
stadiometer. Type 2 diabetes/prediabetes
status was not assessed at 8 years because
blood glucose was not quantified based
on fasting samples, and no data were
collected regarding physician diagnosis.
Type 2 diabetes was defined at age
16 years as fasting glucose =7 mmol/L
and at 18 years and 25 years as fasting
glucose =7 mmol/L or reported physi-
cian diagnosis of type 2 diabetes by that
age (6). Prediabetes was defined at 16 years,
18 years, and 25 years as fasting glucose
between 5.6 and 6.9 mmol/L (6).

Statistical Approach

In the first set of analyses, separate linear
regression models with robust SEs were
used to estimate coefficients and 95% Cls
for associations of the type 2 diabetes
GRS (in SD units), with each metabolic
traitmeasured at 8 years (also in SD units)
as a dependent variable adjusted for sex
and age at the time of metabolic trait
assessment. These were repeated for met-
abolic traits measured at 16 years, 18 years,
and 25 years. Estimates are interpreted
within a “reverse MR” framework (14),
wherein the direction of causation is from
disease liability to metabolic traits, and are
taken to reflect “metabolic features” of
type 2 diabetes liability. To compare ev-
idence of linear change in coefficients across

time points, we ran separate linear mixed
models using repeated measures of each
metabolic trait and examined P values from
an interaction term between the type 2
diabetes GRS and the mean age at each time
point (as an occasion/time variable). All
models were additionally run using orig-
inal (non-SD; mostly mmol/L) units to
aid clinical interpretation and external
comparisons.

To allow full use of measured data, the
aforementioned analyses were first con-
ducted using maximum numbers of par-
ticipants (N varying across ages and between
traits). Participants were eligible for
analyses at any age if they had data on
genotype, sex, age, and at least one met-
abolic trait. This resulted in 6,216 eligible
participants (i.e., who contributed data to
any analysis), including up to 4,761, 2,928,
2,612, and 2,560 participants in models at
8 years, 16 years, 18 years, and 25 years,
respectively. Analyses were repeated using
a consistent (complete-case) sample of
participants with data on genotype, sex,
age, and all metabolic traits at each time
point (Fig. 2).

Additional Analyses

Effects of type 2 diabetes liability on
measured BMI at each time point were
also examined. To examine mediation
of effects of type 2 diabetes liability on
metabolic traits by BMI and insulin (not
measured by NMR), we conducted ad-
ditional analyses wherein we adjusted
associations between the type 2 diabetes

GRS and metabolic traits for measured
BMI at the time of each trait assessment
and separately for measured fasting in-
sulin (measured using conventional clin-
ical assays) at the time of each metabolic
trait assessment (except for 8 years when
insulin was not measured). We repeated
these adjustments using a GRS for BMI
based on 312 SNPs independently asso-
ciated with adult BMI (at R* < 0.001 and
P < 5.00 X 10™%) (24) (Supplementary
Table 1), 308 of which were available in
the imputed ALSPAC genotype data
post—quality control, and separately
for a GRS for fasting insulin based on
14 SNPs independently associated with
adult fasting insulin (at R? < 0.001 and
P < 5.00 X 10~ % unadjusted for BMI) (25)
(Supplementary Table 1). ALSPAC analyses
were conducted using Stata 15.1 software
(StataCorp, College Station, TX).

We conducted two-sample MR analyses
to examine metabolic features of type 2
diabetes liability using SNP outcome (met-
abolic trait) estimates from a GWAS of
123 traits quantified using the same NMR
platform as used in ALSPAC (26) among an
independent sample of 13,476-24,925
adults of European ancestry (26). Across
studies included in this GWAS, mean (SD)
age ranged from 23.9 (2.1) years to 61.3
(2.9) years and female sex ranged from
37 to 64%. These estimates were com-
bined with SNP-exposure (type 2 diabe-
tes) estimates based on the 167 SNPs for
type 2 diabetes described previously
(Supplementary Table 1). Three statis-
tical methods were used to generate MR
estimates using the TwoSampleMR pack-
age (22):random-effectsinverse variance
weighted (IVW) (22), MR-Egger, and
weighted median, which make differing
assumptions about directional pleiot-
ropy (27,28). Estimates are interpreted
as SD-unit differences in metabolic trait
per 1-log-odds of type 2 diabetes.

This study involves describing global
patterns of effect estimates; we there-
fore provide exact P values and focus on
effect size and precision (29,30).

Data and Resource Availability

Individual-level ALSPAC data are avail-
able following an application. This pro-
cess of managed access is detailed at
www.bristol.ac.uk/alspac/researchers/
access. Cohort details and data descrip-
tions for ALSPAC are publicly available at
the same web address. Summary-level
GWAS data used in this study are publicly
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Eligible sample

I 14,541 pregnant women recruited in 1991-92 ‘

!

‘ 13,988 offspring alive at age 1y ‘

!

8,701 offspring with valid data
on genotype at age 8y

!

6,216 of these offspring with data on
> 1 metabolic trait at age 8y, 16y, 18y, or 25y
and eligible for inclusion in > 1 analysis

Consistent sample

‘ 14,541 pregnant women recruited in 1991-92 I

!

| 13,988 offspring alive at age 1y ‘

!

8,701 offspring with valid data
on genotype at age 8y

!

4,614 of these offspring with data on
each metabolic trait at age 8y

!

1,712 of these offspring with data on
each metabolic trait at age 16y

!

1,077 of these offspring with data on
each metabolic trait at age 18y

!

699 of these offspring with data on
each metabolic trait at age 25y
and eligible for inclusion in each analysis

| Figure 2—Selection of ALSPAC participants into analyses.

available without the need for application
through the MR-Base platform, which is
accessible at https://www.mrbase.org/.

RESULTS

Sample Characteristics

Of the eligible participants, 49.7% were
male, and BMI was higher at later ages
(Table 1). Prevalence of type 2 diabetes
and prediabetes was very low across time
points (e.g., fewer than five cases of type 2
diabetes at 16 years, five cases (0.2%) at
18 years, and seven cases (0.4%) at 25
years). Participants who were ineligible
for any analysis had slightly higher BMI
than those who were eligible; type 2 di-
abetes prevalence and summary metabolic
traits were also comparable (Supplementary
Table 2).

Characteristics of the complete-case
sample (N = 699) were comparable to
those of the full sample (Supplementary
Table 3), and differences between ex-
cluded and included participants appeared
small (Supplementary Table 4).

Associations of Genetic Liability to
Adult Type 2 Diabetes with Metabolic
Traits at Different Early-Life Stages in
ALSPAC

At 8 years, higher type 2 diabetes liability
(per SD higher GRS) was unassociated
with lipids in most lipoprotein types, in-
cluding VLDL, with effects of inconsistent
direction and magnitudes near zero.

Associations were more consistent with
lower cholesterol, triglycerides, and other
lipids in very large and large HDL (e.g.,
—0.03 SD [95% Cl —0.06, —0.003] for total
lipids in very large HDL per SD higher GRS)
(Fig. 3 and Supplementary Table 5).

At 16 years, higher type 2 diabetes
liability was weakly but more consistently
associated with higher lipids in VLDL and
lower lipids in LDL. Associations were again
strongest with lower lipidsin very large and
large HDL (e.g., —0.08 SD [95% CI —0.11,
—0.04] for total lipids in very large HDL per SD
higher GRS). Preglycemic traits with the
strongest evidence of association included
citrate (—0.06 SD; 95% Cl —0.09, —0.02)
and glucose (0.05 SD; 95% Cl 0.02, 0.08).
Glycoprotein acetyls were associated at
0.05 SD (95% Cl 0.01, 0.08).

At 18 years, higher type 2 diabetes
liability remained weakly associated with
higher lipids in VLDL and LDL but was
more strongly associated with lower lipids
in HDL, particularly very large and large
HDL. Associations with BCAAs and aro-
matic amino acids had strengthened (e.g.,
valine 0.06 SD [95% CI 0.02, 0.09] and
tyrosine 0.04 SD [95% ClI 0.001, 0.07]).
Associations remained stable with glyco-
protein acetyls (0.06 SD; 95% CI 0.02,
0.10).

At 25 years, associations had strength-
ened between type 2 diabetes liability
and lipids in VLDL subtypes such that
effect sizes were comparable to those
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seen with lipids in HDL subtypes (e.g., 0.05
SD [95% Cl 0.01, 0.09] higher total choles-
terol in VLDL versus —0.06 SD [95%
Cl —0.09, —0.02] lower total choles-
terol in very large HDL). Increasing effect
size for VLDL lipids was supported by
relatively low P values for trend across
time points based on linear mixed models
(Supplementary Table 5) (e.g., P-trend =
0.01 for total cholesterol in VLDL). These
P-trend values were higher for lipids in
HDL (e.g., P-trend = 0.15 for total lipidsin
very large HDL), indicating more stable
effect sizes across time points. Associa-
tions were also more evident with several
fatty acids, including a lower ratio of
linoleic-to-total fatty acids (—0.07 SD;
95%Cl —0.10, —0.03) and lower ratios of
-6 to total and polyunsaturated to total
fatty acids. Associations remained relatively
strong with BCAAs (e.g., with leucine at 0.06
SD [95% C10.03, 0.10] and with glycoprotein
acetyls at 0.06 SD [95% Cl 0.01, 0.10]).

Association patterns were compara-
ble when using a complete-case sample
(N = 699) (Supplementary Table 6 and
Supplementary Fig. 1), with estimates
most consistent across time points for
lipidsinverylarge andlarge HDL. Results
based on non-SD units for metabolic traits
are in Supplementary Tables 7 and 8. Mean
and SD values for metabolic traits are in
Supplementary Table 9.

Associations of Genetic Liability to
Adult Type 2 Diabetes with BMI at
Different Early-Life Stages in ALSPAC
Type 2 diabetes liability (per SD higher
GRS) was associated with higher mea-
sured BMI on each occasion. Estimates
were similar to those seen for metabolic
traits: 0.03 SD (95% CI 0.01, 0.05) higher
BMI at 8 years, 0.05SD (95% C10.02,0.08)
higher BMI at 16 years, 0.04 SD (95% Cl
0.01, 0.07) higher BMI at 18 years, and
0.04 SD (95% Cl 0.003, 0.07) higher BMI
at 25 years. The type 2 diabetes GRS
explained a low amount of variance in
measured BMI (0.1% at 8 years, 0.3% at
16 years, 0.2% at 18 years, and 0.2% at
25 years).

Associations of Genetic Liability to
Adult Type 2 Diabetes With Metabolic
Traits at Different Early-Life Stages in
ALSPAC, Adjusted for BMI and Fasting
Insulin

When adjusting for measured BMI, asso-
ciations between type 2 diabetes liability
and metabolic traits on each occasion
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Table 1—Characteristics and metabolic traits at different early-life stages among
6,216 ALSPAC offspring eligible for inclusion in at least one analysis

Childhood Adolescence Youngadulthood Adulthood

Age (years) 7.5 (0.3) 15.5 (0.3) 17.8 (0.4) 24.5 (0.8)
Male, % (n) 49.7 (3,087) 49.7 (3,087) 49.7 (3,087)  49.7 (3,087)
BMI (kg/m?) 16.2 (2.0) 21.4 (3.5) 22.7 (4.02) 24.8 (4.9)
Has type 2 diabetes, % (n) NA NA (<5) 0.2 (5) 0.4 (7)
Has prediabetes, % (n) NA 0.4 (11) 0.5 (12) 0.4 (10)
Lipid traits
Total cholesterol (mmol/L) 3.9 (0.6) 3.5 (0.6) 3.5 (0.7) 3.6 (0.8)
Cholesterol in VLDL (mmol/L) 0.6 (0.2) 0.5 (0.1) 0.6 (0.2) 0.4 (0.2)
Cholesterol in LDL (mmol/L) 1.2 (0.3) 1.04 (0.3) 1.03 (0.4) 1.2 (0.4)
Cholesterol in HDL (mmol/L) 1.5 (0.2) 1.4 (0.2) 1.4 (0.2) 1.4 (0.3)
Total triglycerides (mmol/L) 1.1 (0.4) 0.9 (0.3) 0.9 (0.3) 0.9 (0.4)
Triglycerides in VLDL (mmol/L) 0.7 (0.3) 0.6 (0.3) 0.6 (0.3) 0.6 (0.4)
Triglycerides in LDL (mmol/L) 0.1 (0.1) 0.1 (0.04) 0.1 (0.1) 0.1 (0.04)
Triglycerides in HDL (mmol/L) 0.1 (0.02) 0.1 (0.02) 0.1 (0.02) 0.1 (0.03)
Preglycemic traits
Lactate (mmol/L) 1.4 (0.5) 1.3 (0.6) 1.0 (0.5) 0.9 (0.5)
Citrate (mmol/L) 0.1 (0.03) 0.1 (0.02) 0.1 (0.02) 0.2 (0.02)
Isoleucine (mmol/L) 0.1 (0.02) 0.04 (0.01) 0.04 (0.01) 0.1 (0.01)
Leucine (mmol/L) 0.1 (0.01) 0.1 (0.01) 0.1 (0.01) 0.1 (0.01)
Valine (mmol/L) 0.1 (0.03) 0.1 (0.03) 0.1 (0.03) 0.1 (0.03)
Glucose (mmol/L) 4.2 (0.5) 43 (0.3) 4.1 (0.5) 3.9 (0.4)
Inflammatory traits
Glycoprotein acetyls (mmol/L) 1.2 (0.1) 1.2 (0.1) 1.2 (0.1) 1.2 (0.2)

Continuous data are presented as the mean (SD) and categorical data as indicated. Type 2 diabetes
is defined in adolescence as a clinic fasting glucose of =7 mmol/L and in young adulthood and
adulthood as a clinic fasting glucose of =7 mmol/L or reported physician diagnosis. Prediabetes is
defined as fasting glucose between 5.6 and 6.9 mmol/L. NA, not available/censored cell count.

were largely consistent in direction and
magnitude (Supplementary Table 11)
(e.g., —0.05 SD [95% Cl —0.08, —0.01]
for lipids in very large HDL at 25 years).
This was also apparent when adjusting
fora GRS for BMI (Supplementary Table
12). Associations were also consistent when
adjusting for measured fasting insulin on
available occasions (Supplementary Table
13) (e.g., 0.06 SD [95% CI 0.03, 0.09] for
leucine at 25 years) and likewise when
adjusting for a GRS for fasting insulin
(Supplementary Table 14) (e.g., 0.05 SD
[95% ClI 0.01, 0.09] for glycoprotein acetyls
at 25 years).

Associations of Genetic Liability to
Adult Type 2 Diabetes with Metabolic
Traits in Adulthood in GWAS Summary
Data

Results of two-sample MR analyses in an
independent sample of adults indicated
largely persistent patterns of association
between genetic liability to type 2 diabetes
and metabolic traits seen across early life
(Fig. 4 and Supplementary Table 10).
Higher genetic liability to type 2 diabetes
was generally positively associated with
VLDL lipid subtypes and inversely

associated with HDL lipid subtypes, again
for large and very large HDL specifically
(e.g., —0.004 SD [95% CI —0.007, —0.002]
per 1-log-odds of type 2 diabetes for total
lipids in large HDL). Type 2 diabetes liability
was positively associated with BCAA levels
(e.g., 0.004 SD of leucine, isoleucine, and
valine per 1-log-odds). There was less
evidence of association between type 2
diabetes liability and glycoprotein ace-
tyls, at 0.003 SD (95% CI 0.0001, 0.005)
per 1-log-odds. The strongest associa-
tion was seen for glucose, at 0.008 SD
(95% Cl 0.006, 0.010) per 1-log-odds.
Evidence of effect heterogeneity was
strong for most metabolic traits (e.g.,
Cochran Q P = 7.83 X 10 for the
glucose IVW estimate). Where IVW es-
timates suggested evidence of effect,
weighted median estimators were con-
sistent, whereas MR-Egger estimates were
imprecise, although there was little evi-
dence to suggest that MR-Egger intercept
estimates differed from zero for metabolic
traits (all P > 0.003).

CONCLUSIONS

We aimed to reveal early metabolic fea-
tures of type 2 diabetes liability by

integrating genetic liability to adult dis-
ease with detailed metabolic traits mea-
sured across early life (from 8 to 25 years).
These metabolic traits were measured
long before the expected clinical onset
of type 2 diabetes (31), and consequently,
their perturbations are expected to reflect
early signs of disease that are detectable
in the circulation. Our findings suggest
that one of these earliest features is lower
lipid content in HDL particles, particularly
in large and very large subtypes, alongside
lower citrate and higher BCAA and in-
flammatory glycoprotein acetyl levels.
Several features are apparent in child-
hood as early as age 8 years, several
decades before the clinical onset of dis-
ease. Persistent patterns of effect were
observed in an independent sample of
adults using two-sample MR, supporting
their continued relevance with advancing
age.

Adiposity is expected to be a key driver
of type 2 diabetes and its metabolic in-
termediates. This is supported by several
MR studies suggesting strong effects of
BMI on metabolic trait levels (32) and
type 2 diabetes in adulthood (3,4) and by
the close resemblance of the effects of
adiposity to those seen presently for
type 2 diabetes liability, for example,
lower cholesterol in HDL, higher cho-
lesterol in apolipoprotein-B—containing
lipoproteins, higher BCAA levels, and
higher glycoprotein acetyls. Presently,
adult type 2 diabetes liability was found
to raise BMI in childhood, with effect
sizes appearing consistent at later time
points and similar to those seen for
metabolic traits. Adjusting metabolic
effects of type 2 diabetes liability for
BMI (phenotypically or genetically) pro-
duced little-to-no attenuation, however.
This finding suggests that higher adiposity
is one early feature of type 2 diabetes
liability but that metabolic effects of lia-
bility captured by the genetic variants used
here act largely independently of adiposity.
This is further supported by lower variance
captured in measured BMI by the type 2
diabetes GRS (0.2% at 25 years in ALSPAC)
compared with the variance explained in
type 2 diabetes itself (7.1% among adultsin
UK Biobank [21]). The type 2 diabetes GRS
also explained considerably less variance
in BMI than did the BMI GRS (0.2% vs. 5%
at 25 years in ALSPAC, respectively).

The apparent specificity of effects of
type 2 diabetes liability on lipids within
large and very large HDL suggests distinct
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Figure 3—Associations of genetic liability to adult type 2 diabetes with metabolic traits at different early-life stages among ALSPAC offspring. Estimates
shown are B-coefficients representing the SD difference in metabolic trait per SD higher GRS for type 2 diabetes, ordered concentrically (inner circle to
outer circle) by increasing age at measurement. Six metabolic traits were not measured at the 25-years time point: diacylglycerol, ratio of diacylglycerol
to triglycerides, fatty acid chain length, degree of unsaturation, conjugated linoleic acid, and ratio of conjugated linoleic acid to total fatty acids.

molecular functions of HDL subtypes.
Medium and smaller HDLs have shown
more overlapping immune-related gene
expression profiles with triglyceride- and
apolipoprotein-B—containing particles than
have larger HDLs (33), suggesting that
smaller HDLs are more functionally ath-
erogenic, whereas larger HDLs are more
functionally involved in nonatherogenic
reverse cholesterol transport and more
representative of conventional/nonsubtyped
HDL measurements (34).

Bidirectional effects between meta-
bolic traits and type 2 diabetes liability
remain plausible. One recent MR study
among adults examined effects of type 2
diabetes liability on metabolic traits de-
rived from NMR and mass spectrometry
and effects in the reverse direction for

20 traits (17). Genetically higher choles-
terol in HDL (again in very large and large
subtypes) was most associated with lower
fasting glucose, but these effects did not
extendtotype 2 diabetes. Metabolic traits
with the strongest evidence of effect on
type 2 diabetes were phospholipids in
VLDLand IDLand total triglycerides (17).
Conversely, type 2 diabetes liability had
the greatest effect on alanine, along with
several phosphatidylcholine alkyl-acyls,
supporting such perturbations as con-
sequences rather than causes of type 2
diabetes liability.

Another MR study that instrumented
BCAAs suggested that higher levels raise
type 2 diabetes risk (35). Instrumenting
metabolic traits is difficult, however, be-
cause their genetic architecture overlaps

greatly (36,37), resulting in the use of
genetic variants that are typically not spe-
cific to one metabolic trait. Using the same
genetic variant for multiple traits outside
of a multivariable MR framework can
lead to inflated MR estimates via a “double-
counting” of allele effects, as was likely the
case previously (35,37) where the variant
rs1440581 was used to instrument both
leucine and valine. Other MR evidence
suggested that higher genetic liability to
insulin resistance (a type 2 diabetes pre-
cursor) raises BCAA levels (38). Strong
effects of insulin resistance were also
found on higher lipidsin apolipoprotein-
B—containing particles, on lower lipidsin
very large, large, and medium HDL, and
on lower citrate (38)—patterns like those
seen presently. Effect sizes were much
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Figure 4—Associations of genetic liability to adult type 2 diabetes with metabolic traits in an independent sample of adults based on two-sample MR.
Estimates shown are B-coefficients representing the SD-unit difference in metabolic trait per 1-log-odds of type 2 diabetes based on the IVW method.

larger in that previous study, likely be-
cause insulin resistance is more biolog-
ically distinct than type 2 diabetes (a
heterogenous disease), with more pre-
cise metabolic effects and because of
much older ages at which traits were
measured. These results, together with
ours, position such perturbations as con-
sequences of type 2 diabetes develop-
ment. Our results further indicate that
effects of type 2 diabetes liability on
metabolic traits are generally not atten-
uated with adjustment for fasting insulin
(phenotypically or genetically), suggesting
that effects of genetic liability to type 2
diabetes are potentially independent of
insulin resistance. The effects of liability
presently examined are based on a gen-
eralized disease phenotype, however. Ge-
netic partitioning of type 2 diabetes into
distinct subtypes may enable refined
mechanistic insights.

Limitations

Limitations of this study include modest
sample sizes and thus power/precision
for ALSPAC estimates, particularly for
complete-case analyses. Descriptive com-
parisons were made for key measured
traits between excluded and included
participants and these differences ap-
peared small (e.g., BMI was 25.0 vs.
24.5 kg/m? at age 25 years in the full
vs. complete-case sample, respectively).
Blood samples from the first occasion of
metabolic trait assessment were derived
while nonfasting, but trait concentrations
have previously shown stability over dif-
ferent durations of fasting time (39).
Adjustments were made for measured
BMI and fasting insulin at the time of
metabolic trait measurement to assess
mediation via estimate attenuation. This
procedure carries potential for collider
bias from unmeasured confounding of

the mediator-outcome association (40),
but close agreement between phenotypic
and genetic adjustments suggests this bias
is minor.

Our analyses were restricted to white
Europeans, which helps to reduce con-
founding by ancestral population struc-
ture but limits inference to other groups.
Such inference requires more compre-
hensive GWAS of nonwhite European
populations together with metabolomic
measurements in cohort studies with
higher representation of those groups.
Our two-sample MR analysis confirmed the
same metabolic features in an indepen-
dent sample, but differences in exposure
units prevent direct comparison of effect
sizes. We aimed to reveal early metabolic
features of type 2 diabetes, but objectives
are only feasible within a framework of
“liability” to type 2 diabetes because the
current study population is without clinical
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disease. This was deliberate as part of an
approach for identifying early features of
disease activity in early life, with pre-
clinical implications. Lastly, although we
interpret results as reflecting metabolic
effects of type 2 diabetes liability, alter-
native explanations, including bias or
pleiotropy, remain possible (seven such
scenarios are proposed [14]). Method-
ological flexibility together with an in-
creasingly large scale and scope of genomic
and metabolomic data should make in-
terrogating these scenarios increasingly
feasible.

Conclusion

Our results based on genetic liability to
adult type 2 diabetes in relation to re-
peated measures of detailed metabolic
traits across early life suggest that one of
the earliest metabolic features of type 2
diabetes liability is lower lipid content in
HDL particles—particularly in very large
and large subtypes—alongside lower cit-
rate and higher BCAA and inflammatory
glycoprotein acetyl levels. Several fea-
tures are apparent in childhood as early
as age 8 years, several decades before
the clinical onset of disease.
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