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OBJECTIVE

Type 2diabetes develops formany years before diagnosis.Weaimed to reveal early
metabolic features characterizing liability to adult disease by examining genetic
liability to adult type 2 diabetes in relation to metabolomic traits across early life.

RESEARCH DESIGN AND METHODS

Upto4,761offspring fromtheAvonLongitudinal StudyofParentsandChildrenwere
studied. Linear models were used to examine effects of a genetic risk score
(162 variants) for adult type 2 diabetes on 229 metabolomic traits (lipoprotein
subclass–specific cholesterol and triglycerides, amino acids, glycoprotein acetyls,
and others) measured at age 8 years, 16 years, 18 years, and 25 years. Two-sample
Mendelian randomization (MR)was also conductedusing genome-wide association
study data on metabolomic traits in an independent sample of 24,925 adults.

RESULTS

At age 8 years, associations were most evident for type 2 diabetes liability (per SD
higher)with lower lipids in HDL subtypes (e.g.,20.03 SD [95%CI20.06,20.003] for
total lipids in very large HDL). At 16 years, associations were stronger with
preglycemic traits, including citrate and with glycoprotein acetyls (0.05 SD; 95%
CI 0.01, 0.08), and at 18 years, associationswere strongerwith branched-chain amino
acids. At 25 years, associations had strengthened with VLDL lipids and remained
consistent with previously altered traits, including HDL lipids. Two-sample MR
estimates among adults indicated persistent patterns of effect of disease liability.

CONCLUSIONS

Our results support perturbed HDL lipid metabolism as one of the earliest features
of type 2 diabetes liability, alongside higher branched-chain amino acid and
inflammatory levels. Several features are apparent in childhood as early as age
8 years, decades before the clinical onset of disease.

Type 2 diabetes is a metabolic disease affecting.400 million people globally (1). Its
incidence is driven largely by increased adiposity (2), a strong causal risk factor (3,4);
yet, the difficulty of achieving andmaintainingweight lossmakes diseasemanagement
a lifelong and expensive task (5). This is particularly problematic considering that
potentially half of those living with type 2 diabetes are undiagnosed and that the
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future burden is expected to be great-
est in lower-income countries (1). There is
therefore a clear need to minimize the
impact of type2diabetes, and this requires
biological understanding of the disease at
its very earliest stages.
Type 2 diabetes is typically diagnosed

when blood glucose levels are$7mmol/L
in the fasting state or 11.1 mmol/L in the
post-challenge state, or when glycated
hemoglobin levels are $6.5% (6); yet,
glucose spikes relatively late in the disease
process. Repeat clinicalmeasures from the
Whitehall II cohort study suggest that
insulin sensitivity starts declining a de-
cade before glucose changes are detect-
able (7). Cohort studieswithmetabolomic
measurements also observe associations
of numerous subclinical traits with lower
insulin sensitivity, including higher
branched-chain amino acid (BCAA) con-
centrations, higher fatty acid and inflam-
matory glycoprotein concentrations, and
elevated lactate and pyruvate (8–11).
Relations with ketone bodies are less
clear, with higher levels associated with
both higher insulin sensitivity (9) and
higher type 2 diabetes risk (12). Hyper-
glycemia also associates strongly with
lipoprotein cholesterol and triglycerides
(13). Whether such trait alterations
reflect developmental stages of type 2
diabetes is unclear because of inherent
confounding by other disease processes.
Another approach to causal inference

is to examine genetic liability to type 2
diabetes in relation tometabolic traits to
identify perturbations specific to the de-
velopment of type 2 diabetes itself (i.e.,
its early metabolic features) (14). The few
studies thathave investigated this suggest
effects of type 2 diabetes liability on cho-
lesterol and triglycerides in HDL and VLDL
particles (15), BCAAs (16,17), and ketone
bodies (12).Mostusedasmall setofgenetic
variants from early genome-wide associa-
tion studies (GWAS), and all relied on one-
off measures of metabolic traits among
middle- to older-aged adults, which gives
little insight about when in life metabolic
alterations first occur. Examining genetic
liability to type 2 diabetes in relation to
repeated measures of metabolic traits
starting in childhood could reveal the
existence and timing of subclinical trait
perturbations most central to type 2
diabetes development.
We aimed in this study to reveal early

metabolic features characterizing liability
to type 2 diabetes. Using birth cohort

study data, we examined genetic liability
to adult type 2 diabetes in relation to
detailed traits from targeted metabolo-
micsamongthesameindividualsat fourkey
stagesofearly lifedchildhood(age8years),
adolescence (16 years), young adulthood
(18 years), and adulthood (25 years). For
replication, two-sample Mendelian ran-
domization (MR) (18)was conducted inan
independent sample of adults to confirm
the persistence of any metabolic features
of disease liability observed in early life.

RESEARCH DESIGN AND METHODS

Study Population
Data were from offspring participants of
the Avon Longitudinal Study of Parents
andChildren (ALSPAC), apopulation-based
birth cohort study in which 14,541 preg-
nant women with an expected delivery
date between 1 April 1991 and 31 Decem-
ber 1992 were recruited from the former
Avon County of southwest England (19).
Since then, 13,988 offspring alive at 1 year
have been monitored repeatedly with
questionnaire- and clinic-based assess-
ments (20), with an additional 811 chil-
dren enrolled over the course of the
study.Offspringwere considered for the
current analyses if they had no older
siblings in ALSPAC (202 excluded) and
were ofwhite European ethnicity (604 ex-
cluded) to reduce confounding of associ-
ations by high relatedness and ancestral
population structure.

Writteninformedconsentwasprovided,
andethicalapprovalwasobtainedfromthe
ALSPAC Lawand Ethics Committee and the
local research ethics committee. The study
website contains details of all available
data through a fully searchable data dic-
tionary and variable search tool (https://
www.bristol.ac.uk/alspac/researchers/our-
data/).

Assessment of Genetic Liability to
Adult Type 2 Diabetes
Genotype was assessed using the Illumina
HumanHap550quadchipplatform.Quality
control measures included exclusion of par-
ticipants with sex mismatch, minimal or
excessive heterozygosity, disproportion-
ately missing data, insufficient sample
replication, cryptic relatedness, and non-
European ancestry. Imputation was per-
formed using the Haplotype Reference
Consortium panel. Because this study
aimed to address causation, not pre-
diction, genetic liability to type 2 di-
abetes was based on genetic variants

associated with type 2 diabetes case
status at genome-wide significance in
the largest GWAS to date, which iden-
tified up to 403 independent polymor-
phismsamongadults (74,124 case subjects
and 824,006 control subjects) of white
European ethnicity, explaining 17.4% of
variance (21). This set of variants was
refined by excluding 105 variants with P
values $5.00 3 1028, 12 additional var-
iants identified only when adjusting for
BMI, and variants that were in linkage
disequilibrium based on R2 . 0.001 (re-
taining those single nucleotide polymor-
phisms [SNPs] with the lowest P values)
using the TwoSampleMR package (22).
This left 167 variants highly independently
associated with adult type 2 diabetes
(explaining 7.1% of variance in the UK
Biobank study, using phenotyping as pre-
viously reported [21]) (Supplementary
Table 1), 162 of which were available in
imputed ALSPAC genotype data post-
quality control. This set was combined
into a genetic risk score (GRS) using PLINK
1.9 (www.cog-genomics.org/plink/1.9/),
specifying the effect (type 2 diabetes
raising) allele and coefficient (odds ratio)
from the GWAS as external weights. Scoring
wasdonebymultiplying thenumberofeffect
alleles (or probabilities of effect alleles if
imputed) at each SNP (0, 1, or 2) by its
weighting, summing these, and dividing
by the total number of SNPs used. The
score therefore reflects the average per-
SNP effect on type 2 diabetes (Fig. 1).

Assessment of Metabolic Traits
Participants provided nonfasting blood
samples during a clinic visit while aged
;8 years and fasting blood samples from
clinicvisitswhileaged;16years,18years,
and 25 years. Proton nuclear magnetic
resonance (1H-NMR) spectroscopy from a
targetedmetabolomics platform (23) was
performed using EDTA plasma (stored at
orbelow270°Cpreprocessing) toquantify
229 traits (149 concentrations plus 80 ra-
tios).These includedtheconcentrationand
size of lipoprotein subclass particles and
their cholesterol and triglyceride con-
tent, apolipoproteins, fatty acids, pre-
glycemic factors including lactate and
glucose, amino acids, ketone bodies, and
inflammatory glycoprotein acetyls.

Assessment of Adiposity and Type 2
Diabetes Status
For descriptive purposes, BMI was cal-
culated at each time point as weight (kg)
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divided by height squared (m2) based on
clinic measures of weight to the nearest
0.1 kg using a Tanita scale and height
measured in light clothing without shoes
to the nearest 0.1 cm using a Harpenden
stadiometer.Type2diabetes/prediabetes
statuswasnotassessedat8yearsbecause
blood glucose was not quantified based
on fasting samples, and no data were
collected regarding physician diagnosis.
Type 2 diabetes was defined at age
16 years as fasting glucose $7 mmol/L
and at 18 years and 25 years as fasting
glucose $7 mmol/L or reported physi-
cian diagnosis of type 2 diabetes by that
age (6). Prediabeteswasdefinedat16years,
18 years, and 25 years as fasting glucose
between 5.6 and 6.9 mmol/L (6).

Statistical Approach
In thefirst set of analyses, separate linear
regression models with robust SEs were
used to estimate coefficients and 95%CIs
for associations of the type 2 diabetes
GRS (in SD units), with each metabolic
traitmeasuredat8years (also inSDunits)
as a dependent variable adjusted for sex
and age at the time of metabolic trait
assessment. Thesewere repeated formet-
abolic traitsmeasuredat16years,18years,
and 25 years. Estimates are interpreted
within a “reverse MR” framework (14),
wherein the direction of causation is from
disease liability tometabolic traits, and are
taken to reflect “metabolic features” of
type 2 diabetes liability. To compare ev-
idenceof linearchangeincoefficientsacross

time points, we ran separate linear mixed
models using repeated measures of each
metabolic trait and examined P values from
an interaction term between the type 2
diabetesGRSandthemeanageateachtime
point (as an occasion/time variable). All
models were additionally run using orig-
inal (non-SD; mostly mmol/L) units to
aid clinical interpretation and external
comparisons.

To allow full use ofmeasured data, the
aforementioned analyses were first con-
ducted using maximum numbers of par-
ticipants (Nvaryingacrossagesandbetween
traits). Participants were eligible for
analyses at any age if they had data on
genotype, sex, age, and at least one met-
abolic trait. This resulted in 6,216 eligible
participants (i.e., who contributed data to
any analysis), including up to 4,761, 2,928,
2,612, and 2,560 participants in models at
8 years, 16 years, 18 years, and 25 years,
respectively.Analyseswererepeatedusing
a consistent (complete-case) sample of
participants with data on genotype, sex,
age, and all metabolic traits at each time
point (Fig. 2).

Additional Analyses
Effects of type 2 diabetes liability on
measured BMI at each time point were
also examined. To examine mediation
of effects of type 2 diabetes liability on
metabolic traits by BMI and insulin (not
measured by NMR), we conducted ad-
ditional analyses wherein we adjusted
associations between the type 2 diabetes

GRS and metabolic traits for measured
BMI at the time of each trait assessment
and separately for measured fasting in-
sulin (measured using conventional clin-
ical assays) at the time of each metabolic
trait assessment (except for 8 yearswhen
insulin was not measured). We repeated
these adjustments using a GRS for BMI
based on 312 SNPs independently asso-
ciated with adult BMI (at R2, 0.001 and
P , 5.00 3 1028) (24) (Supplementary
Table 1), 308 of which were available in
the imputed ALSPAC genotype data
post–quality control, and separately
for a GRS for fasting insulin based on
14 SNPs independently associated with
adult fasting insulin (at R2 , 0.001 and
P,5.0031028; unadjusted forBMI) (25)
(Supplementary Table 1).ALSPACanalyses
wereconductedusing Stata 15.1 software
(StataCorp, College Station, TX).

Weconductedtwo-sampleMRanalyses
to examine metabolic features of type 2
diabetes liability using SNP outcome (met-
abolic trait) estimates from a GWAS of
123 traits quantified using the same NMR
platform as used in ALSPAC (26) among an
independent sample of 13,476–24,925
adults of European ancestry (26). Across
studies included in this GWAS, mean (SD)
age ranged from 23.9 (2.1) years to 61.3
(2.9) years and female sex ranged from
37 to 64%. These estimates were com-
bined with SNP-exposure (type 2 diabe-
tes) estimates based on the 167 SNPs for
type 2 diabetes described previously
(Supplementary Table 1). Three statis-
tical methods were used to generate MR
estimates using the TwoSampleMR pack-
age(22): random-effects inverse variance
weighted (IVW) (22), MR-Egger, and
weighted median, which make differing
assumptions about directional pleiot-
ropy (27,28). Estimates are interpreted
as SD-unit differences in metabolic trait
per 1-log-odds of type 2 diabetes.

This study involves describing global
patterns of effect estimates; we there-
fore provide exact P values and focus on
effect size and precision (29,30).

Data and Resource Availability
Individual-level ALSPAC data are avail-
able following an application. This pro-
cess of managed access is detailed at
www.bristol.ac.uk/alspac/researchers/
access. Cohort details and data descrip-
tions for ALSPAC are publicly available at
the same web address. Summary-level
GWAS data used in this study are publicly

Figure 1—Distribution of the GRS for adult type 2 diabetes among ALSPAC offspring.
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available without the need for application
through the MR-Base platform, which is
accessible at https://www.mrbase.org/.

RESULTS

Sample Characteristics
Of the eligible participants, 49.7% were
male, and BMI was higher at later ages
(Table 1). Prevalence of type 2 diabetes
andprediabeteswasvery lowacross time
points (e.g., fewer thanfivecasesof type2
diabetes at 16 years, five cases (0.2%) at
18 years, and seven cases (0.4%) at 25
years). Participants who were ineligible
for any analysis had slightly higher BMI
than those who were eligible; type 2 di-
abetesprevalenceandsummarymetabolic
traits were also comparable (Supplementary
Table 2).
Characteristics of the complete-case

sample (N 5 699) were comparable to
those of the full sample (Supplementary
Table 3), and differences between ex-
cluded and included participants appeared
small (Supplementary Table 4).

Associations of Genetic Liability to
Adult Type 2 Diabetes with Metabolic
Traits at Different Early-Life Stages in
ALSPAC
At 8 years, higher type 2 diabetes liability
(per SD higher GRS) was unassociated
with lipids in most lipoprotein types, in-
cluding VLDL, with effects of inconsistent
direction and magnitudes near zero.

Associations were more consistent with
lower cholesterol, triglycerides, and other
lipids in very large and large HDL (e.g.,
20.03 SD [95% CI20.06,20.003] for total
lipids in very large HDL per SD higher GRS)
(Fig. 3 and Supplementary Table 5).

At 16 years, higher type 2 diabetes
liability was weakly but more consistently
associated with higher lipids in VLDL and
lower lipids in LDL.Associationswereagain
strongestwith lower lipids invery largeand
large HDL (e.g., 20.08 SD [95% CI 20.11,
20.04] fortotal lipids invery largeHDLperSD
higher GRS). Preglycemic traits with the
strongest evidence of association included
citrate (20.06 SD; 95% CI 20.09, 20.02)
and glucose (0.05 SD; 95% CI 0.02, 0.08).
Glycoprotein acetyls were associated at
0.05 SD (95% CI 0.01, 0.08).

At 18 years, higher type 2 diabetes
liability remainedweakly associatedwith
higher lipids in VLDL and LDL but was
more strongly associatedwith lower lipids
in HDL, particularly very large and large
HDL. Associations with BCAAs and aro-
matic amino acids had strengthened (e.g.,
valine 0.06 SD [95% CI 0.02, 0.09] and
tyrosine 0.04 SD [95% CI 0.001, 0.07]).
Associations remained stable with glyco-
protein acetyls (0.06 SD; 95% CI 0.02,
0.10).

At 25 years, associations had strength-
ened between type 2 diabetes liability
and lipids in VLDL subtypes such that
effect sizes were comparable to those

seen with lipids in HDL subtypes (e.g., 0.05
SD [95% CI 0.01, 0.09] higher total choles-
terol in VLDL versus 20.06 SD [95%
CI 20.09, 20.02] lower total choles-
terol in very large HDL). Increasing effect
size for VLDL lipids was supported by
relatively low P values for trend across
time points based on linear mixed models
(Supplementary Table 5) (e.g., P-trend 5
0.01 for total cholesterol in VLDL). These
P-trend values were higher for lipids in
HDL (e.g.,P-trend50.15 for total lipids in
very large HDL), indicating more stable
effect sizes across time points. Associa-
tionswerealsomoreevidentwith several
fatty acids, including a lower ratio of
linoleic-to-total fatty acids (20.07 SD;
95%CI20.10,20.03) and lowerratiosof
v-6 to total and polyunsaturated to total
fattyacids.Associationsremainedrelatively
strongwithBCAAs (e.g.,with leucineat0.06
SD[95%CI0.03,0.10]andwithglycoprotein
acetyls at 0.06 SD [95% CI 0.01, 0.10]).

Association patterns were compara-
ble when using a complete-case sample
(N 5 699) (Supplementary Table 6 and
Supplementary Fig. 1), with estimates
most consistent across time points for
lipids in very large and largeHDL. Results
basedonnon-SDunits formetabolic traits
are in SupplementaryTables7and8.Mean
and SD values for metabolic traits are in
Supplementary Table 9.

Associations of Genetic Liability to
Adult Type 2 Diabetes with BMI at
Different Early-Life Stages in ALSPAC
Type 2 diabetes liability (per SD higher
GRS) was associated with higher mea-
sured BMI on each occasion. Estimates
were similar to those seen for metabolic
traits: 0.03 SD (95% CI 0.01, 0.05) higher
BMIat 8 years, 0.05SD (95%CI 0.02, 0.08)
higher BMI at 16 years, 0.04 SD (95% CI
0.01, 0.07) higher BMI at 18 years, and
0.04 SD (95% CI 0.003, 0.07) higher BMI
at 25 years. The type 2 diabetes GRS
explained a low amount of variance in
measured BMI (0.1% at 8 years, 0.3% at
16 years, 0.2% at 18 years, and 0.2% at
25 years).

Associations of Genetic Liability to
Adult Type 2 Diabetes With Metabolic
Traits at Different Early-Life Stages in
ALSPAC, Adjusted for BMI and Fasting
Insulin
When adjusting for measured BMI, asso-
ciations between type 2 diabetes liability
and metabolic traits on each occasion

Figure 2—Selection of ALSPAC participants into analyses.
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were largely consistent in direction and
magnitude (Supplementary Table 11)
(e.g., 20.05 SD [95% CI 20.08, 20.01]
for lipids in very large HDL at 25 years).
This was also apparent when adjusting
for a GRS for BMI (Supplementary Table
12). Associationswere also consistentwhen
adjusting for measured fasting insulin on
available occasions (Supplementary Table
13) (e.g., 0.06 SD [95% CI 0.03, 0.09] for
leucine at 25 years) and likewise when
adjusting for a GRS for fasting insulin
(Supplementary Table 14) (e.g., 0.05 SD
[95% CI 0.01, 0.09] for glycoprotein acetyls
at 25 years).

Associations of Genetic Liability to
Adult Type 2 Diabetes with Metabolic
Traits in Adulthood in GWAS Summary
Data
Results of two-sample MR analyses in an
independent sample of adults indicated
largely persistent patterns of association
betweengenetic liability to type2diabetes
and metabolic traits seen across early life
(Fig. 4 and Supplementary Table 10).
Higher genetic liability to type 2 diabetes
was generally positively associated with
VLDL lipid subtypes and inversely

associatedwith HDL lipid subtypes, again
for large and very large HDL specifically
(e.g.,20.004 SD [95% CI20.007,20.002]
per 1-log-odds of type 2 diabetes for total
lipids in largeHDL). Type2 diabetes liability
was positively associated with BCAA levels
(e.g., 0.004 SD of leucine, isoleucine, and
valine per 1-log-odds). There was less
evidence of association between type 2
diabetes liability and glycoprotein ace-
tyls, at 0.003 SD (95% CI 0.0001, 0.005)
per 1-log-odds. The strongest associa-
tion was seen for glucose, at 0.008 SD
(95% CI 0.006, 0.010) per 1-log-odds.
Evidence of effect heterogeneity was
strong for most metabolic traits (e.g.,
Cochran Q P 5 7.83 3 10216 for the
glucose IVW estimate). Where IVW es-
timates suggested evidence of effect,
weighted median estimators were con-
sistent, whereasMR-Egger estimateswere
imprecise, although there was little evi-
dence to suggest that MR-Egger intercept
estimates differed from zero for metabolic
traits (all P . 0.003).

CONCLUSIONS

We aimed to reveal early metabolic fea-
tures of type 2 diabetes liability by

integrating genetic liability to adult dis-
ease with detailed metabolic traits mea-
suredacross early life (from8 to25years).
These metabolic traits were measured
long before the expected clinical onset
of type 2 diabetes (31), and consequently,
their perturbationsareexpected to reflect
early signs of disease that are detectable
in the circulation. Our findings suggest
that one of these earliest features is lower
lipid content in HDL particles, particularly
in large and very large subtypes, alongside
lower citrate and higher BCAA and in-
flammatory glycoprotein acetyl levels.
Several features are apparent in child-
hood as early as age 8 years, several
decades before the clinical onset of dis-
ease. Persistent patterns of effect were
observed in an independent sample of
adults using two-sample MR, supporting
their continued relevance with advancing
age.

Adiposity is expected to be a key driver
of type 2 diabetes and its metabolic in-
termediates. This is supported by several
MR studies suggesting strong effects of
BMI on metabolic trait levels (32) and
type 2 diabetes in adulthood (3,4) and by
the close resemblance of the effects of
adiposity to those seen presently for
type 2 diabetes liability, for example,
lower cholesterol in HDL, higher cho-
lesterol in apolipoprotein-B–containing
lipoproteins, higher BCAA levels, and
higher glycoprotein acetyls. Presently,
adult type 2 diabetes liability was found
to raise BMI in childhood, with effect
sizes appearing consistent at later time
points and similar to those seen for
metabolic traits. Adjusting metabolic
effects of type 2 diabetes liability for
BMI (phenotypically or genetically) pro-
duced little-to-no attenuation, however.
This finding suggests that higher adiposity
is one early feature of type 2 diabetes
liability but that metabolic effects of lia-
bility capturedby the genetic variants used
hereact largely independentlyofadiposity.
This is further supported by lower variance
captured in measured BMI by the type 2
diabetes GRS (0.2% at 25 years in ALSPAC)
compared with the variance explained in
type2diabetes itself (7.1%amongadults in
UK Biobank [21]). The type 2 diabetes GRS
also explained considerably less variance
in BMI than did the BMI GRS (0.2% vs. 5%
at 25 years in ALSPAC, respectively).

The apparent specificity of effects of
type 2 diabetes liability on lipids within
large and very largeHDL suggests distinct

Table 1—Characteristics and metabolic traits at different early-life stages among
6,216 ALSPAC offspring eligible for inclusion in at least one analysis

Childhood Adolescence Young adulthood Adulthood

Age (years) 7.5 (0.3) 15.5 (0.3) 17.8 (0.4) 24.5 (0.8)

Male, % (n) 49.7 (3,087) 49.7 (3,087) 49.7 (3,087) 49.7 (3,087)

BMI (kg/m2) 16.2 (2.0) 21.4 (3.5) 22.7 (4.02) 24.8 (4.9)

Has type 2 diabetes, % (n) NA NA (,5) 0.2 (5) 0.4 (7)

Has prediabetes, % (n) NA 0.4 (11) 0.5 (12) 0.4 (10)

Lipid traits
Total cholesterol (mmol/L) 3.9 (0.6) 3.5 (0.6) 3.5 (0.7) 3.6 (0.8)
Cholesterol in VLDL (mmol/L) 0.6 (0.2) 0.5 (0.1) 0.6 (0.2) 0.4 (0.2)
Cholesterol in LDL (mmol/L) 1.2 (0.3) 1.04 (0.3) 1.03 (0.4) 1.2 (0.4)
Cholesterol in HDL (mmol/L) 1.5 (0.2) 1.4 (0.2) 1.4 (0.2) 1.4 (0.3)
Total triglycerides (mmol/L) 1.1 (0.4) 0.9 (0.3) 0.9 (0.3) 0.9 (0.4)
Triglycerides in VLDL (mmol/L) 0.7 (0.3) 0.6 (0.3) 0.6 (0.3) 0.6 (0.4)
Triglycerides in LDL (mmol/L) 0.1 (0.1) 0.1 (0.04) 0.1 (0.1) 0.1 (0.04)
Triglycerides in HDL (mmol/L) 0.1 (0.02) 0.1 (0.02) 0.1 (0.02) 0.1 (0.03)

Preglycemic traits
Lactate (mmol/L) 1.4 (0.5) 1.3 (0.6) 1.0 (0.5) 0.9 (0.5)
Citrate (mmol/L) 0.1 (0.03) 0.1 (0.02) 0.1 (0.02) 0.2 (0.02)
Isoleucine (mmol/L) 0.1 (0.02) 0.04 (0.01) 0.04 (0.01) 0.1 (0.01)
Leucine (mmol/L) 0.1 (0.01) 0.1 (0.01) 0.1 (0.01) 0.1 (0.01)
Valine (mmol/L) 0.1 (0.03) 0.1 (0.03) 0.1 (0.03) 0.1 (0.03)
Glucose (mmol/L) 4.2 (0.5) 4.3 (0.3) 4.1 (0.5) 3.9 (0.4)

Inflammatory traits
Glycoprotein acetyls (mmol/L) 1.2 (0.1) 1.2 (0.1) 1.2 (0.1) 1.2 (0.2)

Continuous data are presented as themean (SD) and categorical data as indicated. Type 2 diabetes
is defined in adolescence as a clinic fasting glucose of $7 mmol/L and in young adulthood and
adulthood as a clinic fasting glucose of$7mmol/L or reported physician diagnosis. Prediabetes is
defined as fasting glucose between 5.6 and 6.9 mmol/L. NA, not available/censored cell count.
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molecular functions of HDL subtypes.
Medium and smaller HDLs have shown
more overlapping immune-related gene
expression profiles with triglyceride- and
apolipoprotein-B–containingparticlesthan
have larger HDLs (33), suggesting that
smaller HDLs are more functionally ath-
erogenic, whereas larger HDLs are more
functionally involved in nonatherogenic
reverse cholesterol transport and more
representative of conventional/nonsubtyped
HDL measurements (34).
Bidirectional effects between meta-

bolic traits and type 2 diabetes liability
remain plausible. One recent MR study
among adults examined effects of type 2
diabetes liability on metabolic traits de-
rived from NMR and mass spectrometry
and effects in the reverse direction for

20 traits (17). Genetically higher choles-
terol in HDL (again in very large and large
subtypes)wasmost associatedwith lower
fasting glucose, but these effects did not
extendtotype2diabetes.Metabolic traits
with the strongest evidence of effect on
type 2 diabetes were phospholipids in
VLDL and IDL and total triglycerides (17).
Conversely, type 2 diabetes liability had
the greatest effect on alanine, along with
several phosphatidylcholine alkyl-acyls,
supporting such perturbations as con-
sequences rather than causes of type 2
diabetes liability.

Another MR study that instrumented
BCAAs suggested that higher levels raise
type 2 diabetes risk (35). Instrumenting
metabolic traits is difficult, however, be-
cause their genetic architecture overlaps

greatly (36,37), resulting in the use of
genetic variants that are typically not spe-
cific to one metabolic trait. Using the same
genetic variant for multiple traits outside
of a multivariable MR framework can
lead to inflatedMRestimates via a “double-
counting” of allele effects, as was likely the
case previously (35,37) where the variant
rs1440581 was used to instrument both
leucine and valine. Other MR evidence
suggested that higher genetic liability to
insulin resistance (a type 2 diabetes pre-
cursor) raises BCAA levels (38). Strong
effects of insulin resistance were also
foundon higher lipids in apolipoprotein-
B–containing particles, on lower lipids in
very large, large, and medium HDL, and
on lower citrate (38)dpatterns like those
seen presently. Effect sizes were much

Figure 3—Associations of genetic liability to adult type 2 diabeteswithmetabolic traits at different early-life stages amongALSPAC offspring. Estimates
shown areb-coefficients representing the SD difference inmetabolic trait per SD higher GRS for type 2 diabetes, ordered concentrically (inner circle to
outer circle) by increasing age atmeasurement. Sixmetabolic traitswere notmeasured at the 25-years time point: diacylglycerol, ratio of diacylglycerol
to triglycerides, fatty acid chain length, degree of unsaturation, conjugated linoleic acid, and ratio of conjugated linoleic acid to total fatty acids.
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larger in that previous study, likely be-
cause insulin resistance is more biolog-
ically distinct than type 2 diabetes (a
heterogenous disease), with more pre-
cise metabolic effects and because of
much older ages at which traits were
measured. These results, together with
ours, position such perturbations as con-
sequences of type 2 diabetes develop-
ment. Our results further indicate that
effects of type 2 diabetes liability on
metabolic traits are generally not atten-
uated with adjustment for fasting insulin
(phenotypically orgenetically), suggesting
that effects of genetic liability to type 2
diabetes are potentially independent of
insulin resistance. The effects of liability
presently examined are based on a gen-
eralized disease phenotype, however. Ge-
netic partitioning of type 2 diabetes into
distinct subtypes may enable refined
mechanistic insights.

Limitations

Limitations of this study include modest
sample sizes and thus power/precision
for ALSPAC estimates, particularly for
complete-case analyses. Descriptive com-
parisons were made for key measured
traits between excluded and included
participants and these differences ap-
peared small (e.g., BMI was 25.0 vs.
24.5 kg/m2 at age 25 years in the full
vs. complete-case sample, respectively).
Blood samples from the first occasion of
metabolic trait assessment were derived
while nonfasting, but trait concentrations
have previously shown stability over dif-
ferent durations of fasting time (39).
Adjustments were made for measured
BMI and fasting insulin at the time of
metabolic trait measurement to assess
mediation via estimate attenuation. This
procedure carries potential for collider
bias from unmeasured confounding of

the mediator-outcome association (40),
but close agreement between phenotypic
andgeneticadjustments suggests thisbias
is minor.

Our analyses were restricted to white
Europeans, which helps to reduce con-
founding by ancestral population struc-
ture but limits inference to other groups.
Such inference requires more compre-
hensive GWAS of nonwhite European
populations together withmetabolomic
measurements in cohort studies with
higher representation of those groups.
Our two-sample MR analysis confirmed the
same metabolic features in an indepen-
dent sample, but differences in exposure
units prevent direct comparison of effect
sizes. We aimed to reveal early metabolic
features of type 2 diabetes, but objectives
are only feasible within a framework of
“liability” to type 2 diabetes because the
current study population is without clinical

Figure 4—Associations of genetic liability to adult type 2 diabetes with metabolic traits in an independent sample of adults based on two-sampleMR.
Estimates shown are b-coefficients representing the SD-unit difference in metabolic trait per 1-log-odds of type 2 diabetes based on the IVWmethod.
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disease. This was deliberate as part of an
approach for identifying early features of
disease activity in early life, with pre-
clinical implications. Lastly, although we
interpret results as reflecting metabolic
effects of type 2 diabetes liability, alter-
native explanations, including bias or
pleiotropy, remain possible (seven such
scenarios are proposed [14]). Method-
ological flexibility together with an in-
creasingly large scaleandscopeofgenomic
and metabolomic data should make in-
terrogating these scenarios increasingly
feasible.

Conclusion
Our results based on genetic liability to
adult type 2 diabetes in relation to re-
peated measures of detailed metabolic
traits across early life suggest that one of
the earliest metabolic features of type 2
diabetes liability is lower lipid content in
HDL particlesdparticularly in very large
and large subtypesdalongside lower cit-
rate and higher BCAA and inflammatory
glycoprotein acetyl levels. Several fea-
tures are apparent in childhood as early
as age 8 years, several decades before
the clinical onset of disease.
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