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In this paper we present a new ab initio approach for constructing an unrooted dendrogram using protein clusters, an approach that
has the potential for estimating relationships among several thousands of species based on their putative proteomes. We employ an
open-source software program called pClust that was developed for use in metagenomic studies. Sequence alignment is performed
by pClust using the Smith-Waterman algorithm, which is known to give optimal alignment and, hence, greater accuracy than
BLAST-based methods. Protein clusters generated by pClust are used to create protein profiles for each species in the dendrogram,
these profiles forming a correlation filter library for use with a new taxon. To augment the dendrogram with a new taxon, a protein
profile for the taxon is created using BLASTp, and this new taxon is placed into a position within the dendrogram corresponding to
the highest correlation with profiles in the correlation filter library.This work was initiated because of our interest in plasmids, and
each step is illustrated using proteomes from Gram-negative bacterial plasmids. Proteomes for 527 plasmids were used to generate
the dendrogram, and to demonstrate the utility of the insertion algorithm twelve recently sequenced pAKD plasmids were used to
augment the dendrogram.

1. Introduction

The availability of complete proteomes for hundreds of thou-
sands of species provides an unprecedented opportunity to
study genetic relationships among a large number of species.
However, the necessary software tools for handling massive
amounts of data must first be developed before we can
exploit the availability of these proteomes. Currently the
tools used for clustering either are restricted in terms of
the number of proteomes that can be examined because of
the time required to obtain results or else are restricted in
terms of their sensitivity. For example, clustering by means
of hidden markov models (HMM), multiple sequence align-
ment, and pairwise sequence alignment by means of the
Smith-Waterman alignment algorithm are limited by their

time complexity. The Smith-Waterman algorithm, a dynamic
programming algorithm, is known to give optimal alignment
between two protein sequences for a given similarity matrix
[1], but alignment of two sequences of lengths 𝑚 and 𝑛
requires 𝑂(𝑚𝑛) time. On the other hand, heuristic approx-
imate alignment methods, frequently based on BLAST and
its variants [2], reduce the computational time required; for
example, in practice BLAST effectively reduces the time to
𝑂(𝑛), but this comes at the risk of losing sensitivity to homol-
ogy detection. In fact, numerous articles—for example, see
[3, 4]—have discussed this loss of sensitivity in BLAST-based
results compared to those of the Smith-Waterman algorithm.
To ensure that amaximumnumber of homologous sequences
are identified, highly sensitive pairwise homology detection
is required. Otherwise, the clusters of homologous sequences
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Figure 1: Flowchart for tree construction using pClust.

obtained by means of a given clustering method will not
include all possible members and, ultimately, the final results
will be less accurate.

In this work we use an alternative sequence comparison
algorithm and clustering method called pClust. Rather than
approximating Smith-Waterman, pClust systematically elim-
inates sequence pairs with little likelihood of having align-
ments and then only employs the Smith-Waterman algorithm
on promising pairs [5]. Clustering is accomplished using a
method based on a previously developed approach called
shingling [6]. By filtering out unlikely sequences and using
the Smith-Waterman algorithm judiciously, pClust remains
highly sensitive to sequence homology without loss of speed.
In an unpublished study of 6,602 proteins from four bacterial
proteomes, pClust and BLAST results were compared, and
BLASTpmissedmore than 69% of the aligned pairs identified
by pClust. In a different study, a direct clusters-to-clusters
comparison was performed with BLAST results used as the
test and pClust results used as the benchmark [7]. The results
showed that all the BLAST results were included within the
pClust results but BLAST missed 14% of the clustered pairs
obtained with pClust. In addition to its sensitivity and speed,
pClust is readily parallelizable, and to cluster proteins from
the proteomes of thousands of species will require high-
performance computing platforms and the use of parallel
algorithms.

This work was initiated by our interest in plasmids. We
wanted a software tool that would allow us to obtain genetic
relationships among 527 Gram-negative bacterial plasmids
based on their putative proteome sequences. In addition, we
wanted an efficient means of adding new plasmids to our
initial dendrogramas their proteomes become available. Plas-
mids are typically circular DNA sequences that can transfer

between and replicate within bacteria and that are generally
classified as broad- or narrow-host range [8, 9]. Plasmid
sequences are described asmosaic because they are composed
of DNA arising from many sources [10]. Plasmids serve to
shuttle important adaptive traits, such as antibiotic resistance,
between organisms [11, 12]. Consequently, understanding
the genetic relationships among plasmids is important, for
example, in the study of microbial evolution, in medical
epidemiology, and in assessing the dissemination of antibiotic
resistance genes [13, 14]. There are a number of approaches
to examine plasmid relationships. Some researchers focus on
the identification of important plasmid backbone genes that
are involved in horizontal gene transfer (HGT) or replication
within bacterial hosts [15, 16]. Some approaches compare
compositional features such as genomic signatures and codon
usage [5, 17]. Some researchers use network-based represen-
tations to explore genetic relationships among plasmids [5, 18,
19]. In this work we use the whole proteomes of 527 Gram-
negative (GN) bacterial plasmids to construct a dendrogram.

We use protein cluster information from pClust to con-
struct our dendrogram and then to predict the relationship
of new plasmids within the structure of this tree. A binary
profile is created for each species, indicating the presence or
absence of a protein in each cluster (Figure 1).The concatena-
tion of all the profiles results in a binary matrix from which
a distance matrix is calculated, and neighbor joining is then
used to construct a dendrogram. The binary matrix also can
be viewed as a library of individual profiles that can serve as
correlation filters for a new taxon. A profile for a new taxon
can be quickly correlated with the profiles in the library to
filter out the profile with the highest correlation coefficient.
This correlation coefficient is then evaluated based on known
biological information and a decision is made as to whether
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Figure 2: Flowchart for insertion of a new taxon into an existing tree using a correlation filter library.

the taxon should be added to the tree. If it is to be added,
its binary profile is added to the binary matrix, a new
distance matrix is calculated, and neighbor joining is again
used to construct a new dendrogram with the additional
taxon. To utilize the algorithm for new plasmids, we focus
on sequences from twelve pAKD plasmids that were isolated
from Norwegian soil [20]. These plasmids belong to incom-
patibility groups IncP-1(𝛽) and IncP-1(𝜀). A phylogenetic tree
constructed using multiple alignment of the relaxase gene
traI is presented by Sen et al. [20] and serves as a basis of
comparison for our augmentation results.

2. Materials and Methods

2.1. Data Preparation. Zhou et al. [21] presented a virtual
hybridization method to construct a dendrogram for 527
GN bacterial plasmids with 50 or more putative coding
genes. The same plasmids are used in this study to facilitate
comparison. BLASTp with default parameters was used to
remove duplicate proteins within plasmid sequences using a
similarity score defined by the formula (length of matching
sequence)∗(BLAST identity score)/(length of reference pro-
tein + length of matching sequence) ≥0.45—that is, proteins
with scores ≥0.45 were considered to be duplicates [22]. The
maximum score 0.5 is obtained when two proteins are an
exact match. Including the matching sequence length in the
denominator of the formula insures that a large difference
in sequence lengths does not bias the results. After removal

of duplicate proteins, more than 97,000 protein sequences
remained.

2.2. Dendrogram Construction. The flowchart in Figure 1
shows the approach used to construct a dendrogram for the
plasmids based on the >97,000 plasmid protein sequences.
The protein sequences 𝑃1, 𝑃2, . . . , 𝑃𝑛 are used as input into
the pClust program [5], which employs the Smith-Waterman
algorithm to perform pairwise comparison of a subset of the
sequences. The output from pClust is composed of clusters
𝐶1, 𝐶2, . . . , 𝐶𝑚 of homologous proteins. Protein profiles
𝑃𝑀1, 𝑃𝑀2, . . . , 𝑃𝑀𝑛 are then created for all the plasmids
from the pClust output files. Each profile consists of a binary
sequence with 1 indicating the presence of a protein and 0
indicating absence (Figure 1). The pClust software was used
with default settings in the configuration file except for Exact-
MatchLen for which a value of 4 was used. A total of 6,618
clusters (defined as having at least two proteins) were identi-
fied by pClust. The resulting 527 × 6, 618 binary matrix was
used to construct the dendrogram for two different distance
measures. The Jaccard distance metric was originally devel-
oped for computation with binary matrices and is given by

𝑑
𝑖𝑗
=

(𝑞 + 𝑟)

(𝑝 + 𝑞 + 𝑟)

, (1)

where 𝑞 is the number of clusters𝐶1, 𝐶2, . . . , 𝐶𝑛 that are 1 for
species 𝑖 and 0 for species 𝑗, 𝑟 is the number of clusters that
are 0 for species 𝑖 and 1 for species 𝑗, and 𝑝 is the number of
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Figure 3: Jaccard distance tree for 50 Gram-negative plasmids.

clusters that are 1 for both species 𝑖 and 𝑗. We also employ
a conventional Euclidean distance metric. For both metrics,
a neighbor-joining algorithm was used to obtain the final
dendrogram.

2.3. Insertion of New Plasmids. As additional plasmid gene
sequences become available, we can repeat the procedure

described in the previous section to obtain a new dendro-
gram. The amount of computation and time required to
accomplish this task, however, is excessive considering the
incremental gain that may be achieved. For example, the
original execution time for the 527-plasmid tree was 72 hours
on an Intel XeonCPUE5420machine with 32GB ofmemory.
Instead it is preferable to have a means of inserting new
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Figure 4: Euclidean distance tree for 50 Gram-negative plasmids.

plasmids into the existing tree structure as described in this
section, where execution of the insertion algorithm takes only
a few minutes on a laptop computer.

To insert a new plasmid into an existing dendrogram,
proteins 𝑃1, 𝑃2, . . . , 𝑃𝑛 from a new plasmid are extracted
from the plasmid proteome (Figure 2). BLASTp is performed
with these proteins against all the proteins in the 6,618 clusters
to determine the protein profile for the new plasmid. A
protein is considered to be a member of a cluster when its
similarity score is>0.2.The similarity score is given by (length

of matching sequence)∗(BLAST identity score)/(length of
reference protein + length of matching sequence). The cutoff
value of 0.2 is consistent with the 40% sequence similarity
used as a parameter setting in pClust. Correlation filtering is
then performed with the correlation filter library consisting
of the protein profiles of the original 527 GN bacterial plas-
mids. The Pearson’s product-moment correlation coefficient,
whose absolute value is less than or equal to 1, is used to
measure the correlation between two profiles [23, 24]. The
larger the correlation value, the greater the similarity between
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two profiles. This value is used to determine whether the
plasmid fits into the dendrogram and, if so, where it should
be located as explained in the discussion section. When
appropriate, the new protein profile is added to the binary
matrix, and a tree is constructed from the entire matrix as
described in the previous section.

3. Results and Discussions

3.1. 527-Plasmid Dendrogram. Following the procedure des-
cribed above, a dendrogram was constructed for 527 GN

bacterial plasmids. Because of its size, it is not shown,
but it is available as supplementary information in Newick
standard format (.nwk) for both Jaccard and Euclidean
distancemetrics and can be viewed usingMEGA5 [25]. A tree
constructed using the Jaccard distance metric for the same
subset of 50 plasmids used in [21] is shown in Figure 3, and
the Euclidean distance version is shown in Figure 4. These
trees are very similar with only a slight difference in the
clustering of theBorrelia plasmids.The tree constructed using
the Euclidean distance metric is closer to the one shown in
[21], but the Jaccard tree does a better job of clustering the
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Borrelia plasmids [26, 27]. The Jaccard distance metric is
commonly used for a binary matrix. Nevertheless, the results
based on Euclidean distance compare favorably with those
obtained for a nonbinary intensity matrix using a different
approach [21]. It is not clear which distance method gives
more accurate results so users should use both matrices and
the decision as to which one is more accurate should be
determined on the basis of the biology of the system.

3.2. Insertion of New Plasmids. We applied our correlation
filter algorithm to twelve new plasmids from the pAKD
family [20].The twelve plasmids cluster together and aremost
closely grouped with genera typical of other soil bacteria.
The correlation coefficient values among the pAKD plasmids
were >0.7 and decreased relative to the other plasmids with
distance to >0.5 (Figure 5). pAKD plasmids 16, 25, and 34
belong to the IncP-1(𝜀) compatibility group and form a
discrete cluster: pAKD plasmids 1, 14, 15, 17, 18, 29, 31, and
33 cluster as the IncP-1(𝛽) compatibility group. Although
pAKD26 falls into the IncP-1(𝜀) clade, it should be in the
IncP-1(𝛽) group if compatibility grouping is considered the
gold standard for comparison. Nevertheless, the placement
is distal from the eight other plasmids in the 𝛽 group, and
pAKD26 was actually designated as IncP-1𝛽-2 to differentiate
it from the other eight plasmids as recently described in [28].
Our results are consistent with [20].

Importantly, the correlation coefficient is used to check
the final dendrogram—that is, a new plasmid should be
located near the plasmid with which it is most highly
correlated. In addition, the correlation coefficient is used to
determine whether a plasmid should even be inserted into
a dendrogram. In other words, how does the magnitude of
the correlation coefficient influence our confidence in the
placement of a new plasmid within an existing dendrogram?
Several works offer guidelines for the interpretation of a
correlation coefficient [29, 30], but all criteria are in some
way arbitrary and ultimately interpretation of a correlation
coefficient depends on the purpose. In our case, we chose
a value of 0.5, but we also require biological evidence—for
example, that a plasmid is, in fact, from a GN bacterium.

To further examine the correlation coefficient, we ran-
domly selected 10Gram-positive bacterial plasmid proteomes
from 10 different genera. The correlation coefficients were
found to range from 0.112 to 0.234. GP bacterial plasmids do
not belong in our GN bacterial plasmid dendrogram, and our
minimum correlation value of 0.5 suffices to exclude these
unrelated plasmids. While this level of discrimination is easy
to identify, we should note that the 527 GN bacterial plasmids
considered in this study do not represent the full diversity of
GN plasmids.Thus, it is possible to obtain a small correlation
coefficient value for a completely new and uncharacterized
GN plasmid. If the new plasmid is able to meet an underlying
correlation threshold, it can be placedwithin the dendrogram
structure, and by incorporating the new plasmid sequence
information into the correlation filter library, we can group
future plasmids that may be closely related to it.

While themethod of inserting newplasmids into an exist-
ing tree is fast and efficient, at some point, generation of a new
dendrogram using all proteins from all the taxa will probably

be required. We do not know at what point this will occur,
but we assume it will be necessary eventually to insure that
all possible protein clusters are included. Recall that a cluster
must contain at least two proteins to be considered a cluster.
Thus, any new plasmid containing a protein that would have
formed a cluster with a single discarded protein represents
incomplete information in the library. It is probable that the
total number of clusters for all Gram-negative plasmids will
ultimately be much greater than 6,818.

4. Conclusion

In this work we present a new ab initio method for con-
structing a dendrogram from whole proteomes that begins
with output from pClust, a software program developed
for homology detection for large-scale protein sequence
analyses. We develop an efficient approach for insertion of
a new species into the dendrogram based on the use of a
correlation filter library. This is much more efficient than
constructing an entirely new tree which is computationally
costly.We illustrate ourmethod by creating a dendrogram for
527 Gram-negative bacterial plasmids and augmenting this
dendrogram with twelve pAKD plasmids isolated from Nor-
wegian soil. For purposes of comparison, we also construct
a smaller dendrogram consisting of 50 species and use two
different distance metrics. The two resulting trees agree well
with results shown in [21]. The classification results for the
twelve plasmids agree with a phylogenetic tree constructed
using multiple sequence alignment of the relaxase gene traI
presented in [20].
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