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Abstract: To date, the research that examines food accessibility has tended to ignore ethnic food outlets.
This void leaves us with a limited understanding of how such food stores may, or may not, impact food
security. The study discussed herein addressed this by conducting a geospatial assessment of ethnic
food outlet accessibility in two U.S. cities: Flint and Grand Rapids, Michigan. We used Geographic
Information Systems (GIS) tools to create a revealed accessibility index for each food outlet, and used
the index to determine access within active travel service areas. We utilized an ordinary least squares
regression (OLS), and two local models: spatial autoregression (SAR) and geographically weighted
regression (GWR) to enhance our understanding of global and localized relationships between outlet
accessibility and type (while controlling for known covariates). The results show that the local models
outperformed (R2 max = 0.938) the OLS model. The study found that there was reduced access to
ethnic restaurants in all service areas of Grand Rapids. However, in Flint, we observed this association
in the bicycling areas only. Also notable were the influences that demographic characteristics had on
access in each city. Ultimately, the findings tell us that nuanced planning and policy approaches are
needed in order to promote greater access to ethnic food outlets and reduce overall food insecurity.

Keywords: food access; ethnic food; service area analysis; GIS; urban design; GWR; local regression;
space syntax; demographic characteristics

1. Introduction

Food insecurity is a growing concern in the U.S. According to the U.S. Department of Agriculture,
11.1%, or roughly 37.2 million people, lived in households that were food insecure. Being food insecure
means that such households are unsure of having, or are unable to, obtain enough food to meet
their needs because they lack money, transportation, or other resources to acquire adequate food [1].
To make matters worse, many urban areas that once contained a multitude of healthy food outlets now
have no or few places in which residents can purchase healthy foods. Instead, purveyors of junk foods
have supplanted healthy food vendors. Two unfortunate outcomes of this transition have been that
some urban residents now travel further to obtain healthy food, or they patronize smaller convenience
stores, grocers, or restaurants that may not contain many healthy food options [2–4].

Current research on the role of small food outlets in mitigating food insecurity is limited.
The majority of research on small food vendors is focused on the traditional corner store, gas
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stations and liquor stores—places that have been found to stock a limited amount of healthy foods [5].
Small food outlets are essential in the food landscape. They are a convenient source of food for many
people. However, some researchers find that residents who obtain most of their food from these
vendors are at risk for health problems such as obesity [6]. Researchers have also found that food sold
in the smaller stores are more expensive than food that is sold in supermarkets and full-line grocery
stores. Scholars also report that small food outlets tend to sell lower quality food than supermarkets
and grocery stores [7–9].

In recent years, a growing number of researchers, public health practitioners, and food advocates
have expanded their research to include ethnic food stores. There is interest in assessing the potential for
neighborhood ethnic markets to enhance food access [10–13]. Ethnic food stores are significant because
they often serve ethnic enclaves, low-income, and immigrant communities with culturally desired foods
that help people to meet their nutritional requirements. In places such as Brooklyn, bodegas–which
typically has about 400 square feet of vending space-comprise more than 80% of the food retailers.
That is, in such urban areas, residents purchase food from ethnic retailers. This is particularly true for
those who do not have private transportation to go to distant grocery stores [2,10,14].

Recognizing the vital niche that they serve, efforts are underway in some cities to assist ethnic
food stores to sell more healthy foods. For example, New York City, which has over 10,000 bodegas
piloted the Healthy Bodegas Initiative in 2005 [14]. The program demonstrated that, with efficient
programming, store owners increased their healthy food offerings within many of the bodegas in the
city [15]. Khojasteh and Raja [13] found that Middle-Eastern ethnic food stores in Buffalo, New York,
sold a variety of healthy foods while Short et al. [16] report that ethnic food retailers sold food at
reduced costs. Gittelsohn et al., [17] argue that ethnic grocers help to alleviate food insecurity while
promoting positive neighborhood change. Considering that by 2050, nearly half of U.S. food consumers
will be ethnic minorities, we must pay more attention to ethnic food outlets [18].

Examining the prevalence of ethnic food outlets in two cities helps us to understand how the
presence of such food vendors is related to the mode of travel and other factors that influence food
access [19]. This approach is supported by past studies that reveal that neighborhood residents use
various means of travel to obtain food. Clifton [20] discovered that low-income food shoppers in Austin,
TX, utilized a multitude of travel modes—including transit, borrowing vehicles, or ride-sharing—to
reach their destinations. While a growing number of food access studies have incorporated different
mobility options [21], a common failing has been the way neighborhood is conceptualized. For instance,
many researchers have viewed the density of food outlets as an indicator of food access [22,23], while
others create buffers around Census units and assess the type of food outlets located within these
geographic areas [24]. Unfortunately, these approaches do not fully account for the edge effect. That is,
residents living on the edge of the neighborhood are likely travel beyond the neighborhood boundary
for food. Hence, food stores located outside of a given neighborhood also serve residents in a study area.
While we build on earlier studies in this genre [25,26], the current study proposes a service area approach
combined with geospatial analysis to examine ethnic food access. The research had three objectives.
First, use exploratory spatial data analysis (ESDA) to visualize the geographical distribution of ethnic
food outlets in two Michigan cities. Second, implement a revealed accessibility index to compare
ethnic food access. Lastly, adopt a geospatial modeling approach to assess the relationship between
the location of ethnic food outlets and outlet type within three active transportation service areas.

2. Materials and Methods

2.1. Study Area and Data

The study areas used in this research are two cities in Michigan–Grand Rapids and Flint (Figure 1).
Grand Rapids is the second-largest city in Michigan; it has been described as one of the fastest
growing cities in the U.S. [27]. Since 2010 the population has grown by 6.5%; it was 200,217 in 2018.
Grand Rapids is a racially heterogeneous city. Whites comprise 59.7% of the city’s population, African
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Americans make up 19.9%, LatinX constitute 15.3%, Asians account for 2.1%, and Native Americans
0.4% of the population [28].
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In contrast, Flint is characterized by severe population losses and a precipitous economic decline
since the 1970s. The shrinking of the automobile industry and increasing suburbanization has resulted
in a 50% population loss since 1960 [29,30]. According to the Census, Flint’s population has by 6.1%
since 2010. The city’s 2018 population was 95,943. Whites make up 37.5% of Flint’s population, African
Americans account for 53.9%, LatinX make up 3.9%, Native Americans comprise 0.6%, and Asians
0.4% of the population [28]. Many of Flint’s residents live in neighborhoods with low food access:
approximately 73% of Flint’s residents live at least 1000 m from a food source in 2009 [31]. Table 1
presents other statistics that compare the study areas.

Table 1. Demographic and socioeconomic statistics.

Demographic Characteristics Flint Grand Rapids

Population 107,824 189,800
Median age 34 33

Median income $29,260 $41,027
Post high-school diploma 49.60% 49.85%

Population under 18 28.43% 25.67%
Population change, 2000–2010 −15.90% −2.73%

Mean family size 3.0 3.2

Source: U.S. Census Bureau, 2010.

2.2. Data

All covariates were collected within each of the city limits and also within an area extending
4.0 km buffer beyond (see Figure 2). We chose this as the overall study area to minimize edge-effects
and account for the diversity of factors, including food outlets, outside the city boundary. The food
outlet database was created in 2012 and data for the factors being analyzed were collected between
2010 and 2012. The covariates considered in this research were mostly obtained from government
sources and pertain to well-known food access predictors: demographic characteristics, environment,
and urban morphology.
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2.2.1. Ethnic Food Outlets

The food outlet database used in this research was compiled from the Reference USA (http://
www.referenceusa.com/) and Orbis (https://www.bvdinfo.com/en-gb/our-products/data/international/orbis).
We also obtained data on food venders from the Michigan Department of Agriculture. The data were
collected from October to December 2012. The databases contain business information such as the
company name, phone number, address, sales (dollars), owner’s name, ethnicity, building size, address,
latitude/longitude coordinates, and Standard Industrial Classification (SIC) codes. We followed the protocol
set forth by Taylor and Ard [32] to classify food outlets in our database. The SIC codes most commonly
used in this research were: 5411 (convenience store, food retail), 5311 (retail shops), 5541 (service stations),
5431 (fruits, vegetables, produce), 5499 (Mexican, Latin, American food), and 5812 (restaurants).

We used the same subtype categorization methodology as Taylor and Ard [32] to identify the
ethnic restaurants and grocers in our database. For the remainder of this paper, such food outlets
will be classified simply as “restaurants” and “grocers.” We obtained the following information for
the ethnic food retailers: company name, owner’s name, owner’s ethnicity, cuisine code, and sales
revenue. First, we grouped major SIC codes into usable subtype categories by reviewing the “company
name”, “owner’s name”, and owner’s ethnicity to help us determine if the owner had identified his or
her ethnicity or if the food outlet sold ethnic food. As a result, we found these types of retailers–Asian,
Cajun, Caribbean, Chinese, Cuban, English, French, German, Greek, Hawaiian, International, Italian,
Jamaican, Japanese, Korea, Mediterranean, Mexican, Polish, Thai, and soul food. Next, we examined
the cuisine code to see how the restaurants were labeled in the databases we drew our information from.
The two cuisine codes used were ethnic and American. If the cuisine code was missing, we used the
Internet to find pictures of the food establishment and looked at the signage and building advertising.
For example, if the signage for a restaurant was written in a foreign language, that language occupied
more than half of the sign, and the establishment served or sold ethnic foods, it was considered an
ethnic food outlet. We also used Google Street View and Bing maps to help us categorize the restaurant.
We used this same technique to identify ethnic grocery stores that were not labeled in Reference USA,
Orbis, or the U.S. Department of Agriculture databases.

We also used information on annual sales to further refine our categorization. We used the sales
categories outlined by the Food Marketing Institute (FMI) in our definitions (http://fmi.org/research-
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resources/supermarket-facts). The resulting ethnic food outlets were then plotted using the coordinates
in GIS software (Environmental Systems Research Institute, version 10.5). The ex-post facto analysis
included a manual geo-locational and outlet type verification process conducted by three research
assistants. The final set of outlets used in this research are shown in Table 2.

Table 2. Ethnic food outlets in each city.

Food Outlets Flint Grand Rapids

Type n Examples n Examples

Restaurant 57 Anacelia’s, Wah Nam
Restaurant 141 Fazoli’s, Foo Yen, El Sol

Azteca

Grocer 9 Bam’s African Market, Farah
Khouri Supermarket 22 Quis Qoella, Sakim Grocery,

Spice of India

2.2.2. Socioeconomic, Environmental, and Urban Design Covariates

Food access, and hence diet, can be influenced by many demographic and environmental
factors [33]. Therefore, we collected several demographic and environmental indicators from the
United States (U.S.) Environmental Protection Agency’s (EPA) Smart Location Database (SLD), the
U.S. Census Bureau, and other government sources. The SLD contains 90 different metrics reflecting
well-known demographic and environmental indicators for the entire U.S; it is aggregated to the
Census Block Group (CBG) level [34]. These factors were used to help us assess neighborhood quality.
Hence, we obtained indicators for land-use diversity, network design, accessibility, demographics,
and employment status. We also collected information from city, state, and federal sources on other
quality-of-life indicators such as schools, parks, motorized and non-motorized transportation networks,
land-use diversity, bicycle/pedestrian crashes, brownfields, and crime incidences.

Urban design has been shown to be an essential factor in food accessibility [35], yet it is
not typically studied in food access research. Space syntax has long been a means to examine
how the urban form influences human movement and cognition. The theoretical framework is
based on the notion that accessibility is moderated by urban configurations and may not be solely
dependent on the destination or attraction [36]. For instance, scholars report that longer lines of
sight, reduced path angularity, and integrated or connected spaces–which is dictated by urban
morphology-facilitate wayfinding and accessibility [37]. This has obvious implications for food
acquisition, consequently, we incorporated urban design metrics into our study of food access. To carry
this out, we utilized the freeware Depthmap software (Version X) developed by University College
London (https://github.com/SpaceGroupUCL/depthmapX/).

2.3. Service Area Delineation and Data Aggregation

In this research, we created three active living (bicycling, mass-transit, and walking) service areas
where the ethnic food outlet serves as the center of each zone. As mentioned earlier, this method
captures the heterogeneity around each vendor. The method also minimizes biases that arise from edge
effects (edge effect bias is a common challenge in food access research) [38]. We created the service
areas by using the road network of each city, ArcGIS software, and the Network Analyst extension.
The service area distances—based on definitions used in previous active travel research–were defined
as 0.40 km to represent walking; 5.36 km and 0.40 km distance along each mass-transit route and around
each stop, respectively; and 8.04 km to represent a feasible bicycling distance [26,39–41]. Network
distances, instead of straight-line distances, were used because they represent the travel environment
more accurately [42]. The exposure variable and all covariates were added to the service areas using
areal interpolation. This method is commonly used to integrate spatial data from one set of zonal
units with another. In this case, the source data is treated as a continuous density surface; the source
data is joined to the target dataset then multiplied by the ratio of spatial overlap between the areal
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units [43]. All covariates were normalized by the service area (kilometer) to minimize errors associated
with the modifiable areal unit problem (MAUP). The MAUP is another well-known problem that arises
in accessibility studies [44].

2.4. Geovisualizations and Spatial Analysis

Our first objective (Objective A) in this study was to use ESDA to assess the spatiality of the ethnic
food outlets in relation to the demographic characteristics of each city. To do this, we plotted each food
outlet’s latitude and longitude in ArcGIS. We used kernel density estimation of the number of low-wage
workers (a socioeconomic indicator) in the 2010 Census block groups. Kernel density estimation is often
used to visualize the intensity of a phenomenon [43]. We used another ESDA technique, calculating the
global Moran’s I index, to identify spatial autocorrelation (or clustering) of the reveal accessibility index
(RAI) values in each city [45]. The index ranges in value from −1 to +1. The positive values indicate
positive autocorrelation, and negative values highlight an inverse spatial relationship [46]. In addition to
the Moran’s I index, z-scores were reported for statistical analyses. If the z-score values are at levels of
±1.96, the randomness test is rejected and the pattern is spatially correlated [47].

2.5. Developing the Outcome Variable: Revealed Accessibility Index

Our second objective (Objective B) was to create a RAI to represent food access for each restaurant
and grocer in our active travel neighborhoods. Here, we build on the works of Miller and Shawn [48]
and Lee et al. [49]. The index is unique because it accounts for food outlet usage (as indicated by
reported revenue), square footage, quantity of other competing food outlets, and travel cost (i.e.,
distance decay within each neighborhood). A high index output is caused by low competition and
high accessibility of each ethnic food outlet (EFO), while a low index indicates high competition and
low accessibility. The index form is as follows:

RAI =
( 1

m− 1

)∑
k, j

wkc−2
jk (1)

where: m = all other food outlets; w = normalized EFO revenue (outlet structural sq. footage); c jk =

impedance function based on network buffer distance to the −2 exponent.
The cost of −2 represents a regularly used power function that measures the decrease in spatial

interaction between an origin and destination [50]. The decrease represents a distance decay function;
in other words, a resident who lives further away from an EFO in the network zone would experience a
greater a “cost” in reaching their food outlet destination. The usage (w) of each EFO was established by
normalizing the revenue by the reported square footage of the structure. The building square footage
was used because it contributes to store attraction; square footage also makes it possible to compare
the size of all the EFO’s [51].

2.6. Data Preprocessing

From the initial database of all possible variables influencing associability, we adopted
a two-pronged approach to determine the final set of covariates. We conducted a Pearson
product-moment correlation analysis among the RAI and all pertinent covariates in each active
living zone. Those which were statistically significant (p-value < 0.05) were retained in the model
for further analysis. The correlation analysis was conducted using SPSS (IBM Inc., Version 22)
statistical software. We also studied the variance inflation factor (VIF) to identify whether there was
multicollinearity among the covariates. VIF values that are less than 10 are acceptable [52]. We did not
find any evidence of multicollinearity among the covariates used in this study. The retained variables
were consistent among each active travel zone in both cities for comparison purposes. The final
covariates and their definitions are shown in Table 3.
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Table 3. Variable descriptions.

Variables Description

Dependent variable
RAI Revealed accessibility index, transformed using the square root

Independent variables
EFO Ethnic food outlet type (dummy, restaurant = 1, grocer = 0)

Demographics
Male Density of males per km
Population Population density (persons per km)
Low wage workers Number of workers per km earning $1250 per month or less
3 or more races Density (per km) of persons identified as three or more races
Race-white Density (per km) of persons of one race: white
High school diploma Population density (per km) of those with a high school diploma

Environment
Crime Quantity of all crimes per km
Pedestrian intersections Pedestrian-oriented intersection (3 or 4) density

Multi-modal intersections Intersection density in terms of multi-modal intersections having three legs per
square mile

Roads Auto-orientated road network density per km
Road intersections Intersection density in terms of auto-oriented intersections per square mile
Parks Park area density per km

Urban morphology
Shortest line distance Mean metric shortest length pathways from each point to every other point per area
Shortest path angularity Mean number of angular deviations per zone
Isovist area Total viewable area from any space in the system
Entropy Mean measure of the physical order of the system
Visual depth The mean number of steps from any space to any other space in the system
Visual control Mean value of visually dominant areas, high values = high visual dominance

Occlusivity Mean measure of optic discontinuity in an environment. High values indicate long
lengths (optic continuity) of occluding radials

2.7. Global and Local Model Development

The last goal (Objective C) was to develop a geospatial modeling approach to enhance our
understanding of access to ethnic foods. We used a multivariate ordinary least squares (OLS) regression
model to examine the global linear relationship between the outcome variables and ethnic food outlet
type. The OLS model was considered the base model in this study. All variables were entered
simultaneously and were considered fully adjusted. Because the OLS models violate the assumption of
a normal distribution and uncorrelated error terms when spatial heterogeneity is present, we proposed
a local modeling approach.

Local models can help to identify relationships that remain hidden by global models, such as OLS.
Therefore, we created two local models to account for spatial autocorrelation among dependent or
independent variables. The first one enlisted was a simultaneous spatial autoregressive (SAR) model.
The SAR model is based on the assumption that the exposure variable is affected by surrounding values
from other factors [53]. The model is also typically used when spatial autocorrelation is hypothesized
to affect the exposure variable and covariates; it is also recommended when spill-over effects are
possible [54,55]. Spatial relationships are modeled based on neighborhood distances between the
exposure variable locales i and j and an n x n set of spatial weights. The model form is as follows:

y = ρWy + Xβ+ WXy + ε (2)

The ρ is the spatial lag parameter and W is a spatial weights matrix representing the proximity
between each pair of EFO’s i and j, β is a K by 1 vector of regression coefficients X; WXγ denotes the
autoregression coefficient (γ) of the spatially lagged covariates [56]. The variable ε is the vector of
independent error terms, which may not be identically distributed [57]. We used the freeware SAM
software to design this model [58].
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To explore the spatial dimensions of access to ethnic foods more fully, we incorporated
geographically weighted regression (GWR) into this research. The GWR approach fits a separate
model for each EFO to help us detect nuanced influences on the RAI. The GWR model allows all
regression variables to vary spatially within each zone of the two study cities. The method produces
coefficients for each EFO and is particularly useful when there are many confounding variables and
interaction effects that cannot be controlled for [59,60]. The spatially variant factors are treated with a
weighting scheme based on distance and bandwidth. The weights (i.e., kernel function) are based on a
distance-decay algorithm defined as the Gaussian distribution wherein greater salience is applied to
variables that are closer to the EFO and less when further away. In this study, we chose the calibration
method that minimizes the AICc of each regression model and the Gaussian adaptive bandwidth
function. The GWR equation is elaborated on by Fotheringham et al. [61] and takes the form:

yi = β0(ui , vi) +
∑

k

βk(ui, vi)xik + εi (3)

where (ui , vi) denotes the coordinates of the exposure variable y; (ui , vi) denotes the coordinates of i;
and β0 and βk represent the local estimate intercept and influence of factor k at location i, respectively;
and ε is the random error term which accounts for varying values across space [61,62]. The key
characteristic of the GWR equation is that locations closer to i possess a stronger influence on the
estimation of βk(ui, vi) than locations further away. We utilized the freeware GWR4 software to conduct
the GWR models [63].

The performance of each model (OLS, SAR, and GWR) used in this study was assessed by
reviewing the model diagnostic tests: coefficient of determination (R2) and AICc. The latter is
considered the preferred means of measuring model robustness. The best model is the one with
an AICc index value of three less than any other model’s AICc index. In contrast, an elevated R2

index indicates a stronger model because the independent variables explain more of the variance
in the dependent variable [61,64]. We also tested the standardized residuals from each model for
spatial autocorrelation using the Global Moran’s I statistic. If the index is statistically significant the
independence of observations assumption is violated [65].

3. Results

3.1. The Spatial Distribution of Ethnic Food Outlets and Demographic Characteristics

Regarding Objective A—which was to visualize the comparative differences between restaurants
and grocers in each city using ESDA—Figure 2a displays a random pattern of both types of outlets in
Grand Rapids. Low SES is concentrated in the center of the city and there appears to be several EFO’s
in the core of the city. This pattern suggests that food insecurity among the city’s low-income residents
may be low. In contrast, the spatial relationship between food outlets and low socioeconomic status in
Flint indicates that there is reduced access to ethnic food outlets in the northwest section of the city
(Figure 2b). However, global Moran’s I outcomes showed there was no significant clustering of food
retailers (i.e., RAI) throughout space (Table 4).

Table 4. Moran’s I test of revealed accessibility index (RAI) in each city’s active living zone.

Statistics
Grand Rapids Flint

Walking Mass-transit Bicycling Walking Mass-transit Bicycling

Moran’s I 0.140 0.082 0.128 0.325 0.787 0.327
Expected I −0.006 −0.006 −0.006 −0.016 −0.018 −0.016

z-score 0.684 0.415 0.614 0.857 1.946 0.846
p-value 0.493 0.678 0.538 0.391 0.051 * 0.397

* p < 0.1.
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3.2. Accessibility within Walking Service Areas

The model results obtained from the walking zone analysis are shown in Table 5. The diagnostic
tests indicate that the models’ strengths were marginal in each city, except for Flint, where the SAR
model’s R2 explained 51% of the variation using the selected covariates. The SAR model exhibited a
3.43% reduction in AICc when compared to the OLS model, suggesting a better fit. Similarly, we found
the local GWR model had the strongest fit for Grand Rapids: the R2 index increased 64.28% from the
OLS model’s value, indicating a better fit likely because spatial heterogeneity was captured.

The type of ethnic food outlets was significant in the assessment of walking areas around such
stores in Grand Rapids. We found that ethnic groceries were more accessible than ethnic restaurants;
see the statistically significant negative EFO coefficients in the OLS and SAR models (p < 0.05). It was
also evident that environmental and urban morphology indicators had an effect on the accessibility of
ethnic food outlets in Flint. The density of pedestrian infrastructures and the shortest line distance
(shortest path) had a significant (p < 0.01) and positive influence on accessibility; while isovist area had
a significant (p < 0.05) negative impact on accessibility.

3.3. Accessibility within Mass-Transit Service Areas

Table 6 presents the best-fitting global and local models for predicting ethnic food outlet accessibility
in the mass-transit areas around each establishment. Collectively, the outputs were stronger than the
walking area models. In Flint, the greatest amount of explained variance occurred with the GWR
model (R2 = 0.93). We discovered a 5.86% increase in R2, and 63.34% decrease in AICc when compared
to the OLS model; these results indicate a more robust model due to the accountability of spatial effects.
The local SAR model was strongest in the Grand Rapids analysis. We found an increase of 10.35% in
R2 and a reduction of 17.70% for the AICc value when contrasted with the OLS model.

The associations between type of ethnic food outlet and access was significant in Grand Rapids
(p < 0.01). The negative coefficient indicates that groceries were more accessible than restaurants
when zonal conditions were held constant. The association held true for the SAR and OLS models.
The GWR coefficients suggest that the association varied spatially. Of the SES factors that influenced
access, gender was most significant in both cities (p < 0.01). Both the local (SAR and GWR) and global
models (OLS) in Flint and Grand Rapids indicated that males experienced reduced access to ethnic
food stores when compared to females in the same neighborhood. Table 6 also shows that the density
of multi-modal intersections had a positive, and statistically significant (max p-value = 0.01) impact on
access in the mass-transit neighborhoods of each city. We also found that the shape of the environment
had bearing on access to ethnic food vendors in Flint. The mean angularity of the pathways (road
network radii) was significant (p < 0.01) and adversely affected access in Flint’s mass-transit zone.

3.4. Accessibility within Bicycling Service Areas

The results of the global and local models’ prediction of ethnic food access in bicycling zones are
presented in Table 7. The strength of all the models were robust. In Flint, we found that the GWR
model explained the greatest amount of variance (R2 = 0.852); there was a reduction in the explanatory
power of AICc (0.428%) when it was when compared to the OLS model. The strongest model in Grand
Rapids resulted from the SAR analysis (R2 = 0.530); this model exhibited a 6.41% increase in R2 and a
1.77% decrease in AICc when compared to the OLS model. The strength of the SAR model may be
attributable to the model’s ability to account for spatial effects.
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Table 5. Flint (n = 60) and Grand Rapids (n = 161) walking zone fully adjusted model coefficients and diagnostic outputs.

Statistical
Approach OLS SAR GWR

Variables Grand Rapids Flint Grand Rapids Flint Grand Rapids Flint

Independent
Variables Estimate SE Estimate SE Estimate SE Estimate SE Min Max Min Max

EFO a
−0.219 ** 4.503 - - −8.849 ** 6.948 - - −14.039 −4.148 4.265 5.368

SES
Population - - - - - - - - 0.000 0.004 −0.011 −0.005
Low wage

workers - - - - - - - - −0.046 −0.005 0.010 0.074

Environment
Crime - - −0.258 * 0.033 - - - - −0.000 0.002 −0.057 −0.049
Pedestrian

intersections - - 0.461 *** 1.202 - - 0.579 *** 1.337 −0.444 0.935 0.152 0.473

Roads 0.148 * 9.407 − − 0.13 * 8.707 - - −2.064 41.268 −13.023 −7.074

Urban
Morphology

Shortest line
distance - - - - - - 0.45 ** 0.003 0.000 0.001 0.001 0.002

Isovist area - - −0.214 * <0.001 - - −0.33 ** 0.175 0.000 0.000 −0.000 −0.000

Fit Statistics
R2 0.075 0.277 0.172 0.513 0.210 0.193
Adj. R2 0.033 0.175 - - 0.091 0.012
AICc 1336.024 552.32 1321.609 533.37 1328.198 562.48
rho - - 0.8 0.8 - -
Alpha - - 1.0 1.0 - -
Moran’s I b 0.121 0.136 0.121 0.135 0.141 0.141

a reference—grocer (0); b Spatial relationships conceptualized using inverse Euclidian distance; * p < 0.1; ** p < 0.05; *** p < 0.01; VIF index values for all covariates < 10.0; -, no statistically
significant relationship.
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Table 6. Flint (n = 56) and Grand Rapids (n = 159) mass-transit zone fully adjusted model coefficients and diagnostic outputs.

Statistical
Approach OLS SAR GWR

Variables Grand Rapids Flint Grand Rapids Flint Grand Rapids Flint

Individual
Variables Estimate SE Estimate SE Estimate SE Estimate SE Min Max Min Max

EFO a
−0.837 *** 0.013 − − −0.852 *** 0.013 - - −0.330 −0.191 −0.018 0.007

Demographics
3 or more races - - 0.292 ** 0.006 - - - - −0.005 0.001 0.006 0.030
Male −0.750 *** <0.001 −0.835 *** <0.001 −0.740 *** <0.001 −0.028 *** 0.02 −0.000 −0.000 −0.002 −0.001

Environment
Road

intersections - - - - - - - - −0.102 0.041 −2.567 1.144

Multimodal
intersections 0.307 ** 0.009 0.344 *** 0.031 0.236 ** 0.009 0.291 ** 0.054 0.003 0.046 0.084 0.221

Urban
Morphology

Visual Depth - - 0.387 ** 0.047 - - - - −0.009 −0.004 −0.012 0.196
Shortest path

angularity - - −0.425 *** 0.019 - - −0.361 * 0.032 −0.004 0.000 −0.102 −0.025

Fit Statistics
R2 0.814 0.883 0.907 0.908 0.885 0.938
Adj. R2 0.807 0.876 - - 0.870 0.911
AICc −494.041 −203.588 −600.332 −209.345 −555.407 −216.789
rho - - 0.600 0.900 - -
Alpha - - 1.0 1.1 - -
Moran’s I b −0.168 0.064 −0.050 0.555 −0.272 −0.376

a reference—grocer (0); b Spatial relationships conceptualized using inverse Euclidian distance; * p < 0.1; ** p < 0.05; *** p < 0.01; VIF index values for all covariates < 10.0; -, no statistically
significant relationship.
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Table 7. Flint (n = 60) and Grand Rapids (n = 161) bicycling zone fully adjusted model coefficients and diagnostic outputs.

Statistical
Approach OLS SAR GWR

Variables Grand Rapids Flint Grand Rapids Flint Grand Rapids Flint

Individual
Variables Estimate SE Estimate SE Estimate SE Estimate SE Min Max Min Max

EFO a
−0.711 *** 0.019 −0.110 * 0.005 −0.678 *** 0.019 −0.100 * 0.004 −0.173 −0.166 −0.010 −0.006

Demographics
Race: white −0.408 *** <0.001 −0.877 *** <0.001 −0.376 ** <0.001 −0.871 *** <0.001 −0.000 −0.000 −0.000 −0.000
High school

diploma - - 0.169 ** <0.001 - - 0.156 ** <0.001 0.000 0.000 0.000 0.000

Environment
Parks - - 0.229 ** 0.036 - - 0.232 ** 0.038 0.000 0.000 0.101 0.106

Urban
Morphology

Visual Control - - − − - - - - 2.133 4.397 −1.237 −0.298
Occlusivity - - 0.899 *** <0.001 - - 0.875 *** <0.001 −0.000 0.000 0.000 0.000

Fit Statistics
R2 0.496 0.841 0.530 0.833 0.506 0.852
Adj. R2 0.480 0.819 - - 0.475 0.826
AICc −431.607 −348.905 −439.415 −342.003 −431.734 −350.499
rho - - 0.8 0.3 - -
Alpha - - 1 1.1 - -
Moran’s I b 0.179 0.528 0.206 0.618 0.176 0.558

a reference—grocer (0); b Spatial relationships conceptualized using inverse Euclidian distance; * p < 0.1; ** p < 0.05; *** p < 0.01; VIF index values for all covariates < 10.0; -, no statistically
significant relationship.
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Ethnic food outlet type was important in predicting access in the bicycling zones in each city.
There was a significant inverse association between ethnic restaurants and access in Grand Rapids
(p < 0.01). That is, ethnic grocery stores were more accessible than restaurants in the city. This was true
of Flint also. Race had significant impacts on access in both cities. That is, non-white residents had
greater access to ethnic food outlets (p < 0.01) that white residents. The GWR coefficients in each city
indicate that this relationship is spatially invariant. Other demographic coefficients also indicate that
those with a high school diploma had marginally increased access to ethnic food outlets (p < 0.05) in
Flint than residents who had not graduated from high school. Similarly, environmental and urban
morphology were also important factors influencing access to ethnic food establishments in Flint.
The density of parks (p < 0.05) and occluding radials (occlusivity) (p > 0.01) had a positive association
with the outcome variable (RAI).

4. Discussion and Conclusions

Scholars have paid scant attention to ethnic food resources and their accessibility [10,11].
The majority of the studies investigating this phenomenon have relied on qualitative assessments [15]
or empirical models that are not adjusted to accommodate spatially varying relationships [66].
Additionally, few have utilized a service area analysis to quantify the full range of factors affecting
ethnic food access and control for edge-effects. The omission of robust empirical and geospatial
approaches leaves us with an information void about access to ethnic foods. The current research set
out to fill this gap by examining ethnic food access in two different cities. We found that low-wage
workers living in the northwestern portion of Flint had low access to ethnic food outlets. We then
demonstrated that ethnic restaurants were largely inaccessible in each active living area in Grand
Rapids. The relationship held true in Flint, but only in the bicycling zone. The study demonstrates
that measuring ethnic food access isn’t a simple task. Several statistically significant demographic,
environmental, and urban design indicators influenced access in each city.

Our first research objective was to utilize ESDA to examine the spatiality of ethnic food outlets in
each city and compare this to the density of low-wage workers. We found that the density of outlets, as
well as their spatial patterning, differed in each city. In Flint, we observed clustering of outlets near the
center of the city and as well as close to the perimeter. The juxtaposition suggests that food deprivation
could be a problem in Flint. This observation has also been noted by Sadler et al. [67]. The results
of this study should prompt further investigations into food access. Efforts should also be made to
provide more opportunities for residents to gain access to healthy foods. We found a greater density
and dispersion of ethnic food outlets in Grand Rapids. In the city’s central business district where
low-income residents were present, there were ample ethnic food outlets.

The second objective in this research was to develop an accessibility measure (the RAI) that
accounted for distance, outlet usage, and competing food resources in three active travel service areas.
Our last objective was the implementation of a geospatial (local) model to detect associations between
outlet type and the RAI. Even though the local model coefficients largely mirrored the results of the
OLS model, the results from the latter proved more robust. The study also found that the type of ethnic
food outlet matters—especially in Grand Rapids. In this city, we found that ethnic restaurants were
not as accessible as ethnic grocery stores. Unlike past research which has found ethnic restaurants
may help alleviate food insecurity and improve health outcomes [68], our study suggests that ethnic
restaurants may not be an accessible food resource. Ethnic restaurant accessibility may be influenced
by food prices, location, business hours, or lack of culturally appropriate foods [69]. Hence, more
attention should be paid to the operation and role that ethnic restaurants can play in urban areas.
Additionally, we recommend that planners consider incentives to prompt partnerships between local
farmers and ethnic restaurants to facilitate more healthy food offerings [70]. Except from the bicycling
service areas analysis, ethnic food outlet accessibility in Flint wasn’t as dependent on food outlet type
as demographic characteristics, environmental, and urban morphological conditions within the active
travel services areas.
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In the walking areas surrounding each ethnic food outlet in Flint, the local models illustrate
that environmental and urban morphology factors contributed to accessibility. The density of
pedestrian-orientated intersections had a positive influence on access and the GWR coefficients
indicated that this was more important in some areas than others. A positive relationship was also
found between two urban form indicators—shortest line distance and isovist areas. Together, this
association suggests that walkable areas surrounding the food outlets which contain a high number of
linear pathways with strong sight lines may increase accessibility. These findings are corroborated by
Turner et al. [71]. Similarly, urban form and environmental conditions in mass-transit areas were also
found to affect ethnic food accessibility. We discovered a positive and spatially consistent relationship
between areas with a high quantity of multi-modal intersections and outlet accessibility. This finding
indicates that residents who rely on alternative transport may have greater accessibility to ethnic food
outlets [72]. The finding also lends credence to past findings which suggest that procuring healthy foods
often involves multiple travel modes [19]. We found that gender had a marginally significant impact
on ethnic food access. The local model coefficients in Grand Rapids showed that males experienced
less access to ethnic food outlets than females. Supporting results have been reported elsewhere [73].
The socio-economic conditions in each city’s bikeable service area also exerted influence on ethnic food
outlet accessibility. In Flint, the relationship between access and race was strong; a similar finding was
evident in Grand Rapids. Non-whites had greater access to ethnic food outlets than whites. This may
be the case because non-whites find these outlets more accessible for the culturally desirable and
reasonably priced foods. We also showed that the urban design was relevant in this zone. In Flint,
we found a positive link between occlusivity and access: the increase in density of occluding radial
lengths (i.e., linear paths) elevated access. The implications of this result should find footing with
urban and transportation planners focused on promoting food access by enhancing the sight lines of
bicycling or walking corridors.

This study has limitations that we should note. First, the sample size was small, and this constrains
the generalizability of the study. Secondly, despite the complexity of this analysis, it is unknown how
food access is affected by changes in ethnic food store density over time. A longitudinal analysis could
be undertaken in future research to solve this problem. Additionally, we treated ethnic food access as a
geographic problem, which does not tell the whole story. For instance, we acknowledge that we did
not collect food basket information, menu data, business hours, time-sensitive individual shopping
behaviors, or food preferences. These factors influence objective and perceived food outlet access
and should be considered in future research. Lastly, our research included reasonable active travel
distances in our accessibility index; however, we did not collect data on preferred travel modes. This
information would provide deeper insights into the feasibility of reaching the food outlets.

This research examined an often-neglected food resource, ethnic food outlets. To more fully
understand their potential for mitigating food insecurity, we analyzed two Michigan cities by using an
ESDA and geospatial modeling approach. Our study identified important information about ethnic
food stores that have not been reported elsewhere. Our findings indicate that urban planners should
incorporate ethnic food stores into attempts to bring healthy foods to inner city neighborhoods.
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